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Abstract 
 

Automatic segmentation and tracking of the coronary artery tree from Cardiac Multislice-CT images is an important goal to 

improve the diagnosis and treatment of coronary artery disease. This paper presents a semi-automatic algorithm (one input point 

per vessel) based on morphological grayscale local reconstructions in 3D images devoted to the extraction of the coronary artery 

tree. The algorithm has been evaluated in the framework of the Coronary Artery Tracking Challenge 2008 [1], obtaining 

consistent results in overlap measurements (a mean of 70% of each vessel well tracked).  Poor results in accuracy measurements 

suggest that future work should refine the centerline extraction. The algorithm can be efficiently implemented and its general 

strategy can be easily extrapolated to a completely automated centerline extraction or to a user interactive vessel extraction.  
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1 Introduction 

In medical imaging, vessel segmentation (see a very complete review in [2]) is the core of many practical 

applications such as diagnosis of the vessels (e.g. stenosis or malformations) or visualization systems and 

it may also be required in therapeutic tools such as computer-guided surgery. However, vessel 

segmentation is still an open problem and many methods have been proposed depending on the image 

modality, the human interaction required and many other factors. This article deals with datasets of 3D 

CTA images acquired in the Erasmus Medical Center Rotterdam, as part of the Coronary Artery Tracking 

Challenge 2008 [1]. It describes a method to automatically track the lumen center lines with minimal user 

interaction (i.e. allowing the use of just one point per vessel as input for the algorithm). 

The article is structured as follows: first, we present the algorithm, based on iterative local morphological 

reconstructions [3], used for the extraction and tracking of the central lumen lines in the coronary artery 

tree. Then, we present and discuss the results obtained on 8 training and 16 testing datasets according to 

the objective, comparable evaluation metrics and the gold standards provided for the Challenge [1]. 

2 Algorithm overview 

 

 

Figure 1. General scheme of the system architecture. 

2.1 General framework 

The goal is to track the centerlines of four of the main coronary artery branches named the Right 

Coronary Artery (RCA), the Left Anterior Descending (LAD), the Left Circumflex Artery (LCX) and one 

large side branch of the main coronary arteries [1]. Moreover, this has to be achieved with minimal user 

interaction, that is to say, the algorithm will only be able to use one point as input. That position will be 

point S, the starting point where the vessel leaves the aorta. In addition, when obtaining the vessels from 

the initial point, a second point can be used after the centerline determination in order to select the 

appropriate lumen to follow. Indeed, this is the approach used in this article. Our scheme starts the 

algorithm from point S, then detect all the possible vessels branching from the initial path (see Section 

2.2) and finally keeping the one that passes by point A, a point inside the distal part of the vessel that 

unambiguously defines the vessel to be tracked. This way, we have certainty of starting our algorithm at 

the beginning of the vessel, robustness since multiple branch detection could provide us with a set of 

candidate vessels to choose among and a univocal choice determined by point A. It is also relevant to note 

that the algorithm is flexible enough to work with any other combination of provided points. The general 

scheme of the proposed method is detailed in Figure 1. 

2.2 Preprocessing 

2.2.1 Heart mask constriction 

We chose to restrict our search to the heart domain avoiding it to spread to tubular-like structures such as 

bronchus. We achieved this goal by performing a thresholding at the appropriate gray level followed by a 

morphological opening operation [4]. Therefore, all the structures in the heart could be preserved while 
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the rest of bright background structures that were disconnected to the heart were filtered out. The final 

result is a dataset equal to the original in those parts that belong to the cardiac region mask, and zero 

elsewhere Fig. 2.A. 

 

 

 

 

Figure 2. A) Transverse views of the original CT image and the result after applying the corresponding 

heart mask. B) Calcium plaque. C) Calcium plaque removal result. D) Vessel trajectory avoiding the 

calcium.  

2.2.2 Calcium removal 

Calcium appears as bright plaques on the vessel borders that must be avoided when delimiting the lumen 

centerlines trajectories. Since our algorithm follows tubular-like structures highlighted with respect to 

their surroundings, see Section 2.3.1, those pixels whose brightness is higher than a certain threshold 

above the blood gray level are darkened proportionally to their brightness. This threshold is an estimation 

of the characteristic gray level of blood in the image made according to those areas surrounding the 

starting points S. See Fig. 2.B 

2.2.3 Aorta detection 

An algorithm to automatically segment the aorta in the CTA images has been developed. The aorta 

segmentation is used to properly initialize which direction to follow when leaving point S. It can also be 

used as a stopping criterion when initializing the algorithm from other points than S. The direction 

followed by the vessels once they have left the aorta remains uncertain since all the regions surrounding 

are equally bright due to the presence of blood in both the aorta and the arteries. Locating the aorta allows 

us to choose the proper exiting direction. 

The proposed algorithm segments the cross-section of the aorta in the top slice of the data and expands 

this segmentation through the z-axis. The correct circular zone corresponding to the aorta is selected in 

each slice by the Hough transform [5] and segmented with a morphological area opening. A circularity 

shape index over the segmented region is calculated in each slice in order to finish the segmentation when 

the segmented region (aorta) does not have the appropriate shape. The algorithm provided a proper 

segmentation for all the processed cases. 

 

 

 

 

Figure 3. Transverse (A) and coronal (B) views of a heart image. Detail of a vessel (in red) leaving from 

the aorta (in white). 
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2.3 Coronary tree iterative reconstruction 

After the preprocessing, our algorithm performs iteratively with step-wise morphological reconstructions 

in order to follow the coronary arteries trajectories. Given a certain initial point located inside the vessel, 

our method seeks, within a certain distance range, the best candidate, or candidates in case of branching, 

to be the following point in the coronary tree and repeats this operation recursively until the vessels are 

undistinguishable from the background. Afterwards, only those vessels passing by the unambiguous 

points A are selected and their positions among consecutive points interpolated before providing the final 

results. These procedures are described in the following sections. 

2.3.1 Local morphological reconstructions 

Morphological grayscale reconstruction [3] has previously been applied with success to the extraction of 

the coronary artery tree through 2D slice images [6]. Here, we propose a generalization of such method to 

3D. Mathematical morphology is a nonlinear image processing technique that allows incorporating a 

priori knowledge of shapes such as the tubular branching structures of the coronary tree. In this way we 

are able to enhance this kind of structures and filter out the rest of elements in the image. In the current 

approach, we perform this operation iteratively according to the following steps, see Figs. 4 and 5: 

1) Select the seed point, Pi, which will be used as marker image, M. This point belongs to the vessel 

trajectory, therefore having the characteristic blood gray level. It can be either the point S, at 

initialization, or the previously computed position, in case of the remaining steps. 

2) Perform a local morphological reconstruction [6] of the marker image, M, inside the original heart 

image, G, restricted to a certain window, approximately of 3-5 mm. radius from point Pi. 

RB1(M,G)= δ
k
G(M)=δ

1
G δ

k-1
G(M) 

Where k is chosen such that δ
k
G(M)= δ

k+1
G(M) and δ

1
G(M)=δB1(M)∩G indicates a dilation [3] of 

image M by the structuring element B1 restricted to G. 

3) Perform a top-hat opening [7]  

V=RB1(M,G)-γB2(RB1(M,G)) 

Where γB2(RB1(M,G)) is an opening performed 

over the reconstructed image with a structuring 

element B2, a sphere of radius similar to the vessel 

width (e.g. 3 mm.). The result is the extraction of 

just those bright sections of the tubular-like 

structures whose width and gray level matches that 

of a typical vessel.           

 

4) Apply a Gaussian filtering, W=G(V), in order to smooth possible noisy areas. 

5) Select the set of candidate points, which will be those positions in W located at the sphere centered 

at P of radius equal to the distance range considered (e.g. 3-5 mm.).  
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Figure 5. A) Detail of a vessel leaving the aorta. B) Marker image. C) Reconstruction window 

overimposed to the original image. D) Candidate points to be in the vessel trajectory in red.  

2.3.2 Directional window weighting 

Among the blood-like pixel candidates resultant by each local morphological reconstruction, we need to 

select which is the most appropriate aspirant to be the following point in the vessel trajectory. Collecting 

information about the vessel direction [8] is crucial in order to do so. For every iteration in the algorithm, 

a local directional arrow, v, is computed as the unitary vector linking actual position, Pi, with the previous 

one, Pi-1. Afterwards, the gray level scores of the candidate points are spatially weighted according to a 

Hanning window centered at the current direction. In this way, our algorithm gets blind to those candidate 

points opposing the directional arrow and considers them more and more likely as their angular deviations 

with v become smaller. This scheme proved to be a reasonable choice both to provide a spatially 

smoothed trajectory and to manage to follow the artery in case of partial occlusions.  

2.3.3 Tree searching 

We decided to implement a branch detection algorithm so that all the bifurcating vessels in the coronary 

tree could be extracted. Out of all possible vessels, only those passing by points A are retained. Once the 

following point in the trajectory has been selected a solid angle area around the current vessel is masked 

out and therefore no new candidate will be selected there. Under these circumstances, our algorithm 

calculates a new candidate point in the region remaining. When the new candidate gray level score is 

comparable to that of the initial one, we will consider the birth of a new branch, see Fig. 6. 

 

 

 

 

 

 

 

 

 

 

                  A       B 

Figure 6. A) Transverse and sagittal views of a vessel branching. B) Tree searching scheme. 
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The algorithm is flexible to control how many ramifications will be found. There is a trade-off between 

the number of branches to extract and the CPU time. In the contest framework, our choice was to expand 

6 children out of the main branch and 6 grandchildren out of each of the children. Finally, those 

candidates which best fit the aimed vessels (unambiguously defined by their points A) are selected. 

Once the minimum vessel length has been exceeded, the algorithm stopping criteria starts checking within 

each local reconstruction window whether it is possible to find structures having a radius matching that of 

a detectable artery (which ranges from 1.5 to 3.5 mm. approximately) or not. This procedure is achieved 

by means of morphological residues of top-hat openings. The tracking also stops in case the maximum 

possible vessel length is reached. These minimum and maximum lengths were found heuristically.  

3 Results 

The results presented here have been obtained using the 8 training and the 16 testing datasets described in 

[1]. Similarly, the evaluation metrics and software, the gold standards used and the scores assigned to the 

algorithm performance are those of Coronary Artery Tracking Challenge 2008 [1].  The method produces 

consistent results in global overlap measurement and tracking of the vessels of radius greater than 1.5 mm 

with a success rate around 70%. We found that this rate could be improved by refining our stopping 

criteria, which is not robust enough. On the other hand, results concerning accuracy show a mean distance 

of 7.35, 0.62 and 6.87 mm. in the proposed AD, AI and AT measurements respectively. In the case of 

well tracked vessels (“accuracy measurement until first error”), this mean distance is 0.62 mm. This is 

due to the fact that the local morphological reconstructions are influenced by the directional windowing, 

making the algorithm to follow the vessel but not being very precise on its centering when changing the 

direction of the vessel. Furthermore, results in “tracking until first error” (34.3%) which are much worse 

than the other overlapping measurements are directly consequence of this lack of fine precision in the 

centerline detection. Four out of the 64 vessels completely failed due to wrong initialization, while 7 were 

tracked with more than 90% of overlapping and less than 1mm. accuracy. 

 

 

 

 

 

 

 

 

 

 

Table 1. Algorithm final results on the 16 testing datasets. 
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Table 2. Algorithm results on the 8 training datasets.  

4 Discussion and future work 

We observe quite robust overlap measures, specially in OV and OT, with rates around 70%. This means 

we are able to generally track the clinically relevant parts of the vessel (those exceeding 1.5 mm. width) 

which are usually placed at the proximal part from the aorta. Nevertheless, we fail to track the distal part 

of the arteries. This is a consequence of our stopping criteria which turns out to be not accurate enough. 

Improvements about this issue are needed. In the same sense, stopping too prematurely prevents us from 

getting better scores in the accuracy measures. Specially relevant are the AD and AT measures where the 

deviations shown in the tables could be drastically reduced in case the most distal parts were better 

tracked. Whereas, as long as we are inside the vessels, the centrelines were tracked with an average AI 

distance of 0.62 mm. Finally, we appreciate poor results as far as the OF overlap measure is concerned. 

This is mainly due to the fact that our directional filtering prevents our system from effectively detecting 

directional changes in the vessels. As a consequence, in case of curves, the algorithm tends to locate 

points at the vessel borders, or slightly outside them. This should be solved by implementing a new 

module that centers the output positions in the lumen centrelines. In addition, performing an interpolation 

based on minimal paths [9] between each pair of points should improve the results. A first minimal paths 

implementation was developed for this work with still unsatisfactory results.  

An additional preprocessing step for vessel geometry enhancement [10] has been tried. Although the 

visual inspection of such pre-filtering step turned out to be promising, the computational complexity in 

terms of CPU time discarded it for practical applications to large 3D images. Concerning computational 

cost, the proposed branching schema takes approximately 30 min for the extraction of the whole coronary 

tree (vessels 0 to 3) in one dataset in an Intel Core2 CPU at 2.4 GHz with 3 GB of RAM. Nevertheless, a 

more detailed study comparing the number of explored branches with the obtained results will allow 

optimizing the CPU time requirements. 

Finally, we would like to remark the flexibility of our proposal. Our algorithm is restricted to “Challenge 

2: tracking with minimal user interaction” [1] and, despite our choice of point S for initialization and 

point A for vessel selection, it could work with any other combination of provided points. What is more, 

it could easily be extended to “Challenge 3: interactive tracking” for instance, by allowing the algorithm 
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to expand branches until the end point E is reached. In addition, “Challenge 1: automatic tracking” can 

also be solved by our system adding minor modifications. In this case, protrusions in the detected aorta 

segmentations would be used as potential seeds to reconstruct the whole coronary tree. 
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