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application to liver lesion extraction from a CT volume
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Abstract. This paper describes an ensemble segmentation trained by the
AdaBoost algorithm, which finds a sequence of weak hypotheses, each of
which is appropriate for the distribution on training example, and combines the
weak hypotheses by a weighted majority vote. In our study, a weak hypothesis
corresponds to a weak segmentation process. This paper shows a procedure for
generating an ensemble segmentation algorithm using AdaBoost, and applies it
to a liver lesion extraction problem from a contrast enhanced abdominal CT
volume. A leave-one-patient-out validation test using 16 CT volumes
demonstrated the effectiveness of the generated ensemble segmentation
algorithm. In addition, we evaluated the performance by applying the algorithm
to unknown test data provided by the “3D Liver Tumor Segmentation
Challenge 2008”.
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1 Introduction

Extraction of a lesion, such as those seen in liver metastasis, from a given image is an
essential process for computer-aided diagnosis and computer-aided surgery. Although
many algorithms for liver lesion extraction have been proposed [1, 2], they are not
accurate, because the characteristics of lesions are often similar to those of the
surrounding normal tissues. For example, the CT value of metastases in liver is
sometimes identical to that of the gallbladder, and the tumor necrosis shows CT
values similar to those of fat, resulting in false positives. One effective approach is
extracting the organ before lesion extraction. However accuracy of the lesion
extraction then depends on that of organ segmentation. If a part of an organ affected
by a lesion is misidentified as another organ, because of the difference in CT values
and shapes from that of a normal liver (failure examples can be found in [3]), the
lesion cannot be extracted by a subsequent process. Hence, a lesion extraction
algorithm that can extract lesions directly from a given image is needed.



In addition to the problem caused by surrounding tissues, there is a wide
variation in lesion characteristics, which complicates the lesion extraction task. To
cope with the variation of the targets, some researchers have focused on combinations
of multiple segmentations, each of which can deal with a certain type of target. Thus
far, combinations of multiple segmentations, using vote rule decision fusion, has been
found to reduce random errors in the segmentation, resulting in high segmentation
accuracy. Such techniques have been applied successfully for segmentation of bee
brains in confocal microscopy images [4, 5], and human brains in MR images [6, 7].

In the field of pattern recognition, boosting is an effective method of producing
a very accurate classification rule. AdaBoost [8] is a well-know boosting algorithm
that calls a weak classifier repeatedly in the series of learning rounds using a training
dataset and constructs a strong ensemble classifier as a linear combination of the weak
classifiers. It can be applicable to the segmentation problem, but less attention has
been paid to the use of the AdaBoost algorithm to generate an ensemble segmentation
process.

This paper aims to present an ensemble segmentation trained by AdaBoost. The
main contribution of the paper is twofold. First, this paper shows a procedure for
generating an ensemble segmentation algorithm using AdaBoost. Second, we applied
the proposed procedure to the liver lesion extraction problem and generated an
ensemble segmentation algorithm. We performed a leave-one-patient-out test on
contrast enhanced 3D CT volumes taken from 16 patients to validate the generated
ensemble segmentation algorithm. Moreover, an ensemble segmentation algorithm
was trained using 16 CT volumes as well as 4 volumes provided by the “Liver Tumor
Segmentation Challenge 2008, and the generated segmentation algorithm was then
applied to the unknown test dataset consisting of 6 volumes given by the competition.

2  Method

2.1 Ensemble segmentation by AdaBoost

Consider a segmentation that distinguishes two different classes in a label set A =
{=1,1}. The segmentation process of a three dimensional image includes mapping
from the coordinates X to the labels h: R® — A. Pseudocode for AdaBoost is
provided in figure 1. AdaBoost finds an optimum weak segmentation process A,
repeatedly in a series of training rounds given by ¢ = 1,... ,7, which minimizes a
weighted error & computed from the training dataset. Finally the sequence of the
weak segmentation process is integrated into H(X) with weight ¢, which intuitively
measures the importance assigned to %, (X), and ¢, increases as error & of h, (x)
decreases. The advantages of the AdaBoost algorithm are that it is very simple to
implement and can maximize the margin, resulting in a high generalization
performance. The weak segmentation processes employed in this study will be
explained in the next subsection.
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Fig. 1. A boosting algorithm for ensemble segmentation based on AdaBoost.
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2.2 Weak segmentation process

Performance of a generated ensemble segmentation depends on weak segmentation
process considered in the AdaBoost learning process. In this study, we focused on a
liver lesion segmentation problem (Figure 2) and prepared 54 weak segmentation
processes, each of which uses a feature listed in Table 1.

Fig. 2. An example of lesions in a liver CT volume. Arrows show a metastasis in the liver.

According to the following equation, the weak segmentation process
determines if a voxel of interest belongs to a target lesion.

f > Th = lesion

)

else = others

where f'is a value of a feature listed in Table 1. Note that if segmentation error & is
greater than 0.5, ¢, becomes negative, which reverses the inequality sign of the
equation. In each training round of figure 1, the threshold of weak segmentation



process was trained so that the error computed on the training dataset would be
minimum, and an optimum weak segmentation /, with minimum error was selected in
step 2.

Table 1. Features used in the weak segmentation processes.
Features Parameters
Average, variance, skewness and | Size of local region:

kurtosis of CT values

3x3x3,5x5x%x5,7Tx7x7

Minimum and maximum of CT values

Size of local region:

TxT7x7,11x11x11

Size of the filter :

I x1Ix11

Radius of the region:
Estimated size of lesion by
convergence index filters

d=3,r=5~33, M=62*%

CT wvalue based
features computed
from a local region

Output of sequential filter; Minimum

filter = Maximum filter

Average of CT values in spherical
region

ClIL
C.I. + diffusion filter

Features based on

§’D convergence | C.I. with absolute operation

index filter (C.L.) C.1. with absolute operation + diffusion d=3,r=5~33,M=104*
filter
Norm of sobel filter

Other features Size of the filter:

Output of matched filter Estimated size of lesion by

convergence index filters
*d and r will be explained in figure 3, and M indicates the number of
directions to evaluate gradient vectors in the support region.

The features are divided into three groups. The first group contains CT value
based features, measured in a region in the neighborhood of the voxel of interest, such
as the average and variance. All features in the first group are derived from an
original CT image as well as a normalized CT image. The normalization is performed
as follows.

f=(~u)o @)

where ' is the normalized value of . 1z and o are the average and standard deviations
of CT values in the liver, estimated for each image by an EM algorithm without
segmentation. This normalization can reduce the variance of CT values among
patients, resulting in increased separability between the lesion and other tissues.
Features in the second group are based on the output of a 3D point convergence
index filter developed for enhancing circumscribed lesions [9]. This filter calculates



the convergence index (see equation (3)) of gradient vector g in a spherical region of
figure 3, called the support region. It outputs the index to the center P.

[Convergence Index] = max, {Zi=g-p— 1 Zj=r+1~r+a(—C08 0;)} 3

This filter is robust with respect to changes in contrast, and effective in enhancing
cancers with low contrast, which are difficult to detect by a threshold-based method.
An additional advantage is that, during computation of the convergence index, it
estimates the size of the lesion, which can be used by other processes, as shown in
Table 1 and figure3.
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Fig. 3. Tllustrations for the point convergence index filter. Here, (b) is an original CT image
with a metastasis indicated by an arrow,(c) shows the filer output, the bright spots indicate a
higher convergence index. (d) is a result of the filter followed by a modified diffusion filter that
spreads the outputs of the convergence index filter within a limited area, whose size matches
the estimated lesion size using the convergence index filter.

Although the convergence index filter outputs high values around the center of
the lesion, as shown in figure 3 (¢), the output rapidly decreases near the periphery of
the lesion. Thus, a weak segmentation process based on thresholding is prone to
underextract the peripheral region. To avoid this, we combined the filter with an
isotropic diffusion filter that spreads the outputs of the convergence index filter within
a limited area, whose size is equal to the convergence index filter’s estimate of the
lesion size. As shown in figure 3 (d), the diffusion process enhances the entire domain.
The convergence index filter with absolute operation (Table 1) computes the absolute
value of the cosine function in equation (3) to enhance the lesion neighboring the lung,
air in necrosis, or visceral fat area, whose CT value is lower than the lesion.

The last group consists of other features, such as the output of a sobel filter
and a matched filter, computed from an original and a normalized CT image using
equation (2). The matched filter was designed in terms of CT value profile of the
lesion.

Total number of features is 54, and all features are converted to binary values,
according to equation (1) to extract lesions during the AdaBoost training round.



2.3 Liver lesion extraction algorithm based on ensemble segmentations

Figure 4 shows a flowchart of the proposed lesion extraction algorithm from a given
CT volume. First, it computes the features of Table 1 in the area where the prior
probability of the liver is greater than 0. Note that a prior probability was estimated
from a training dataset using an atlas based method [10], and the area used is
sufficiently large to avoid underextraction of a liver with lesions. Second, the
ensemble segmentations are performed. In this study, two ensemble segmentation
algorithms were created to treat lesions of different sizes. We divided the training
dataset into two sets according to lesion size, and the two ensemble segmentation
processes were independently trained by the procedure proposed in 2.1. For post-
processing, the segmentation results were refined by morphological operations such
as opening and closing, and integrated into one by a logical sum operation, followed
by a cavity filling process. It should be noted that all processes are automated.

3D CT image
1

| Computation of features ‘

[
L 1

Ensemble segmentation Ensemble segmentation
(for small lesions) (for large lesions)
1 1
| Morphological operations ‘ | Morphological operations |

[ J
1

Fusion of the segmentation results

+ Cavity filling process
!
Extracted lesions

Fig. 4. A Liver lesion extraction algorithm. Features were measured from a given image and
forwarded to the ensemble segmentation processes. Results of the ensemble segmentations
were refined by morphological operations and integrated.

3 Experiments

3.1 Materials and a quantitative metric for validation test

In the first experiment, we used the data distributed at MICCAI2007 workshop [3].
The datasets includes 16 CT volumes with 34 lesions, volumes of which are
distributed from 0.4 to 400 mL. The images were obtained using multi-detector row
CT scanners, and provided several hundreds of 512 x 512 pixel slice images, with 12-
bit accuracy. The voxel size of the CT volume in an axial plane is 0.543~0.865 mm,
and 0.5~5 mm in the z direction.



The Jaccard index between an extracted tumor region and its corresponding true
region, manually segmented by the authors and cited as reference segmentation below,
was adopted to evaluate the segmentation performance.

JA B =|ANB|/|AUB| (4)

where A is a set of extracted voxels, and B is a set of voxels in the reference
segmentation.

3.2 Validation by leave-one-patient-out test using 16 CT volumes

Leave-one-patient-out test using the 16 volumes was performed to validate the
ensemble segmentation. Extracted lesions from test data with different numbers of
weak segmentation processes are shown in figure 5. Figure 6 shows the relationship
between the Jaccard index and the number of weak segmentation processes. The left
and right graphs show the results for a training dataset of 15 patients, and those for the
test data of figure 5, respectively.

(d) Final output of Fig. 4  (e) Boundary of the reference segmentation

Fig. 5. Results for validation (test) data. The boundaries are black. Figures (a), (b), and (c)
show the results for T = 1, 20, and 100, respectively. (d) is the final result, which was very
similar to the true boundary shown in (e). The small false positives and cavity in figure (c) were
eliminated by the morphological operations followed by the cavity filling process.
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Fig. 6. Jaccard index versus the number of weak segmentation processes in the ensemble
segmentation algorithm. Here, (a) shows the average index for a training dataset from 15
patients, and (b) is the result for the validation data of figure 5.

3.3 Validation using testing data and quantitative metrics of the “Liver Tumor
Segmentation Challenge 2008

To evaluate the performance for unknown data, we trained an algorithm using the 16
CT volumes as well as 10 tumors in 4 CT volumes provided by an organizer of “Liver
Tumor Segmentation Challenge 2008”, and then applied to unknown 4 testing CT
volumes including 10 tumors given by the organizer.

Note that there are some modifications from the above experiment to deal with
problems found when using the new training data. For example some of the CT value
based features were improved to extract tumors in the training dataset precisely. The
error & in the figure 1 was computed from the neighboring region of a tumor instead
of whole liver region, because the competition focuses on the accuracy of extracted
boundaries but not false positives extracted separately from the tumor. The maximum
number of weak segmentation processes was altered to 200 aiming to reduce the error
of the training data. In addition, to detect not only metastases but also Hepatocellular
Carcinoma (HCC) and Hemangioma (HEM) that are enhanced by contrast medium,
we designed an additional ensemble segmentation algorithm dedicated to such
contrast enhanced tumors using our own dataset including HCCs and HEMs [2]. The
output was automatically integrated with that of figure 4 by a logical sum operation.
Note that no tumor for test was used in the training phase and the whole segmentation
processes are automated.

The results were evaluated quantitatively by the organizer of the competition
with respect to the following five criteria, (1) volumetric overlap, (2) relative absolute
volume difference, (3) average symmetric absolute surface distance, (4) symmetric
RMS surface distance, and (5) maximum symmetric absolute surface distance. For
more details for these criteria, refer to [11]. Table 2 summarized the performances for
all testing data. Figure 7 shows a sequence of the extracted tumor regions
corresponding to the tumor IMGO7 L1, in which the regions were improved as the
number of weak segmentation processes T increased. Figure 8 indicates the change of
the Jaccard index (= 1 - “volumetric overlap error in Table 2”) of the extracted tumor
regions with the reference segmentation that was manually delineated by the authors
after the evaluation process by the organizer.



Table 2. Results of the comparison metrics and corresponding scores for all ten test cases.

Cwerlap Error Yolume Difference Ave. Surf. Dist RMS Surf. Dist Max. Surf. Dist

Turnor (%) Scare (%) Score (mm) Scaore (rnrm} Score {rnm} Score  Total Score
IMGO5_L1 34.88 73 4.83 95 317 20 3.82 47 10.58 74 62
MGOE_L2 3246 Kis] 19.89 74 1.18 70 1.81 74 4.81 88 i
IMGD5_L3 30.30 i 3077 B8 1.38 BB 2.18 7o 8.14 80 72
IMGOB_L1 39.18 70 2272 76 122 B8 1587 78 485 88 76
IMGOE_L2 23 0 a 0 a ]
IMGO7_L1 20.67 g4 8.27 91 252 36 3.24 54 13.13 67 67
MGO7_L2 29.10 T8 356,65 63 1.54 g1 1.80 73 548 =la} 72
IMGO8_L1 29.58 T 2846 70 3.54 1 4.34 39 13.28 B7 a3
IMGOS_L1 3142 7B 1337 a6 1.10 72 1.62 7 7.28 82 79
IMG10_L1 13.20 80 0.60 53 0.64 84 0492 87 3.06 §2 80

Average 28.88 72 18.29 73 1.81 49 235 61 7.78 73 65

(f) Final result

(d) T=100

Fig. 7. Upper left figure is an original image with the tumor IMG07_L1 and lower right figure
is its corresponding final result. Figures from (b) to (e) show results with different number T of
weak segmentation processes, in which the regions were improved as the T increased.
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Fig. 8. The number of weak segmentation processes versus Jaccard index (= 1 - “volumetric
overlap error”) of the automatically extracted tumor region with the reference segmentation of
IMGO07_01 that was manually defined by the authors.

4  Discussion and Conclusions

As shown in figure 5, the extracted regions improved as the number of weak
segmentation processes 7 increased. This was also confirmed in figure 6. The Jaccard
index for the test data of figure 5 was 58.3% at T =1, and 78.8% at T = 100, resulting
in a 20.5 points advantage for ensemble segmentation. In addition, the difference
between the training curve and the test one as shown in figure 6 was small, indicating
that the generated segmentation provided a high generalization performance.

The leave-one-patient-out test repeated the above validation, such that each data
in datasets was used once as validation data. The difference between T = 1 and 100
was about 12 points on average for 16 CT volumes, and the statistical “paired ¢ test”
indicated that the difference was significant (p<0.005).

The validation results using the testing data provided by the competition’s
organizer presented some important findings. Table 2 shows the results of the
comparison metrics and corresponding scores for all ten test cases. A tumor of
IMGO06_ L2 was missed due to the differences in distribution of CT value of the tumor
as well as its shape from those of the training data. Other tumors of the testing dataset
were segmented successfully. For example figure 7 shows the extracted regions
corresponding to the tumor IMGO7 L1 with different number of weak segmentation
processes. The proposed ensemble segmentation algorithm over-extracted the
surrounding tissues, such as muscle and stomach wall, when the number T of weak
segmentation processes was small. However it succeeded to reduce such false
positives without increasing false negatives as the number T increased. The Jaccard
index reached to 74.9% when T =200 (see figure 8), which was improved by the post-
process of figure 4, resulting in 83.8%. Note that the value is different from that (=



100 — “Overlap Error” = 79.3%) in the Table 2, because the boundary defined by the
authors can be different from that of the organizer which is not yet open to the public.

In conclusion, our results suggest that ensemble segmentation is effective in

segmentation of liver lesions, and increasing the number of weak segmentation
processes can boost performance. In future work, we plan to assess the performance
using a large dataset, and apply the proposed procedure for generating an ensemble
segmentation algorithm by AdaBoost to other problems such as lesion extraction from
multi-phase CT volumes or MR images.
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