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Abstract. A semi-automatic scheme was developed for the segmentation of 3D
liver tumors from computed tomography (CT) images. First a support vector
machine (SVM) classifier was trained to extract tumor region from one single
2D slice in the intermediate part of a tumor by voxel classification. Then the
extracted tumor contour, after some morphological operations, was projected to
its neighboring slices for automated sampling, learning and further voxel
classification in neighboring slices. This propagation procedure continued till
all tumor-containing slices were processed. The method was tested using 3D
CT images with 10 liver tumors and a set of quantitative measures were
computed, resulted in an averaged overall performance score of 72.

1 Introduction

Tumor size is a primary measure of the severity of cancers and tumor volumetry is
used both for cancer management and to assess the treatment response [1]. In addition,
accurate lesion localization is a necessary step in some diagnostic and therapeutic
procedures. Hence automatic, fast and robust tumor segmentation and quantitation is
increasingly receiving attention and research efforts from medical imaging, computer
vision and pattern recognition communities.

Computerized segmentation of liver tumor from computed tomography (CT) scans
is a challenging task because researchers are facing a variety of difficult situations
including tumor shape variations, low contrast between tumor tissue and normal liver
tissue, presence of neighboring structures/organs with similar density values, different
tumor imaging characteristics at different CT scanning phases (e.g., early phase,
arterial phase, portal venous phase, and delayed phase), etc. Mahr et al. evaluated the
usability of semiautomatic segmentation algorithms (region growing, isocontour,
snake, etc.) for tumor volume determination in an organic human liver phantom [2].
Yim et al. performed the volumetry study for 10 hepatic metastatic lesions including a
total of 36 CT slices, by using watershed and active contour algorithms [3]. Snake
algorithm with its derivatives has also been studied for semi-automated segmentation



of primary liver tumor from CT images [4]. A multi-stage, automatic hepatic tumor
segmentation scheme was proposed by Seo KS [5]. It included liver structure
segmentation, hepatic vessels removal, and hepatic tumor extraction at last using
composite hypotheses and minimal total probability error [5]. However some
limitations exist in these studies: First, each method developed or adopted was only
tested by CT images with one particular tumor type (either primary hepatocellular
carcinoma or metastatic lesion); Second, most of the testing images are from
conventional CT scans with slice thickness of 5-7 mm, thus most slices have high
signal-noise-ratio (SNR) which is helpful in segmentation; Third, only a few
guantitative measures were used to evaluate these methods and no comprehensive
measuring and scoring system was employed to evaluate the overall performance for
the quality of lesion segmentation and accuracy of tumor volumetry. Therefore further
investigation on tumor segmentation algorithm, proper data for method benchmarking
and performance evaluation metric is highly desired.

By exploring the training data and the segmentation references provided by the
workshop [6] organizers, some image properties of our data can be summarized as
follows: (1) The majority of tumors are isolated objects in 3D volume and their
boundaries are closed contours in 2D slices while a few tumors have connections with
adjacent lesions; (2) Even within a single tumor, variation of intensity values exists
from the intermediate part to the periphery. However due to the thin slice thickness (1
mm or 1.5 mm), the transition between neighboring slices is slight; (3) Tumors in
different pathological types (hepatocellular carcinoma or metastatic lesion) show
different density values (hypo- or hyper-density); (4) In some cases, tumor region is
not homogenous due to necrosis and vascularity inside the lesion; and (5) Generally
images show quite low SNR due to the acquisition of thin slices. From the pattern
recognition point of view, liver tumor segmentation can be considered as an object
extraction mission that is to group pixels/voxels with particular features and discard
others, under certain similarity criteria and some knowledge-based constrains. To
handle the problems mentioned above, we propose a semi-automatic scheme which
uses voxel classification and inter-slice propagation-based learning to segment liver
tumors from three-dimensional (3D) CT scans. The details of this scheme as well as
algorithms embedded are presented at Section 2. In Section 3, data for algorithm
benchmarking with evaluation metric is described and results are given, followed by a
discussion and conclusion in Section 4.

2  Method

The main idea of this semi-automatic scheme is to extract desired tumor region from
one single 2D slice in the intermediate part of a tumor using supervised learning-
based voxel classification, then the extracted tumor contour, after some
morphological operations, is mapped to its neighboring slices for automated sampling,
learning and further voxel classification in the neighboring slices. This scheme is
constructed on the important basis that scan is performed on multi-sliced CT and the
slice thickness is no more than 1.5 mm such that there are only slight changes in both
structural shapes and densities among consecutive slices.



2.1  Overview

The proposed segmentation scheme, illustrated in Fig. 1, has three main stages:
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Fig. 1. Three main stages of the proposed segmentation scheme

Stage 1 Desired tumor region in 2D slice i at the intermediate part of the tumor is first
segmented out by supervised learning-based voxel classification. In this procedure,
tumor samples and non-tumor tissue (healthy liver tissue and other non-liver tissue)
samples are manually selected to train a two-class support vector machine (SVM)-
based classifier. Then the trained SVM classifier is imposed to a ROl in slice i for
voxel classification such that tumor region in the ROI is extracted.

Stage 2 Let C, be the contour of extracted tumor region from slice i, C”and C/
be the contours after morphological dilation and erosion operations are performed on
C, , respectively. As slice thickness of 1 or 1.5 mm was employed for these data, it
can be assumed with a high confidence level that the desired tumor contours and
image features vary slightly among neighboring slices. Hence both C,.D and Cl.E are

projected to slices i-1 and i+1. In slices i-1 and i+1, voxels enclosed by CiE are used
for heuristic learning to train the SVM classifier, then the newly trained SVM
classifier is imposed to the area enclosed by CiD for tumor region extraction in the

two propagating slices. This step is the first propagation procedure.

Stage 3 Similarly the whole propagation procedure including contour projection,
SVM classifier training and voxel classification is further applied to upper and lower
slices for tumor region extraction till all tumor-bearing slices are processed.

2.2  SVM classifier

SVM belongs to the supervised learning methods and is primary used for binary and
also one-class and n-class classification problems [7]. It combines linear algorithms
with linear or non-linear kernel functions that make it a powerful tool and gain
success in the machine learning community with applications in computer vision,
automation, data mining and biomedicine. In general for classification, SVM finds the
best generalizing hyperplane with maximal margin separating the two classes. Since



an error-free separation is not always possible, the optimization problem can be
modified such that misclassified training points are penalized. To be able to apply
SVM into non-linear data distributions, the data can be implicitly transformed to a
high-dimensional feature space where a separation might become possible.
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Fig. 2. lllustrator of SVM with kernel mapping for binary classification

For a binary classification, given a set of separable data set with N samples
X={x,»}, i=12,--,N, labeled as y =+1. It may be difficult to separate these two

classes in the input space directly. Thus, they are mapped into a higher-dimensional
feature space by X =d(x), as shown in Fig. 2. The decision function can be

expressed as
S(x)=wx+p, (2)
where w.x+p=0 (p €R, We Rd) is a set of hyperplanes to separate the two
classes in the new feature space. Therefore for all correctly classified data,
y.f(x)=y,(W-x+p)>0, i=12--,N (2)
holds. By scaling w and , properly, we can have f(x)=w-x+p=1 for those
data labeled as +1 closest to the optimal hyperplane, and f(x)=w-x+p=-1 for all

the data labeled as —1 closest to the optimal hyperplane, as shown in Fig. 2. In order
to maximize the margin, the following problem needs to be solved

min|w[ /2. @3)
subject to
nf(x) =y (W-x+p)2L i=12:N- (4)

It is a quadratic programming problem to maximize the margin, which can be solved
using some standard algorithms such as sequential minimization optimization [8].
After optimization, the optimal separating hyperplane can be expressed as:

N
f(x):zaiyiK(xilx)+p’ (5)

i=1
where K(-) is a kernel function, p is a bias, as are the solutions of the quadratic
programming problem to find the maximum margin. There are only a few training



samples whose s are non-zero. They are called the support vectors, which are

either on or near the separating hyperplane. The decision boundary, i.e. the separating
hyperplane, is along these support vectors, whose decision values f(x) (EQ. 5)

approach zero. Compared with the support vectors, the decision values of positive
samples have larger positive values and those of negative samples have larger
negative values. Therefore, the magnitude of the decision value can also be regarded
as the confidence of the classifier. The larger the magnitude of f(x), the more

confidence of the classification. By choosing different kernel functions, SVM can
model the input space accurately and it shows good generalization by minimizing the
errors made on the training set while maximizing the “margin” between different
classes.

2.3 Implementation

In this study for voxel classification at each slice using the SVM classifier, voxel
density (16 bits) and the median of the densities of the voxel’s eight-neighbors in the
same slice were used as input features. They represent the information for the voxel
and its neighborhood, respectively. In addition, a Gaussian radius basis function (RBF)

2
K(ny):exp(_HX_yH )y Was adopted as the learning kernel in the SVM classifier
o

used, where o was decided by the variations of tumor samples. For the initial
segmentation for slice i in Stage 1, tumor samples were selected by user’s manual
clicking, non-tumor samples were selected by pulling a rectangular box over the non-
tumor region, and the ROI used for tumor region extraction was manually defined by
a polygon. An example of initial segmentation is shown in Figs. 3.a and 3.b.

In stage 2 after the initial segmentation at slice i, tumor contour C, in slice i was
dilated/eroded by 2-3 pixels (2 pixels for 1 mm slice thickness and 3 pixels for 1.5
mm slice thickness) to C”/C”. Both C”/C/ were projected to slices i-1 and i+1,

as shown in Figs. 3.c and 3.d. CI.D, which encircles almost the whole desired tumor
region in slices i-1 and i+1 with some minor margin, was used as the new ROlIs for
tumor extraction in slices i-1 and i+1. The region enclosed by Cf , which is slightly

inside the desired tumor region in slices i-1 and i+1 but covers the majority of the
tumor, was used as the learning samples for tumor to train the new SVM classifier. In
the training procedure, non-tumor samples were the same as those selected in the
initial segmentation stage. Moreover, if the amount of tumor samples is more than
twice of non-tumor samples, a random re-sampling would be performed on tumor
samples to balance sample populations, which is important in the training of SVM
classifier. After voxel classification for tumor region extraction, the whole
propagation procedure including contour projection, SVM classifier training and
voxel classification was further applied to upper and lower slices till all tumor-bearing
slices were processed.

In theory, no human supervision was required during the propagation stages.
However in this study, re-selecting tumor samples or re-defining the polygonal ROI



or both could be applied during the propagation in case CiD or CiE gave obviously

undesired ROl or tumor samples. Furthermore, an automated morphological
processing procedure was applied after voxel classification in each slice to improve
the segmentation results.

Fig. 3. (a) Slice 149 with ROI in tumor IMG02_L1; (b) segmented tumor contour C,
(red); (c)-(d) Cf’ (green) and Cl.E (blue) projections in slices 148 and 150.

3  Testing Data & Results

Also provided by the workshop organizers, the liver tumor CT image data for this
work was acquired on one 64-slice and two 40-slice CT scanners using a standard
four-phase contrast enhanced imaging protocol with slice thickness of Imm or 1.5mm
and in-plane resolution of 0.6-0.9 mm. The data are composed of 30 liver tumors,
representing a range of patients and pathology. All tumors were manually segmented,
by an experienced radiologist and confirmed by another radiologist, as reference for
evaluation purposes. Data from 10 liver tumors were used for method training and
parameters tuning, another 10 tumors for testing (results presented in this paper) and



the last 10 tumors for the onsite competition. Segmentation program was performed
using MATLAB 7.0 R14, on an Intel Core 2 2.66 GHz PC workstation with 3 GB
RAM. The computational time for each tumor varied from 7 mins for a tumor with 14
slices involved to around 20 mins for a tumor with 70 slices involved.

Fig. 5. Segmentation results (tumor contours in red) of selected slices from tumor IMG10_L1

Figures 4 and 5 show the visual examples of segmentation results. By visual
inspection, we find that in general boundaries of tumors are detected accurately for
each slice. Results were also evaluated quantitatively with respect to the following
five measures, (1) relatively absolute volume differences, (2) average symmetric
absolute surface distance, (3) symmetric RMS surface distance, (4) maximum
symmetric absolute surface distance, and (5) volumetric overlap error. An overall
score from 0 to 100 was assigned by an automatic scoring system using results of the



above mentioned five measures [9]. A score of 100 represents the perfect
segmentation while 0 is the minimum score one segmentation will get. The evaluation
results are summarized in Table 1.

Table 1. Results of the evaluation metrics and scores for all ten testing tumors.

Overlap Error | Volume Diff.| Avg. Dist. | RMS Dist. | Max. Dist. | Total
[%] Score| [%] Score|[mm] Score|[mm] Score| [mm] Score | Score
IMGO5_L1| 3065 76 [10.78 89 |219 45 |[295 59 1162 71 68
IMGO5_L2 | 3260 75 [1210 87 |1.07 73 |151 79 | 636 84 80
IMGO5_L3| 3539 73 |1541 84 |144 64 |[208 71 | 969 76 73
IMGO6_L1| 2578 80 | 798 92 |059 85 [0.85 88 |424 89 87
IMGO6_L2 | 6456 50 [96.93 0 |[242 39 [313 56 |[12.78 68 43
IMGO7_L1| 1867 86 | 035 100 |2.21 44 |325 55 |1845 54 68
IMGO7_L2| 2470 81 | 101 99 |112 72 |166 77 | 846 79 81
IMGO8_L1| 17.30 87 | 961 90 |191 52 |271 62 |[1433 64 71
IMG09_L1| 3030 77 |2320 76 |[120 70 |211 71 [1250 69 72
IMG10_L1| 20.22 84 |1573 84 |1.03 74 |153 79 |6.73 83 81
Average | 30.02 77 (1931 80 |152 62 |218 70 |1052 74 72

Tumor

4  Discussion & Conclusions

For years research efforts have been put into the development of an accurate, robust
and reliable liver tumor volumetry system. In this paper a method which uses machine
learning-based voxel classification and shape-based inter-slice propagation is
presented for the semi-automatic segmentation of liver tumor from CT data. This
method was tested using 3D CT images with 10 liver tumors and a set of quantitative
measures were computed, resulted in an averaged overall performance score of 72.
We can observe that among the 10 total scores achieved by testing ten tumor data,
the one from tumor IMGO06_L2 is the lowest (43 only) and it is also significantly
lower than other nine scores (mean, 76; range, 68-87). In this case, the high
segmentation overlap error (64.56%) and relative volume difference (96.93%) suggest
that our segmented tumor volume is almost the double of the reference segmentation
volume. In addition, it only matches one third part of the reference segmentation such
that two thirds of the segmented volume belongs to false positives. If we explore data
IMGO06_L2 we can find that in this arterial phase image, the tumor is a hypo-density
focal lesion enclosed by an irregular hyper-density ring, as two slices shown in Fig. 6
a-b. In pathology, it represents a lesion of primary hepatocellular carcinoma (HCC,
hypo-density) enclosed by small arteries (hyper-density) for blood supply. Our
segmentation results for the corresponding slices, shown in Fig. 6 c-d, include both
the hypo-density focal lesion and the hyper-density arteries. The inclusion of the
surrounding arteries into the HCC lesion as a part of the total tumor volume was
suggested by our consultant radiologists, however for the reference segmentation



given by other experts, surrounding arteries might be probably excluded from the total
tumor volume. Hence the poor performance of our method on tumor IMGO06_L2 may
probably due to the different understandings and definitions from different clinical
experts, for the total tumor volume in such cases. On the other hand, the results show
the non-linear separation ability of SVM classifier that hypo-density focal lesion and
hyper-density arteries are successfully separated from normal liver tissue which is
with intermediate density.

Fig. 6. (a) Slice 109 of tumor IMGO06_L2; (b) Slice 112 of the same tumor; (c)-(d)
Corresponding segmentation contours (red) for the two slices.

A limitation of the proposed method is that although 3D information was used in
this study to determine the sampling and classification areas, the actual voxel
classification was still performed on the basis of 2D slice. Therefore the segmented
tumor object may not keep good smoothness and continuity in 3D in this direction,
though the extracted tumor contour in 2D can reflect tiny and subtle changes along
the tumorous/healthy tissue interface. Abrupt sticks and concavo-convex curve can be
seen on the contours even after the usage of morphological operations. Manual tracing
by human experts, on the other hand, trends to give smooth contours but without
many subtle details, due to the insufficient spatial resolution of the manual tracking
devices we use, i.e., mouse and touch-screen pen. This may also partially explain why



among the five measures, the “average symmetric absolute surface distance” got the
lowest average score (62) among our segmentation results.

In general, the promising benchmarking results achieved demonstrate that our
learning-classification-propagation strategy, with the help from knowledge-based
constraints on tumor shape and location, succeeds generally. Further improvement on
liver tumor segmentation techniques is of course still possible. Besides that 3D shape
prior constraints can be better utilized to keep the smoothness and continuity of the
segmentation result in 3D, normalized cut (an extension version of graph cut [10]
with spectral clustering approach) also has high potential to be explored in this area.
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