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Abstract. A semi-automatic scheme was developed for the segmentation of 3D 
liver tumors from computed tomography (CT) images. First a support vector 
machine (SVM) classifier was trained to extract tumor region from one single 
2D slice in the intermediate part of a tumor by voxel classification. Then the 
extracted tumor contour, after some morphological operations, was projected to 
its neighboring slices for automated sampling, learning and further voxel 
classification in neighboring slices. This propagation procedure continued till 
all tumor-containing slices were processed. The method was tested using 3D 
CT images with 10 liver tumors and a set of quantitative measures were 
computed, resulted in an averaged overall performance score of 72. 

1   Introduction 

Tumor size is a primary measure of the severity of cancers and tumor volumetry is 
used both for cancer management and to assess the treatment response [1]. In addition, 
accurate lesion localization is a necessary step in some diagnostic and therapeutic 
procedures. Hence automatic, fast and robust tumor segmentation and quantitation is 
increasingly receiving attention and research efforts from medical imaging, computer 
vision and pattern recognition communities. 

Computerized segmentation of liver tumor from computed tomography (CT) scans 
is a challenging task because researchers are facing a variety of difficult situations 
including tumor shape variations, low contrast between tumor tissue and normal liver 
tissue, presence of neighboring structures/organs with similar density values, different 
tumor imaging characteristics at different CT scanning phases (e.g., early phase, 
arterial phase, portal venous phase, and delayed phase), etc. Mahr et al. evaluated the 
usability of semiautomatic segmentation algorithms (region growing, isocontour, 
snake, etc.) for tumor volume determination in an organic human liver phantom [2]. 
Yim et al. performed the volumetry study for 10 hepatic metastatic lesions including a 
total of 36 CT slices, by using watershed and active contour algorithms [3]. Snake 
algorithm with its derivatives has also been studied for semi-automated segmentation 



of primary liver tumor from CT images [4]. A multi-stage, automatic hepatic tumor 
segmentation scheme was proposed by Seo KS [5]. It included liver structure 
segmentation, hepatic vessels removal, and hepatic tumor extraction at last using 
composite hypotheses and minimal total probability error [5]. However some 
limitations exist in these studies: First, each method developed or adopted was only 
tested by CT images with one particular tumor type (either primary hepatocellular 
carcinoma or metastatic lesion); Second, most of the testing images are from 
conventional CT scans with slice thickness of 5-7 mm, thus most slices have high 
signal-noise-ratio (SNR) which is helpful in segmentation; Third, only a few 
quantitative measures were used to evaluate these methods and no comprehensive 
measuring and scoring system was employed to evaluate the overall performance for 
the quality of lesion segmentation and accuracy of tumor volumetry. Therefore further 
investigation on tumor segmentation algorithm, proper data for method benchmarking 
and performance evaluation metric is highly desired. 

By exploring the training data and the segmentation references provided by the 
workshop [6] organizers, some image properties of our data can be summarized as 
follows: (1) The majority of tumors are isolated objects in 3D volume and their 
boundaries are closed contours in 2D slices while a few tumors have connections with 
adjacent lesions; (2) Even within a single tumor, variation of intensity values exists 
from the intermediate part to the periphery. However due to the thin slice thickness (1 
mm or 1.5 mm), the transition between neighboring slices is slight; (3) Tumors in 
different pathological types (hepatocellular carcinoma or metastatic lesion) show 
different density values (hypo- or hyper-density); (4) In some cases, tumor region is 
not homogenous due to necrosis and vascularity inside the lesion; and (5) Generally 
images show quite low SNR due to the acquisition of thin slices. From the pattern 
recognition point of view, liver tumor segmentation can be considered as an object 
extraction mission that is to group pixels/voxels with particular features and discard 
others, under certain similarity criteria and some knowledge-based constrains. To 
handle the problems mentioned above, we propose a semi-automatic scheme which 
uses voxel classification and inter-slice propagation-based learning to segment liver 
tumors from three-dimensional (3D) CT scans. The details of this scheme as well as 
algorithms embedded are presented at Section 2. In Section 3, data for algorithm 
benchmarking with evaluation metric is described and results are given, followed by a 
discussion and conclusion in Section 4. 

2   Method 

The main idea of this semi-automatic scheme is to extract desired tumor region from 
one single 2D slice in the intermediate part of a tumor using supervised learning-
based voxel classification, then the extracted tumor contour, after some 
morphological operations, is mapped to its neighboring slices for automated sampling, 
learning and further voxel classification in the neighboring slices. This scheme is 
constructed on the important basis that scan is performed on multi-sliced CT and the 
slice thickness is no more than 1.5 mm such that there are only slight changes in both 
structural shapes and densities among consecutive slices. 



2.1   Overview 

The proposed segmentation scheme, illustrated in Fig. 1, has three main stages: 

Fig. 1. Three main stages of the proposed segmentation scheme 

 
Stage 1 Desired tumor region in 2D slice i at the intermediate part of the tumor is first 
segmented out by supervised learning-based voxel classification. In this procedure, 
tumor samples and non-tumor tissue (healthy liver tissue and other non-liver tissue) 
samples are manually selected to train a two-class support vector machine (SVM)-
based classifier. Then the trained SVM classifier is imposed to a ROI in slice i for 
voxel classification such that tumor region in the ROI is extracted. 
Stage 2 Let  be the contour of extracted tumor region from slice i, iC

D
iC and  

be the contours after morphological dilation and erosion operations are performed on 
, respectively. As slice thickness of 1 or 1.5 mm was employed for these data, it 

can be assumed with a high confidence level that the desired tumor contours and 
image features vary slightly among neighboring slices. Hence both 
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projected to slices i-1 and i+1. In slices i-1 and i+1, voxels enclosed by  are used 
for heuristic learning to train the SVM classifier, then the newly trained SVM 
classifier is imposed to the area enclosed by 

E
iC

E
iC

D
iC  for tumor region extraction in the 

two propagating slices. This step is the first propagation procedure. 
Stage 3 Similarly the whole propagation procedure including contour projection, 
SVM classifier training and voxel classification is further applied to upper and lower 
slices for tumor region extraction till all tumor-bearing slices are processed. 

2.2   SVM classifier 

SVM belongs to the supervised learning methods and is primary used for binary and 
also one-class and n-class classification problems [7]. It combines linear algorithms 
with linear or non-linear kernel functions that make it a powerful tool and gain 
success in the machine learning community with applications in computer vision, 
automation, data mining and biomedicine. In general for classification, SVM finds the 
best generalizing hyperplane with maximal margin separating the two classes. Since 



an error-free separation is not always possible, the optimization problem can be 
modified such that misclassified training points are penalized. To be able to apply 
SVM into non-linear data distributions, the data can be implicitly transformed to a 
high-dimensional feature space where a separation might become possible. 

Fig. 2. Illustrator of SVM with kernel mapping for binary classification 

 
For a binary classification, given a set of separable data set with N samples 
{ },  1,2, ,iX x i N= = L , labeled as 1±=iy . It may be difficult to separate these two 

classes in the input space directly. Thus, they are mapped into a higher-dimensional 
feature space by , as shown in Fig. 2. The decision function can be 
expressed as 

( )X ∗ = Φ x

( )f x ρ= ⋅ +w x , (1) 

where ( )0 ,  dR Rρ ρ⋅ + = ∈ ∈w x w  is a set of hyperplanes to separate the two 

classes in the new feature space. Therefore for all correctly classified data, 

( ) ( ) 0,    1,2, ,i iy f x y i Nρ= ⋅ + > =w x L  (2) 

holds. By scaling  and w ρ  properly, we can have ( ) 1f x ρ= ⋅ + =w x  for those 
data labeled as +1 closest to the optimal hyperplane, and ( ) 1f x ρ= ⋅ + = −w x  for all 
the data labeled as –1 closest to the optimal hyperplane, as shown in Fig. 2. In order 
to maximize the margin, the following problem needs to be solved 

( )2 / 2min w , (3) 

subject to 

( ) ( ) 1,    1,2, ,i iy f x y i Nρ= ⋅ + ≥ =w x L . (4) 

It is a quadratic programming problem to maximize the margin, which can be solved 
using some standard algorithms such as sequential minimization optimization [8]. 

After optimization, the optimal separating hyperplane can be expressed as: 

( ) ( )
1

,
N

i i i
i

f x y K x xα ρ
=

= +∑ , (5) 

where ( )K ⋅  is a kernel function, ρ  is a bias, siα  are the solutions of the quadratic 
programming problem to find the maximum margin. There are only a few training 



samples whose siα  are non-zero. They are called the support vectors, which are 
either on or near the separating hyperplane. The decision boundary, i.e. the separating 
hyperplane, is along these support vectors, whose decision values ( )xf  (Eq. 5) 
approach zero. Compared with the support vectors, the decision values of positive 
samples have larger positive values and those of negative samples have larger 
negative values. Therefore, the magnitude of the decision value can also be regarded 
as the confidence of the classifier. The larger the magnitude of ( )xf , the more 
confidence of the classification. By choosing different kernel functions, SVM can 
model the input space accurately and it shows good generalization by minimizing the 
errors made on the training set while maximizing the “margin” between different 
classes. 

2.3   Implementation 

In this study for voxel classification at each slice using the SVM classifier, voxel 
density (16 bits) and the median of the densities of the voxel’s eight-neighbors in the 
same slice were used as input features. They represent the information for the voxel 
and its neighborhood, respectively. In addition, a Gaussian radius basis function (RBF) 

2

( , ) exp( )K
σ

− −
=

x y
x y  was adopted as the learning kernel in the SVM classifier 

used, where σ was decided by the variations of tumor samples. For the initial 
segmentation for slice i in Stage 1, tumor samples were selected by user’s manual 
clicking, non-tumor samples were selected by pulling a rectangular box over the non-
tumor region, and the ROI used for tumor region extraction was manually defined by 
a polygon. An example of initial segmentation is shown in Figs. 3.a and 3.b. 

In stage 2 after the initial segmentation at slice i, tumor contour  in slice i was 
dilated/eroded by 2-3 pixels (2 pixels for 1 mm slice thickness and 3 pixels for 1.5 
mm slice thickness) to /

iC

D
iC

E
iC . Both /DiC

E
iC  were projected to slices i-1 and i+1, 

as shown in Figs. 3.c and 3.d. , which encircles almost the whole desired tumor 
region in slices i-1 and i+1 with some minor margin, was used as the new ROIs for 
tumor extraction in slices i-1 and i+1. The region enclosed by 

D
iC

E
iC , which is slightly 

inside the desired tumor region in slices i-1 and i+1 but covers the majority of the 
tumor, was used as the learning samples for tumor to train the new SVM classifier. In 
the training procedure, non-tumor samples were the same as those selected in the 
initial segmentation stage. Moreover, if the amount of tumor samples is more than 
twice of non-tumor samples, a random re-sampling would be performed on tumor 
samples to balance sample populations, which is important in the training of SVM 
classifier. After voxel classification for tumor region extraction, the whole 
propagation procedure including contour projection, SVM classifier training and 
voxel classification was further applied to upper and lower slices till all tumor-bearing 
slices were processed. 

In theory, no human supervision was required during the propagation stages. 
However in this study, re-selecting tumor samples or re-defining the polygonal ROI 



or both could be applied during the propagation in case D
iC  or E

iC  gave obviously 
undesired ROI or tumor samples. Furthermore, an automated morphological 
processing procedure was applied after voxel classification in each slice to improve 
the segmentation results. 

a b 

d c 

Fig. 3. (a) Slice 149 with ROI in tumor IMG02_L1; (b) segmented tumor contour C
(red); (c)-(d) 

i
D
iC  (green) and E

iC (blue) projections in slices 148 and 150. 
 

3   Testing Data & Results 

Also provided by the workshop organizers, the liver tumor CT image data for this 
work was acquired on one 64-slice and two 40-slice CT scanners using a standard 
four-phase contrast enhanced imaging protocol with slice thickness of 1mm or 1.5mm 
and in-plane resolution of 0.6-0.9 mm. The data are composed of 30 liver tumors, 
representing a range of patients and pathology. All tumors were manually segmented, 
by an experienced radiologist and confirmed by another radiologist, as reference for 
evaluation purposes. Data from 10 liver tumors were used for method training and 
parameters tuning, another 10 tumors for testing (results presented in this paper) and 



the last 10 tumors for the onsite competition. Segmentation program was performed 
using MATLAB 7.0 R14, on an Intel Core 2 2.66 GHz PC workstation with 3 GB 
RAM. The computational time for each tumor varied from 7 mins for a tumor with 14 
slices involved to around 20 mins for a tumor with 70 slices involved. 

Fig. 4. Segmentation results (tumor contours in red) of selected slices from tumor IMG06_L1 

 

Fig. 5. Segmentation results (tumor contours in red) of selected slices from tumor IMG10_L1 

 
Figures 4 and 5 show the visual examples of segmentation results. By visual 

inspection, we find that in general boundaries of tumors are detected accurately for 
each slice. Results were also evaluated quantitatively with respect to the following 
five measures, (1) relatively absolute volume differences, (2) average symmetric 
absolute surface distance, (3) symmetric RMS surface distance, (4) maximum 
symmetric absolute surface distance, and (5) volumetric overlap error. An overall 
score from 0 to 100 was assigned by an automatic scoring system using results of the 



above mentioned five measures [9]. A score of 100 represents the perfect 
segmentation while 0 is the minimum score one segmentation will get. The evaluation 
results are summarized in Table 1. 

Table 1.  Results of the evaluation metrics and scores for all ten testing tumors. 

Overlap Error Volume Diff. Avg. Dist. RMS Dist. Max. Dist. 
Tumor 

[  
Total 

[%] Score [%] Score [mm] Score [mm] Score mm] Score Score 

IMG05_L1 3  0.65 76 10.78 89 2.19 45 2.95 59 11.62 71 68 
IMG05_L2 32.60 75 12.10 87 1.07 73 1.51 79 6.36 84 80 
IMG05_L3 35.39 73 15.41 84 1.44 64 2.08 71 9.69 76 73 
IMG06_L1 25.78 80 7.98 92 0.59 85 0.85 88 4.24 89 87 
IMG06_L2 64.56 50 96.93 0 2.42 39 3.13 56 12.78 68 43 
IMG07_L1 18.67 86 0.35 100 2.21 44 3.25 55 18.45 54 68 
IMG07_L2 24.70 81 1.01 99 1.12 72 1.66 77 8.46 79 81 
IMG08_L1 17.30 87 9.61 90 1.91 52 2.71 62 14.33 64 71 
IMG09_L1 30.30 77 23.20 76 1.20 70 2.11 71 12.50 69 72 
IMG10_L1 20.22 84 15.73 84 1.03 74 1.53 79 6.73 83 81 

Average 30.02 77 19.31 80 1.52 62 2.18 70 10.52 74 72 

4   Discussion & Conclusions 

For years research efforts have been put into the development of an accurate, robust 

ta, 
the

and reliable liver tumor volumetry system. In this paper a method which uses machine 
learning-based voxel classification and shape-based inter-slice propagation is 
presented for the semi-automatic segmentation of liver tumor from CT data. This 
method was tested using 3D CT images with 10 liver tumors and a set of quantitative 
measures were computed, resulted in an averaged overall performance score of 72. 

We can observe that among the 10 total scores achieved by testing ten tumor da
 one from tumor IMG06_L2 is the lowest (43 only) and it is also significantly 

lower than other nine scores (mean, 76; range, 68-87). In this case, the high 
segmentation overlap error (64.56%) and relative volume difference (96.93%) suggest 
that our segmented tumor volume is almost the double of the reference segmentation 
volume. In addition, it only matches one third part of the reference segmentation such 
that two thirds of the segmented volume belongs to false positives. If we explore data 
IMG06_L2 we can find that in this arterial phase image, the tumor is a hypo-density 
focal lesion enclosed by an irregular hyper-density ring, as two slices shown in Fig. 6 
a-b. In pathology, it represents a lesion of primary hepatocellular carcinoma (HCC, 
hypo-density) enclosed by small arteries (hyper-density) for blood supply. Our 
segmentation results for the corresponding slices, shown in Fig. 6 c-d, include both 
the hypo-density focal lesion and the hyper-density arteries. The inclusion of the 
surrounding arteries into the HCC lesion as a part of the total tumor volume was 
suggested by our consultant radiologists, however for the reference segmentation 



given by other experts, surrounding arteries might be probably excluded from the total 
tumor volume. Hence the poor performance of our method on tumor IMG06_L2 may 
probably due to the different understandings and definitions from different clinical 
experts, for the total tumor volume in such cases. On the other hand, the results show 
the non-linear separation ability of SVM classifier that hypo-density focal lesion and 
hyper-density arteries are successfully separated from normal liver tissue which is 
with intermediate density. 

a b 

c d 

Fig. 6. (a) Slice 109 of tumor IMG06_L2; (b) Slice 112 of the same tumor; (c)-(d) 
Corresponding segmentation contours (red) for the two slices. 

 
A limitation of the proposed method is that although 3D information was used in 

this study to determine the sampling and classification areas, the actual voxel 
classification was still performed on the basis of 2D slice. Therefore the segmented 
tumor object may not keep good smoothness and continuity in 3D in this direction, 
though the extracted tumor contour in 2D can reflect tiny and subtle changes along 
the tumorous/healthy tissue interface. Abrupt sticks and concavo-convex curve can be 
seen on the contours even after the usage of morphological operations. Manual tracing 
by human experts, on the other hand, trends to give smooth contours but without 
many subtle details, due to the insufficient spatial resolution of the manual tracking 
devices we use, i.e., mouse and touch-screen pen. This may also partially explain why 



among the five measures, the “average symmetric absolute surface distance” got the 
lowest average score (62) among our segmentation results. 

In general, the promising benchmarking results achieved demonstrate that our 
lea
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