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Abstract

We present in this paper an application of minimal surfaces and Markov random fields to the seg-
mentation of liver tumors. The originality of the work consists in applying these models to the region
adjacency graph of a watershed transform. We detail the assumptions and the approximations introduced
in these models by using a region graph instead of a pixel graph. This strategy leads to an interactive
method that we use to delineate tumors in 3D CT images. We detail our strategy to achieve relevant
segmentations of these structures and compare our results to hand made segmentations done by experi-
enced radiologists. This paper resumes our participation to the MICCAI 2008 ! workshop called: 3D
segmentation in the clinic : A Grand Challenge II".
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1 Introduction

Possible applications related to liver tumor segmentation are mainly radiotherapy and surgery planning.
In these cases the knowledge of the exact location and volume of the tumors is important to ensure that
the chosen therapy is adapted to the patient. The robust extraction of liver tumor boundaries from CT
images remains an open problem of medical imaging. Liver tumors present low contrasted boundaries and
exhibit a large variability of shapes, sizes and locations in the liver. Due to these multiple difficulties,
automatic or model based approaches seem to be inadequate for this application. However, a few semi-
automatic approaches have already been proposed in the literature. Recent approaches are mainly based on
active contours [12], level-sets [14], as well as machine learning [10]. These methods have the interesting
property to allow an interaction with its user through land marks positioning or interactive refinement of the
segmentation. The interactive approach of medical images segmentation is, to our mind, the most reliable
and accurate method to provide relevant and robust segmentation results. We propose in this paper an
interactive segmentation method based on user defined markers to extract liver tumors boundaries in 3D CT
images.

2 Data

The CT images, provided by the workshop’s organizers 2, were acquired on one 64-slice and two 40-slice

CT scanners using a standard four-phase contrast enhanced imaging protocol. The resulting images have a
slice thickness of Imm or 1.5mm and an in-plane resolution of 0.6-0.9mm. The imaging protocol consists
in injecting a phase contrast liquid to the patient such that the contrast between tumors and the surrounding
tissues is improved. The images are then acquired approximatively 30 seconds to one minute after the
injection, when the contrast enhancing liquid is attaining the liver. Depending on several parameters such
as the patient size or the patient cardiac rhythm, the images present different enhanced contrasts in the liver.
Several cases are illustrated in figure 1. The liver segmentation presents some difficulties that have to be
taken into account to design a relevant segmentation protocol. First, tumors can be in positive or negative
contrast with the liver, depending on the acquisition time of the images, as illustrated in figure 1. Secondly,
the tumors boundaries are not well defined and perceptual properties have to be used to define the exact
contours of the tumors.

2The organizers of the workshop are Wiro Niessen, Martin Styner, Simon K. Warfield and Xiang Deng
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Figure 1: Liver 3D CT images. (a) The tumor, indicated by a red arrow, presents a negative contrast with
the liver. The contrast enhancing liquid is actually going through the aorta, indicated by a blue arrow, and
the liver blood vessels. (b) The tumor, indicated by a red arrow, presents a positive contrast with the liver.
The contrast enhancing liquid has already crossed the liver vessels. The aorta, indicated by a blue arrow, is
not very bright, which means that the contrast enhancing liquid is not present in it.

3 Images segmentation algorithms

3.1 General description

Our segmentation strategy is entirely based on the use of the region adjacency graph of an unsupervised
watershed segmentation [2]. This low-level segmentation is used in combination with graph cuts to compute
approximate minimal surfaces and approximate maximum a posteriori estimates of a Markov random field.
Note also that we do not process the whole 3D CT image, the first step of our methodology is the manual
definition of a sub-volume containing one or more tumors that need to be segmented.

The region adjacency graph is obtained from the watershed transform computed from all minima of the
morphological gradient of the original CT image using Meyer’s algorithm based on hierarchical queues
[13]. Both minima of the gradient and the watershed transform are computed using the 6-neighborhood
adjacency system. From this first low-level segmentation, a region adjacency graph is extracted and used for
the following optimization steps.

Our segmentation protocol is motivated by this simple observation: the liver presents two kinds of tissues:
tumoral tissues and healthy tissues. The classification of liver pixels in one of these two classes permits to
extract the tumors. In other words, the tumors can be extracted from the liver by the mean of their grey levels.
To achieve this classification we model the liver pixels as a Markov random field and the classification is
performed through the maximum a posteriori estimation. One class corresponds to the normal liver tissues
and the other class corresponds to the tumoral tissues. The classification is supervised by user defined
markers that specify the tumors and the normal tissues. The markers are used to locate the tumors and to
estimate the grey levels characteristics of these structures.

However, the liver pixels classification needs also that the liver boundaries are extracted. This task is realized
by computing a minimal surface based on user defined markers. The user has finally to specify normal liver
tissues, tumoral tissues, and external tissues surrounding the liver. Based on these markers the liver is first
extracted and secondly the pixels of the liver are classified and the tumors are finally extracted. The different
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energy minimization strategies (minimal surfaces and Markov random field) are based on the computation
of a minimal graph cut using Boykov and Kolmogorov algorithm described in [5] and implemented in the
Boost Graph Library 3.
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Figure 2: Liver tumors segmentation strategy. The user provided information are outlined in red. Automatic
steps are outlined in green. An additional post processing step is also proposed to the user, this step consists
in smoothing the segmentation by using a morphological operator such as an opening.

3.2 The watershed transform

An unsupervised watershed transform of the morphological gradient of the original CT image is used in our
work to produce a region adjacency graph. The watershed transform [2], from mathematical morphology,
allows to obtain a partition of an image composed of small and numerous homogeneous regions. Moreover
important contours of the image are preserved during the segmentation and regions of the partition are
mostly composed of homogenous pixels (pixels of similar grey values). The quality of this first unsupervised
segmentation is important to guarantee a minimal loss of information, an ideal situation would be that
important information (contours and/or homogenous regions) about the original image is accessible from
this first segmentation. These observations about the watershed transform are not theoretically guaranteed
but are verified when working on real life problems and natural images. Another important point is that
the watershed transform algorithm based on hierarchical queues exhibits a linear complexity [13]. The time
needed by the watershed transform is in practice negligible compared to the graph cuts algorithm [5].

3 The Boost Graph Library (BGL) is the first C++ library to apply the principles of generic programming to the construc-
tion of the advanced data structures and algorithms used in graph computations. The library can be freely downloaded on
http://www.boost.org/
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3.3 Approximate minimal surfaces

We detail in this section how to extract the liver boundaries by an approximate minimal surface using a
region adjacency graph [17]. The combination of graph-cuts with a watershed low-level segmentation
provides us with an explicit and efficient way to compute approximate minimal surfaces. Our basic as-
sumption is that the minimal surface to be computed is embedded in the watershed low-level segmentation
contours. This proposition is motivated by two observations. Firstly, the watershed transform (computed
from the local minima of the images gradient), without pre-processing or marker selection, produces an
over-segmentation of the image. Secondly, the watershed contours contain all major boundaries of the
image. We propose to solve the following combinatorial problem: finding a surface composed of a finite
union of watershed contours such that the surface minimizes a given geometric functional. We solve this
problem by using graph-cuts optimization on a region adjacency graph, as originally proposed by Li et al.
[11] for interactive photo edition.

(© (d

Figure 3: Comparison between approximate and exact geodesics. (a) Pixel graph and markers. (b) Geodesic
computed on the pixel graph. (c) Low-level segmentation. (d) Geodesic computed on the region adjacency
graph.

Following the formulation of Caselles et al. [7], we want to find a surface S defined by a finite union of
watershed contours that minimizes the following energy function:

ES) = [ [ s(1V16y)])dxdy M

where g is a positive and strictly decreasing function and ||VI(x,y)|| is the modulus of the gradient of the
image / (image contrast) along the surface S. Note that Boykov et al. describe a technique based on the
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Cauchy-Crofton formulaes and graph cuts to compute minimal surfaces using a graph representation of the
image [4].

Let G = (V,E,W) be the pixel graph of an image I. Classically V is the set of nodes and represents the
pixels of I, E is the set of edges representing neighborhood relations between pixels and W is a positive
weight assigned to each edge of E. In our terminology, an edge linking two nodes i and j is written ¢; ; and
the corresponding edge weight is denoted by w; ;.

From the pixel graph, we define the region adjacency graph Gg = (Vg, Eg, Wg) of the watershed transform
where Vg = {r,k € [1,...n]} is the set of nodes (i.e the regions of the watershed transform). Ey is the set of
edges (i.e the neighborhood relation between regions) and Wy is the weights of the edges as illustrated in
figure 3.

We denote the markers that specify the liver tissues as the set of regions M, and M}, respectively for tumoral
and healthy tissues. The markers specifying the tissues surrounding the liver are denoted by M,,;.

Ry

(a) (b) (c)

Figure 4: (a) Region adjacency graph of a low-level watershed segmentation. (b) The set of nodes of the
pixel graph considered to compute boundary properties between regions, with a V4 adjacency system. (c) A
curve crossing the edges of the borders between the regions r; and r».

Let us define F{,, ,) as the set of edges of the pixel graph connecting two regions r; and r; of the low-level
watershed segmentation:

Fory={emn €E|mer,ner;}. ()

Note that the set F{,, .,y depends on the adjacency system of the pixel graph G. The set of edges of the pixel
graph describes also implicitly a set of surfaces between the regions r; and r; as illustrated in figure 3. Let
S(n.r;) denote the set of surfaces that could cross the edges of F(;, ,y. Using Cauchy-Crofton formulaes, it
is possible to compute the energy function £ (S( y) (ie. the Rlemanman length) of the boundary between
two regions of the low-level segmentation as descrlbed by Boykov et al. in [4]. Note also that if regions r;
and r; are not adjacent, F{,, ,,) and S, ,) are simply empty sets. In the following, we consider the strictly
positive and decreasing function g as:

k
0D = (579077 ) - ®

The parameter k € R™ is a free parameter and can be used as a smoothing term as shown by Allene et al. in
[1]. In our application this parameter was set to k = 2.
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Following Cauchy-Crofton formulaes with the Vs adjacency system, the energy function E (S (,h,j)) can be
approximated by:

E(Surp)~ ), gmax(|[VI(m)|,[IVI(n)]), ©)
(emﬁneF(r[,r_/-))

where (||VI(m)||,||VI(n)||) are the gradient magnitude of the end points of e, ;.

The edge weights of the region adjacency graph are then set such that the weight of a graph cut equals the
energy function of the surface it implicitly defines:

. k
W= ) (1+max(||V1(m)H,||VI(”)”))) .

(em,n eF(ri,rj))

&)

The function g works as an edge indicator of the image / and takes a small value if neighbors pixels m
and n take different grey values p,, and p,. The energy E(S(,i’,j)) of the boundary between two regions
is simply obtained by summing the local contrasts along the boundaries between two regions. The weight
Wy, r; approximates the energy E(S(;, ,,)) of a surface S, ) crossing the edges of (F{,, ;) in the case of a
6-neighborhood adjacency system. Alternatively, the Cauchy-Crofton formulaes can also be used to com-
pute the energy associated to a surface S, ) in the case of different adjacency systems. However in our
applications we only consider the 6-neighborhood system for simplicity.

The liver boundaries are finally extracted by computing a minimal graph cut of the region adjacency graph
with weights given by equation 5. The minimal cut is computed on the region adjacency graph with two
additional nodes s and ¢, respectively connected to the markers of the liver and the markers of the external
tissues. The edge weights of the graph are summarized in table 1.

’ Edge ‘ Weight for
Wy r; o0 rp €M,
We. 1y o0 ri € My
Writ too i € Moy
Wrir; E(S(ri’rj)) i EVR,I”]' Eer.

Table 1: Edge Weights for Approximate Minimal Surfaces.

3.4 Approximate maximum a posteriori estimation of a Markov random field (MRF)

This section details the segmentation method used to detect the tumors in the liver. We are now going to take
into account a second assumption about the watershed transform: the unsupervised watershed transform of
a natural image is composed of regions of homogenous grey level intensities. A region graph, instead of
a pixel graph, can thus be used without affecting the classification of image grey levels. This assumption
permits us to model the image to be segmented as a Markov random field, where each random variable
corresponds to the mean value inside a region of the watershed transform. This work is based on the work
of Boykov et al. [6, 3] and extended to deal with region adjacency graphs instead of pixel graphs [18].

Let us consider the pixel graph G = (V,E,W) of an image, as well as the corresponding region adjacency
graph Gg = (Vg,Eg,Wg) of its watershed transform. Instead of taking into account the grey level of each
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single pixel of the image, we are only going to consider the mean grey level inside each region of the
watershed transform. For the binary image restoration problem [8, 6], the aim is to find a labeling X of the
nodes V:

X : v—-{0,1}
i— X(i) =xi

such that X minimizes:

E(X) =Y —In(Pr(pilx)+ ) Y uij8(xi #x;)), (6)

iev i€V jEN;

where p; € [0,1] is the grey level of the pixel i, and x; € {0, 1} is a label that has to be assigned to the pixel
i. N; is the set of neighbors of the pixel i and ; ; is a positive function. 8(x; # x;) is the indicator function:
8(x; # x;) = 1 if and only if x; # x; and 8(x; # x;) = 0 otherwise.

This equation describes the classical formulation of the maximum a posteriori estimation of a Markov
random field [6]. The data term, also called the likelihood function Pr(p;|x;), ensures that dark pixels,
pi = 0, will be assigned the label x; = 0; and that bright pixels, p; =~ 1, will be assigned the label
x; = 1. This model is regularized with the prior function u;; which is typically used to guarantee that
the resulting segmentation has smooth boundaries. We detail in the following sections how each term
of this energy function can be approximated by using the region adjacency graph of the watershed transform.

Computation of the Likelihood Function Pr(p;|x;):

Since we assume that each region of the watershed transform is composed of region of homogenous inten-
sities, we can approximate the likelihood term by:

Y —in(Pr(pilxi)) = Y —|ril-n(Pr(u|x:)) , (7)
icv i€Vk
1
M =77 Y Pis (8)
‘ri’Pie”i

where |r;| is the number of pixels inside the region r;.

The previous approximation becomes an equality in the case when the pixels inside a region have exactly
the same grey level. Alternatively we could have considered the region adjacency of a flat zones labeling
of the image [15]. In this last case, regions are composed of connected pixels that have all the same grey
levels. The previous approximation becomes thus a strict equality. However we detail here the use of the
watershed transform, keeping in mind that its extension to other unsupervised low level segmentations is
straightforward.

Assuming that the data are corrupted with a white gaussian noise, the likelihood function can finally be
written as:

(Hr; — H(=0))*
Prlan (15 = 0)) = exp(~ =) 5705, ©)
(tr, — Mx=1))?
Pr(u,|(xi = 1)) = exp(———35——) , (10)
| = 1) = eap(= ) 5=

where p,, is the mean gray level of the region r;, and yy,—¢) and p(,,—1) are the mean values of the pixels
expected to take the values x; = 0 and x; = 1. In our experiments the values of 6y and 6 were empirically
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set to 69 = 0.25 and 6 = 0.2. In our model, G represents the grey level variance of the tumoral tissues and
o represents the grey level variance of the healthy tissues. We have experimentally found that the variance
of tumoral tissues is slightly higher than the grey level variance of the healthy tissues. On the other side, the
values of u,,; are estimated from the user defined markers as:

i (1D

H(x;=0) = |M"r§/[,“r

M(x=1) = Z My, s (12)
|F,GM;,

where |M;| and |M,| are respectively the number of regions marked as healthy or tumoral. We recall
that the markers that specify the liver tissues are denoted as the set of regions M; and M, respectively
for tumoral and healthy tissues. The markers specifying the tissues surrounding the liver are denoted by M,,;.

Computation of the Prior Function u; ;:

The prior function depends on the boundaries properties of the labeling x. We consider now the boundaries
between two regions to compute the regularizing term of the energy function. Let us recall that the boundary
between two regions r; and r; of the watershed transform is defined by the following set of edges:

={ewn€E|mer,nerj}. (13)

(rivrj)

We assume now that all pixels inside a region of the watershed transform are assigned the same label x;, the
prior function does thus only depend of the pixels lying in the boundaries between two regions:

Yo X wipSi#x) =Y, Y [Fypluijo8(x #xj) (14)

i€V jEN; i€Vg jEN;,

where N,, is the set of neighbor regions of the region r; and ’F(ri7r,~)| is the number of edges of F{, , ).

The prior function u; ; that we use in our application is a contrast sensitive function:

uij= (B—PBx(uy —u,)") - (15)

where 7 is a free parameter describing the strength of the term % (u,, —u,,). Since the mean grey level
uy; are real values between 0 and 1, the parameter n permits to take into account the local contrast. In the
following we set the parameter to n = 4. Note that if n is very large, our contrast sensitive model is equal to
the classical Ising model of ferromagnetism [9].

The previous function takes into account the contrast between two regions and is equal to a constant in the
areas where the contrast is low. This function allows to detect correctly the boundaries of high contrasted
tumors, whereas low contrasted boundaries are smoothed such that the perimeter of the object is minimized.

Energy Minimization by Graph Cuts:

We have finally to minimize the following energy function:

= ¥ |y Pl “’l “"’ + Y Y (F i3 # ;) - (16)

i€V i€VR JEN,
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As shown in [6], we can minimize this energy function by computing a minimal graph cut. The minimal cut
is computed on the region adjacency graph with two additional nodes s and ¢, respectively connected to the

markers of the tumoral tissues and the markers of the healthy liver tissues. The edge weights of the graph
are given in table 2.

’ Edge ‘ Weight ‘ for ‘
Wy, o0 ri € M;
Wit +o0 ri € My,
)

W, % ri € Ve \ {M, UM}
(tr,—ti(z;—1))”

Wrig | et | i € Vp \{M, UM}

Wrir; ‘F'(r,'7rj)‘-ui,j ri € VR7rj € Nr,-

Table 2: Edge Weights for Approximate maximum a posteriori estimation of a MRF.

3.5 Post-processing

An additional post processing step is also proposed to the user after the extraction of the segmented tumors.
This step consists in smoothing the segmentation by using a morphological opening of the object represent-
ing the tumor. The opening is computed with a structuring element of size 1 using the V6 adjacency system.
This additional step permits to obtain slightly smoother boundaries.

3.6 Example

Figure 5 illustrates our segmentation strategy on a single slice of a 3D CT image. The obtained results are in
good concordance with the expected results obtained by a hand made segmentation. Alternatively, the user

can add or delete markers if he is not satisfied with the computed segmentation. This strategy is resumed in
figure 2.

(b)

Figure 5: Liver tumors segmentation. (a) User specified markers. In blue, the tumor markers, in red, the
liver markers and in green, the external markers. (b) Results of our segmentation strategy. (c) Radiologist
hand made segmentation and the liver contours extracted by our method.
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4 Graphical user interface

We have developed a graphical user interface dedicated to 3D medical image segmentation and visualization.
The software is entirely developed in python and C++ based on the vtk library * and the image analysis
library developed at the Center for Mathematical Morphology . Our software allows the user to explore
a highly detailed view of the data-set for easy interpretation. Visualization is particularly important for
segmentation validation purposes. Data sets can be explored through 2D orthogonal cuts of the 3D volume
and 3D rendering of the whole image, or of some user specified sub-volume, as illustrated in figure 6.

3D SEGMENTATOR FOR MEDICAL IMAGES

File Tools Visualization Fitering Segmentation

Figure 6: Snapshot of the graphical user interface of our software. Visualization of a 3D CT of the liver.

The user can interactively provide the markers needed for the segmentation algorithms by drawing on slices
of the 3D image, as illustrated in figure 7. The user can visualize the segmented image as a set of surfaces,
one surface for each object. Users can also overlay the surfaces on the original image. It is possible to super-
pose 2D slices of both segmented and original image as well as a 3D surface rendering of the segmented data
set. Combination of all this visualization methods allows an easy and fast interpretation of the segmentation
result. Complex morphologies can therefore be explored easily and interactively.

5 Training Results

Table 3 summarizes the evaluation scores of our method on a set of 4 CT images presenting 10 tumors
with known hand made segmentations. The evaluation scores compare our results with the radiologists
segmentations. The important point is that these results have been obtained with the knowledge of the hand

4www.vtk.org, The Visualization ToolKit (VTK) is an open source, freely available software system for 3D computer graphics,

image processing, and visualization.

Shitp://cmm.ensmp.fr/Morph-M/, Morph-M is the result of the work of several researchers at the Centre for Mathematical
Morphology. Morph-M provides a rich environment for the development of image processing algorithms. Most of current research
projects at the CMM are based on Morph-M.
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made segmentations. The results have been obtained such that the similarity between the two segmentations
is visually satisfactory.

The mean surface distance between our segmentations and the references is less than a millimeter, which
is the typical resolution of a voxel of the studied 3D CT images. The volumetric overlap error shows that
approximatively 85 % of our segmentation volume is in perfect match with a hand made segmentation.
Figure 8 illustrates some comparisons between the hand made segmentations and the results obtained with
our methodology. The typical computation time needed by our algorithms is approximately a few seconds
depending on the size of the sub-volume containing the tumors. Obviously using a region graph instead of
a pixel graph speeds up the computation of our segmentation models.

’ Image ‘ Overlap | Vol. Dif. | Average Dist. | RMS Dist. | Max Dist.
T1 19,11 % | 4,94 % 1,17 mm 1,53 mm | 5,70 mm
T2 17,84 % | 11,04 % 0,53 mm 0,79 mm 3,69 mm
T3 |21,29% | 5,08 % 0,70 mm 0,97 mm | 3,05 mm
T4 17,71 % | 13,74 % 0,62 mm 0,93 mm | 4,04 mm
TS5 19,2 % 6,07 % 0,57 mm 0,85 mm | 3,19 mm
T6 |2947 % | 1595 % 0,56 mm 0,85 mm | 2,50 mm
T7 13,47 % | 3,68 % 0,92 mm 1,28 mm 6,41 mm
TS 11,24 % | 8,57 % 0,45 mm 0,73 mm 3,37 mm
T9 10,63 % | 7,53 % 0,74 mm 1,08 mm | 5,93 mm
T10 | 10,02% | 1,17 % 0,46 mm 0,77 mm 4,37 mm

| Mean [ 1699% | 778% | 0.67mm | 098mm | 422 mm

Table 3: Evaluation results on the training dataset.

6 Testing Results

Table 4 summarizes the evaluation scores of our method on a set of 5 CT images presenting 10 tumors
with unknown hand made segmentations. The evaluation scores compare our results with the radiologists
segmentations. The important point is that these results have been obtained without the knowledge of the
hand made segmentations.

The mean surface distance between our segmentations and the references is approximatively one and a half
millimeter, which represents 2 or 3 voxels of the studied 3D CT images. The volumetric overlap error shows
that approximatively 71 % of our segmentation volume is in perfect match with a hand made segmentation.
The results have been obtained without the supervision of an experienced radiologist. Some evaluation
results show that we misunderstand some structures that had to be extracted. This problem leads to very
low scores that could have been avoided with the help of a radiologist (see for instance tumor number 5).
However our results are promising, considering the low quality of some images of the dataset.
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] Image \ Overlap | Vol. Dif. | Average Dist. | RMS Dist. | Max Dist.
T1 27,16 % | 21,7 % 2,02 mm 2,9 mm 10,5 mm
T2 |3641 % | 24,98 % 1,36 mm 1,83mm | 6,15 mm
T3 31,99 % | 16,93 % 1,18 mm 1,59 mm | 5,64 mm
T4 33,19 % 1,86 % 0,84 mm 1,09 mm 4,00 mm
T5 |61,24% | 119,82 % 2,29 mm 2,95 mm | 9,30 mm
T6 |21,83% | 10,68 % 2,65 mm 3,58 mm | 18,31 mm
T7 21,44 % | 4,85 % 0,93 mm 1,38 mm 6,89 mm
T8 16,02 % | 14,47 % 1,84 mm 2,70 mm 9,73 mm
T9 |2287% | 2,14 % 0,65 mm 0,97 mm | 5,10 mm
T10 | 22,78 % | 21,27 % 1,21 mm 1,73 mm | 7,33 mm

| Mean [2949% | 23.87% | 150mm | 2,07mm | 829 mm

Table 4: Evaluation results on the testing dataset.

7 Conclusion

A graph-cut approach cannot always be used on large images when the graph considered is the pixel ad-
jacency graph because of the memory requirements and the computational complexity of the method. The
developed method can efficiently be used on large images considering the region adjacency graph instead of
the pixel graph. Moreover our method does not seem to introduce large biases in the resulting segmentations
since our assumptions about the watershed transform (detection of important boundaries and regions of ho-
mogeneous grey levels) are in practice verified. Finally, the use of a region adjacency graph offers a good
trade-off between speed and precision for the computation of minimal surfaces and maximum a posteriori
estimation of a MRF. We want also to point out that a region based approach is potentially richer than a pixel
approach since a wide class of geometric functionals can be computed on each region of the watershed trans-
form and additional constraints, such as curvature dependant smoothing term, could be added to the energy
function to minimize. These approaches were already successfully used for various image segmentation
problems for medical and material sciences applications [16, 19].

Our method exhibits promising results for the aimed application. However some open problems still re-
main. First, the segmentation of multiple tumors in the same liver often requires additional user markers to
correctly separate the tumors. The developed method merges the tumors in a single object when different
tumors are too close. This problem requires that the user adds markers between the merged tumors. This
additional interaction speeds down the segmentation protocol. However the used methods (minimal surfaces
and Markov random fields on a region adjacency graph) are fast and can be used interactively. Secondly
we did not develop any preprocessing step such as filtering of the images. There is thus still some possible
improvements of our methodology. Future work will be concentrated on the development of adapted filters
to simplify the segmentation and the classification step of our methodology.
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Figure 7: Snapshot of the graphical user interface of our software. (a) Interactive marker drawing. (b)

Visualization of a segmented data set.
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(b)

Figure 8: Training data results. Comparison between hand made and proposed segmentation method. Blue
pixels indicate a perfect match, green pixels indicates zones that are not detected by our method and pink
pixels indicate zones not detected by the radiologist. (a) Tumor 5 results. (b) Tumor 7 results.
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