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Abstract

In this paper, we present a fully automated system that detects and segments potential liver cancer
tumors from a thin slice CT data. The system is targeted toward a tumor whose volume is larger than
lem?, and is efficient as the average computation time per volume in our experiment is roughly 3.5
minutes.

The system first reduces the volume size by 4x4x4 to reduce the computation and memory require-
ments. It then detects candidate locations as local minima of the intensity fields after a variant of elastic
quadratic smoothing. It then provides a rough segmentation at each candidate by fitting a plane at sam-
pled points near the periphery of the concave region in the intensity profiles. The rough segmentation
is used to estimate the range of intensity values in the tumor, which is used to obtain a more accu-
rate segmentation by a method originally developed for pulmonary nodules. The result of the second
segmentation is interpolated at the resolution of the original data.

The development of the system is a part of the 2008 3D Segmentation in the Clinic: A Grand Chal-
lenge competition. Four CT volumes containing 10 tumors were used for the development of the algo-
rithm. Additional six CT volumes containing 10 tumors were used to test the segmentation performance.

keywords: computer aided detection, classification, smoothing, diffusion

1 Introduction

Automated detection and segmentation of a liver tumor is a difficult image processing problem due mainly
to the wide intensity and morphological variations of the tumor.

In this paper, we present a fully-automated detection and segmentation of liver tumors. The work is con-
ducted as a part of 2008 3D Segmentation in the Clinic. The algorithm was developed through 10 tumors
in four CT volumes provided for the competition. The data come with manual segmentation as the ground-
truth. The small size data set and limited amount of time and resources for development were two major
factors in directing our design strategy, which can be stated as follows.

e The method needs to be training free; We need to be able to set reasonable values to the system
parameters based on our ’intuition’ rather than the given data set.
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Figure 1: A system diagram of the proposed method.

e The method needs to be efficient and computationally fast.

e The system provides a general framework, rather than a solution tailored specific to available data at
hand.

The first requirement is clearly due to the limited data size. Hence, we removed any methods that heavily
rely on machine learning techniques from the list of candidates. The second item is clearly due to the lim-
ited development time. Hence, we removed some of computationally expensive methods from considration.
The third requirement is due to both the limited data size and the author’s lack of clinical and pathological
knowledge associated with liver cancer. By having the method general and flexible, it allows easy adjust-
ments once more domain knowledge and data are acquired. Furthermore, we can prevent the system from
overfitting to the data currently available.

Ideally, the system takes in a 3D CT volume and provides a list of segmentations of liver tumors found in
the data. This idealistic view, however, is not possible at the current state of our research. Therefore, we
allow the system to produce a reasonable number of false positive segmentations. We do not set a concrete
requirement of the maximum number of false positives at this time, and leave it our future goal to remove
false positives more aggressively.

In short, the system employs a typical process flow of Computer Aided Detection (CAD) systems, in which
a set of candidate locations are generated first and then a more elaborate segmentation step is applied to
each candidate location. The segmentation presented in this paper is partially motivated by the segmen-
tation algorithm targeted to pulmonary nodules recently developed by the author and his collaborators[2].
Some adjustments are necessary as liver tumors appear to be more diverse in their shapes and intensity
distributions.

The paper first provides a brief literature survey of the problem in Section 2. After some preliminary
experiments, we chose the process-flow shown in Figure 1. More details of the process-flow are given in
Section 3. We then show the experimental results of the proposed system in Section 4. We provide some
discussion on the limitation, possible improvements, and future issues in Section 5. Finally, we conclude
the paper by summarize the work in Section 6.



2 Background

A problem of segmenting a liver tumor from tomographic images has not been studied as extensively as
segmentation of other types of lesion such as pulmonary nodules and colon polyps. Some algorithms have
appeared in literature, and this section provides brief accounts of these techniques.

In [5], a tumor was segmented from a CT image in a semi-automated manner using active contour. The
initial contour was placed manually, and the segmentation was obtained per slice. The method was tested
on 13 images with decent results. No comparative studies were given.

In [7], three algorithms were tested to segment a liver tumor from CT data: watershed, active contour,
and dual-scale active contour. 36 slices taken from 10 tumors were used to evaluate the methods. The study
reported that the watershed method failed with 19 slices while the dual-scale active contour failed only once.
It also reported that the dual-scale active contour provided a slight decrease in measurement variability over
manual measurements.

In [4], AdaBoost was used to train a histogram classifier, which was then used to classify the tumor boundary.
The classifier was trained with 1D intensity profiles obtained from polar-transformed image around the click
point. The classifier was then used to derive a score whose value indicated how likely the position was on
the tumor boundary. Dynamic program then was used to trace high scores in the log-polar coordinate to
produce the boundary contour. The method was intrinsically 2D and no quantitative performance measures
were given.

In [1], another active contour based method for segmenting liver tumors from diffusion weighted echoplanar
liver images was presented. Both edge detection and region growing were used to initialize the snake. It
required two seed points: inside and outside the tumor of interest. The performance was evaluated with 10
images. Less than 5% segmentation errors were reported in all the test images.

All of the above works were targeted toward 2D segmentation of a liver tumor, and were semi-automatic
requiring some user’s assistance. To our knowledge, there is no work reported in literatures for liver tumor
segmentation that works on 3D in an fully automated fashion.

3 System

The system consists of 5 stages: pre-processing, candidate generation, initial segmentation, second segmen-
tation, and post-processing. A system diagram of the processing flow is shown in Figure 1.

3.1 Pre-processing

The main purpose of this stage is to reduce the CT data of interest and interpolate it to form an isotropic
voxels. First, the data is sub-sampled at 4x4x4 voxels with a linear smoothing filter. To do so, we employ
dyadic decimation twice using a linear separable filter whose 1D component is [1/4, 1/2, 1/4]. We chose
this smoothing as it can be implemented with integer arithmetic without multiplication. Say the original
CT volume is 512x512x300 in size. After the sub-sampling, the volume is reduced to 128x128x75. The
goal of this step is two-fold: to reduce the amount of computation and to smoothen the data. The first
goal is important, especially during the development stage, as we will feverishly try various options and
techniques. With 64-fold reduction in the data, we can technically try 64 times more experiments. Of
course, a risk associated with the smoothing is a loss of information. As a result, we miss some small
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lesions in the competition data. We think that we can improve the performance by re-segmenting those
small segmented regions at the original resolution. After the sub-sampling, the volume undergoes tri-linear
interpolation so that each voxel becomes isotropic. We use the minimum length of the voxel among three
dimensions as the new isotropic voxel size. The goal of this step is to reduce the partial volume effect and
make the behavior of the algorithm less dependent on the voxel size. In the following, we call the volume
after this pre-processing stage input volume.

3.2 Candidate Generation

The purpose of this stage is to collect a number of points that are likely to be inside a tumor. By visual
inspection of competition data set, we decided to characterize a tumor as a concave region in an intensity
field. Hence, we select local minima of the intensity field as candidate points. To do so directly on the input
volume results in a prohibitively large number of candidates. To reduce the number of candidates, we do the
following. First, voxels whose intensity values are less than 1000 or larger than 1200 are masked out and
cannot become candidate voxels. Second, we apply further smoothing to the input volume. We experimented
two smoothing: Gaussian smoothing and a 3D extension of the elastic quadratic smoothing (EQS)[6]. The
former is a well-known method of smoothing. The latter is a rather recent technique developed by the author.
For brevity, we describe the exact computation of EQS without going into underlying theory and motivation.
First, each voxel is represented with the intensity value and six additional attributes. Denote the intensity
value by V and the attributes by A, B, C, D, E and F. We then visit each voxel in order and update its value
and attributes by the following. In the below, subscripts specify the location of the voxel. Furthermore, n(i),
s(i), w(i), e(i), b(i), and f(i) give indices of north, south, west, east, front, and back neighbors of the ith
voxel, respectively.
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The update operation is repeated for five sweeps of the entire volume. Values of V; give the smoothed input
volume. After experiments with limited data, we decided to use the EQS smoothing as it reduces the number
of candidates more effectively than the Guassian smoothing without losing candidates inside tumors in the
training data.

It turns out that if we only consider three-dimensional local minimum (i.e. points where derivatives in x, y
and z directions all vanish), then we will miss some tumors that are located near the boundary of the liver,
due mainly to the partial volume effect. To prevent these tumors from being lost, we first painstakingly
collect two-dimensional local minimum points in each axial plane (i.e. points where derivatives in x and y
directions vanish). These points are then clustered into groups by the following procedure; for each point,
it traces the downhill direction in the intensity field. If the trace reaches another two-dimensional local
minimum and if their X-Y coordinates differ by at most 2, then they are clustered into the same group. After
the clustering, we choose a representative point from each cluster by the following. If one of the points in the
cluster is a three-dimensional local minimum, then the point becomes the representative point. Otherwise,
the median-point along the Z-direction becomes the representative point. The former corresponds to a
normal case where a tumor region contains a three-dimensional local minimum, and the latter corresponds
to a partial volume case. Note that there cannot be more than one three-dimensional local minimum in each
cluster.

After candidates are collected, we further reduce the number of them by simple rule based pruning to
facilitate the computation. Two pieces of information are used: the location and intensity profiles. Pruning
based on the location information is done as follows. First, candidates that are located within 5 slices at the
both ends of the volume are pruned. Second, candidates that are located at the bottom-right quadrant in the
axial plane are pruned. Pruning based on the intensity profiles is done as follows. First, we prune candidates
whose intensity values at the locations are either less than 980 or more than 1170. These cut-off values are
set rather conservatively so that we do not remove any true-positive candidates at this stage.

Next, we try to remove local minima that are too subtle visually. To do so, we trace the intensity fields in
both west (left) and east (right) directions until it reaches a local maximum. If both local maxima are not
sufficiently higher in intensity than the candidate, then the location is pruned. We set 5 as the cut-off value.
Thus, for the candidate to be retained, one of the two local maxima has to have a value larger than that of
the candidate location by at least 5. The procedure is repeated for north and south directions, north-east and
south-west directions, and north-west and south-east directions. Candidates have to pass all these tests for
them to be retained.

3.3 Initial Segmentation

This stage computes a rough segmentation map at each candidate location. The main goal is to extract
the core part of the tumor, which will be used to estimate the intensity distribution within the tumor and to
consolidate multiple convex regions belonging to a single large tumor. The intensity distribution information
is used in the next stage to more accurately delineate the boundary of the convex regions. A secondary goal is
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to furthermore prune candidates whose intensity profiles or segmentation maps do not meet simple heuristic
rules.

First, we estimate the extent of a concave region represented by the candidate by tracing the intensity field
from the candidate location. Since the candidate location typically corresponds to the bottom of the concave
region, the trace climbs up the intensity field. We stop the trace when it reaches the top of the hill or a local
maximum along the trace. We prepare 26 traces in 26 different directions. These directions are obtained
by considering directions going into 26 neighbors. After 26 local maxima in the 26 directions around the
candidate are obtained, we derive a plane that most closely cut these local maxima in the least square sense.
We also derive a bounding box based on the 26 local maxima points. The plane is then used to cut out the
convex region within the bounding box.

This method of segmenting a concave region often results in oversegmentation, as the plane equation may
go over the top of the local maximum in some direction. We take two measures to reduce the degree of
oversegmentation. First, the plane is shifted downward to the mid-way toward the intensity of the candidate
location. Second, the cut-off region undergoes a morphological operation to aggressively remove parasitic
branches from the segmentation using the following procedure. We visit each location in the segmentation
in the order of ascending distance to the candidate location. In other words, the closer the location is to the
candidate location, the earlier the location is visited. For each location, we examine its 26 neighbors. If any
of the neighbors that are closer to the candidate location are not parts of the segmentation, then the location
is removed from the segmentation.

Once the segmentation is obtained at each candidate location, we evaluate its shape and statistical properties
to prune it if it is not deemed fit. We describe this part of our method in the following sub-section. The same
strategy is applied again to the result of the second segmentation.

Segmentation Fitness Test

The test consists of three sub-tests. First two are geometric ones based on approximation of the segmen-
tation by an ellipsoid. The third measures the difference in distribution of intensity values between the
segmentation region and a region surrounding the segmentation. Below, a brief description of each sub-test
is given.

e Test1l

We first fit an ellipsoid around the segmentation, compute the shortest and longest axes of the ellipsoid,
and compute the “aspect-ratio” by dividing the length of the shortest axis by the length of the longest
axis. The segmentation is rejected if the aspect ratio is below a threshold. We set the threshold at 0.09.

e Test2

We compute the discrepancy between the fitted ellipsoid and the actual segmentation. We first define a
hard-ellipsoid as the region where the Mahalanobis distance is less than 2. Then, we count the number
of voxels that are within both segmentation and hard-ellipsoid. Denote the number as np. We also
count the number of voxels that belong to either segmentation or hard-ellipsoid but not both. Denote
the number as np. Now, we define a discrepancy measure as 1 —np/ng. If it is less than a threshold,
then the segmentation is rejected. We set the threshold at 0.

e Test 3

We compute two metrics: Jensen-Shannon distance and Kolmogorov-Smirnov distance between two
intensity distributions: one within the segmentation and the other within a shell of two-voxel thickness
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around the segmentation. If both Jensen-Shannon and Kolmogorov-Smirnov distances are less than
some threshold, then we reject the segmentation. We set the threshold at 0.4.

Consolidation of Candidates

A large tumor often has multiple local intensity minima, hence multiple candidates. We conjecture that
segmentation maps resulted from these candidates at this stage have significant overlaps. We then explore
this idea to group these candidates.

We use the same ellipsoid representation of a segmentation map as described above. We define the core
of the segmentation as the region where the Mahalanobis distance is less than 1. We consider a pair of
candidates equal if the two segmentation cores overlap. We then form clusters hierarchically based on this
equivalent relationship. The results are a number of clusters, each possessing a set of candidates and union
of segmentation cores. These clusters become the input to the next stage, which will be described next.

3.4 Second Segmentation

After the previous stage, we obtain a set of candidate clusters. Each cluster has a number of candidates and
an associated core region. At this stage, we derive a more accurate segmentation for each cluster.

We apply competition-diffusion, which has been applied successfully to pulmonary nodule segmentation[3],
to extract regions whose intensity values are between minimum and maximum values found inside the
core of the cluster. The competition-diffusion provides spatially more homogeneous (i.e. less holes and
fragments) segmentation than thresholding, and appears suited to liver tumors as well. For brevity, we only
describe the implementation of the method without references to the underlying theory and motivation.

First, each voxel undergoes the following pixel-wise transformation.

vi— (v +VL)/2\>

(N

VH — VL

u; = max (0,

where v; is the intensity at ith voxel as before, and vy and v, are, respectively, the highest and lowest intensity
values found inside the current cluster core. Note that u; take the largest value of 1 when v; = (vy +v.)/2,
decreases linearly as v; deviates away from v; = (vy +vz)/2, and capped at 0.

Next we visit each voxel in order and apply the following update.

u? 1—A
up=»~\ )2—1— 6 ZMJ' (8)
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where N; denotes a set of indices for 6-neighbors of ith voxel (i.e. {w(i),e(i),n(i),s(i),b(i), f(i)} as in
Section 3.2) and A is a parameter balancing the competition and diffusion terms. The first term is the
competition term and the second term is the diffusion term. We apply the update for 4-sweeps of the entire
volume. In our experiments, A is set to 0.5.

After the application of the above competition-diffusion operation, most voxel values (u;) are near zero or
near one. Near one voxels form the foreground and near zero voxels form the background. We draw a
threshold at 0.5 to separate the two.

Next, we need to extract a region of interest indicated by a set of candidates from the rest of the foreground.
We first compute a distance map from the foreground. Each voxel in the distance map stores the Euclidean
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distance to the nearest background voxel. Thus, the center of a convex region has a local maximum value in
the distance map. From each candidate point, we trace up the distance map until it reaches a local maximum.
We then grow a region from the set of local maxima by consuming every voxel adjacent to the current region,
if its distance value is strictly less than that of an adjacent region voxel. The growth eventually stops and
provides the segmentation result of this stage. We call this particular form of region growing (i.e. to grow
in the down-hill direction on the distance map) region tracing.

Segmentation Fitness Test 2

Similar to the initial segmentation stage, we can evaluate a goodness-of-fit measure for each segmentation
and reject those that are not deemed fit. We derive the same measures as described in Section 3.3 except that
we apply different threshold values to segmentations of different sizes. We first categorize each segmentation
into tiny, small, medium and large.

Tiny segmentations are those with less than 15 voxels. These segmentations are immediately rejected. Small
segmentations are those with the number of voxels between 15 and 100. The threshold values for this class
of segmentations are 0.5 for both Test 1 and Test 2 and 0 for Test 3. Medium segmentations are those with
the number of voxels higher than 100 but less than 20000. The threshold values for this class are 0.2 for
Test 1, 0.3 for Test 2 and O for Test 3. Large segmentations are those with more than 20000 voxels. These
segmentations are immediately rejected.

3.5 Post-processing

Finally, we need to rescale the segmentation obtained in the previous stage to the size of the original CT
volume. We simply expand the segmentation by tri-linear interpolation and apply thresholding at 0.5. (Note
that the segmentation at the previous stage is represented by 0 and 1 where 1 represents the foreground.)

4 Experiments

This section shows results of the method applied to data provided by 20 tumors found in 10 CT volumes. The
10 CT volumes are divided into a training set with 4 volumes and a test set with 6 volumes. Each set contains
10 tumors. Figure 2 shows some of tumors in the training set with manual segmentation superimposed. Our
method is developed using the set.

Figure 3 shows a result at each step of the proposed segmentation process. Figure 3(a) shows an axial
slice of the original volume. The slice actually contains two tumors. We show how the fully automated
method segment one of them, which will be denoted as IMG04-04 in Table 1. Figure 3(b) shows the
corresponding slice after 4x4x4 sub-sampling. Figure 3(c) shows the slice smoothing with candidate points
near the slice (within 5 slices away) super-imposed by circles. Figure 3(d) and (e) are the results of the st
stage segmentation and the core of the segmentation, respectively. Using the core segmentation, we derive
vy = 1081.1 and vy = 1113.5, respectively.

Next, we apply the competition-diffusion to the smoothed volume shown in Figure 3(c). Figure 3(f) shows
the result of applying (7) to the data. After five iteration of the competition-diffusion of (8), the foreground
image shown in Figure 3(g) is obtained by thresholding u at 0.5 as described in Section 3.4. The foreground
is then subjected to the region tracing as described in Section 3.4. The result is a segmented region of
interest as shown in Figure 3(h). Finally, the segmented region of interest is interpolated back to the original



Figure 2: Examples of manual segmentation.
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Figure 3: Examples of manual segmentation.

resolution. The result of the interpolation is shown in Figure 3(i). The corresponding manual segmentation
is super-imposed in the image.

Results of the segmentation method applied to tumors shown in Figure 2 are shown in Figure 4. Com-
pared to the manual segmentation, the automated one tends to be smaller, implying the algorithm tends to
undersegment the tumor.

Next, the same method was applied to 6 test volumes. We have been given the location of the tumors but
the ground truth segmentation of these nodules are unknown. We then manually selected 10 segmentations
from a collection of segmentations obtained by the algorithm. Using these manually selected ones, the same
performance measures were computed by the organizer of the Grand Challenge competition. The result also
contains scores derived from error measures. The scores are between 100 (best) and O (worst). These results
are summarized in Table 2.

The algorithm missed completely two nodules: IMG06-L1 and IMGO09-L1, which are quite small compared
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Figure 4: Examples of manual segmentation.

Table 1: Results on training data

Tumor Overlap Er- | Volume Dif- | Ave. Surf. | RMS Surf. | Max  Surf.
ror (%) ference (%) | Dist. (mm) Dist. (mm) Dist. (mm)

IMGO1-L1 41.75 28.10 2.73 3.65 14.23
IMGO1-L2 60.13 59.72 2.64 3.00 6.44
IMGO02-L1 95.10 95.10 8.52 9.74 16.30
IMGO02-L2 78.12 78.12 4.85 5.49 11.48
IMGO02-L3 72.63 72.63 3.80 4.19 8.07
IMGO3-L1 76.02 153.67 4.24 6.02 15.48
IMGO04-L1 53.66 40.93 4.59 5.85 19.95
IMGO04-L2 70.41 70.41 4.57 4.89 12.16
IMGO04-L3 40.15 32.42 3.28 4.29 20.04
IMGO04-L4 50.49 50.42 3.58 4.03 8.82
Average 63.85 68.15 4.28 5.11 13.30
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Table 2: Results on test data

Overlap Volume Ave. Surf. RMS Surf Max.
Error Differ- Dist. Dist. Surf.
ence Dist.
Tumor (%) Score | (%) Score | (mm) | Score | (mm) | Score | (mm) | Score | Total

Score
IMGO5-L1 41.03 | 68 38.97 | 60 332 | 16 433 |40 11.07 | 72 51
IMGO05-L.2 63.13 | 51 58.44 | 39 2.83 | 28 3.55 | 51 8.89 | 78 49
IMGO05-L3 58.58 | 55 15951 83 2.70 | 32 328 | 54 8.76 | 78 60
IMGO06-L1 N/A | 23 N/A |0 N/A |0 N/A |0 N/A |0 5
IMGO06-L.2 88.11 | 32 84.34 | 12 416 | 0 5.12 | 29 10.36 | 74 29
IMGO07-L1 45.82 | 65 38.94 | 60 6.02 |0 770 | 0 27.23 | 32 31
IMGO07-L2 31.85| 75 2542 | 74 1.79 | 55 243 | 66 10.34 | 74 69
IMGOS8-L1 26.67 | 79 21.35| 78 3.08 | 22 417 | 42 21.73 | 46 53
IMGO09-L1 N/A | 23 N/A |0 N/A |0 N/A |0 N/A |0 5
IMGI10-L1 74.56 | 42 74.56 | 23 592 |0 622 | 13 12.14 | 70 30
Average 53.72 | 51 4475 | 43 373 | 15 4.60 | 30 13.81 | 52 38

to those in the training set. They are give the total score of 5 by the organizer.

Finally, Table 3 shows the computation time of the method on each volume. It took between 96 seconds to
408 seconds. Note that the smoothing is done twice: one in the candidate generation stage and the other prior
to the 1st stage segmentation stage. The second application is completely redundant and will be removed in
the near future. The reason for this redundancy is to allow ourselves to test different smoothing techniques
easily in our testbed. Thus, the computation time of the 1st stage segmentation should improve substantially.

The total computation time shown in the last column is the sum of the pre-processing time, candidate genera-
tion time, 1st stage segmentation time and the total amount of time spend to apply the 2nd stage segmentation
to N, the number of regions survived after the 1st stage segmentation. It does not contain the computation
time to re-interpolate the segmentation to the original resolution.

The table also shows the number of candidates at the end of the candidate generation stage (N¢), the number
of regions that are retained after the initial segmentation stage (Ng), and the number of segmentations after
the second segmentation stage (Ns). According to this combined result (both training and test sets), the
sensitivity is 18/20 = 0.9 as we missed two small tumors (IMG06-L1 and IMG09-L1), and the average
number of false positives per volume is 179/10 = 17.9.

5 Discussion

There are various limitations of the method in the current form. The foremost limitation is that it misses
small tumors due mainly to 4x4x4 sub-sampling. The sub-sampling was necessary to facilitate our devel-
opment time and compensate limitation of the computing resources. Once the algorithm becomes stable,
we can reduce the sampling rate, and make the system applicable to small tumors with some minor changes
to the parameter settings. Probably, a better approach is to do in a multi-resolution fashion. At a coarse
resolution, we detect non-small tumors with the current method while extracting suspicious regions where
small tumors may exist. We can then inspect these regions further at the original resolution.

Another limitation is that the current form reduces false positives in a highly heuristic way. The rules are
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Table 3: Computation time of the method per volume

Ne! NgZ Ng° Preproc. | Cand. Ist Average | Total
(sec) Gen. Stage 2nd (sec)
(sec) (sec) Stage
(sec)
IMGO1| 155 74 31 9.9 9.7 18.8 2.5 225
IMGO02| 220 96 32 7.8 12.2 25.5 2.9 325
IMGO03| 90 42 15 12.9 8.9 16.1 3.7 191
IMGO04| 99 46 12 7.7 10.0 19.0 3.6 204
IMGO5| 529 110 22 8.7 14.3 69.0 2.9 408
IMGO06| 77 45 15 7.4 6.4 9.0 1.7 98
IMGO7| 199 82 23 6.6 10.0 23.3 2.6 255
IMGO8| 139 56 14 10.3 10.8 15.7 2.4 172
IMGO09| 190 68 18 6.8 10.2 22.7 2.5 213
IMG10| 76 35 15 6.6 6.5 9.6 2.1 96

' Ne: the number of candidates.
2 Ng: the number of regions after the first stage segmentation.
3 Ns: the number of segmentations after the second stage segmentation.

derived from a small number of training data set, and may not be applicable to unseen data. However, once
we can segment tumors accurately, then more effective filtering of false positives is possible.

We should be able to improve the results shown in Tables 1 and 2 substantially with parameter tuning and
additional post-processing. For example, some results contain holes in their segmentation, which increase
the surface difference error. A simple post-processing can remove these holes. The results show that the
automated method consistently produces smaller segmentation than the manual one. To increase the size of
the segmentation, we can increase the amount of diffusion in the second stage segmentation, shift v; and vy
down and up, use the convex-hull of the segmentation, or a combination of these.

Finally, we use a simple tri-linear interpolation to scale up the segmentation to the original volume size. It
may be possible to improve the accuracy by applying the same segmentation algorithm of Section 72.4 to
the original data around the area of the interpolated segmentation. Appropriate amount of smoothing should
be introduced to the original data prior to the segmentation process.

6 Summary

We presented a fully automated method for detection and segmentation of liver tumors from a thin-slice
CT data. The core of the method is a pulmonary segmentation method developed previously. However,
a considerable amount of modifications as well as new additional processing modules were necessary to
achieve reasonable performance.

The average total score provided by the Grand Challenge organizer for the proposed method was 38. (See
Table 2). We proposed various approaches to improve the performance. (See Section 5). For the system to
gain truly a practical value, the number of false positives needs to be reduced substantially. These two issues
constitute the major portion of our future work
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