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Abstract. This paper describes an ensemble segmentation trained by the 
AdaBoost algorithm, which finds a sequence of weak hypotheses, each of 
which is appropriate for the distribution on training example, and combines the 
weak hypotheses by a weighted majority vote. In our study, a weak hypothesis 
corresponds to a weak segmentation process. This paper shows a procedure for 
generating an ensemble segmentation algorithm using AdaBoost, and applies it 
to a liver lesion extraction problem from a contrast enhanced abdominal CT 
volume. A leave-one-patient-out validation test using 16 CT volumes 
demonstrated the effectiveness of the generated ensemble segmentation 
algorithm. In addition, we evaluated the performance by applying the algorithm 
to unknown test data provided by the “3D Liver Tumor Segmentation 
Challenge 2008”. 
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1   Introduction 

Extraction of a lesion, such as those seen in liver metastasis, from a given image is an 
essential process for computer-aided diagnosis and computer-aided surgery. Although 
many algorithms for liver lesion extraction have been proposed [1, 2], they are not 
accurate, because the characteristics of lesions are often similar to those of the 
surrounding normal tissues. For example, the CT value of metastases in liver is 
sometimes identical to that of the gallbladder, and the tumor necrosis shows CT 
values similar to those of fat, resulting in false positives. One effective approach is 
extracting the organ before lesion extraction. However accuracy of the lesion 
extraction then depends on that of organ segmentation. If a part of an organ affected 
by a lesion is misidentified as another organ, because of the difference in CT values 
and shapes from that of a normal liver (failure examples can be found in [3]), the 
lesion cannot be extracted by a subsequent process. Hence, a lesion extraction 
algorithm that can extract lesions directly from a given image is needed.  



In addition to the problem caused by surrounding tissues, there is a wide 
variation in lesion characteristics, which complicates the lesion extraction task. To 
cope with the variation of the targets, some researchers have focused on combinations 
of multiple segmentations, each of which can deal with a certain type of target. Thus 
far, combinations of multiple segmentations, using vote rule decision fusion, has been 
found to reduce random errors in the segmentation, resulting in high segmentation 
accuracy. Such techniques have been applied successfully for segmentation of bee 
brains in confocal microscopy images [4, 5], and human brains in MR images [6, 7].  

In the field of pattern recognition, boosting is an effective method of producing 
a very accurate classification rule. AdaBoost [8] is a well-know boosting algorithm 
that calls a weak classifier repeatedly in the series of learning rounds using a training 
dataset and constructs a strong ensemble classifier as a linear combination of the weak 
classifiers. It can be applicable to the segmentation problem, but less attention has 
been paid to the use of the AdaBoost algorithm to generate an ensemble segmentation 
process. 

This paper aims to present an ensemble segmentation trained by AdaBoost. The 
main contribution of the paper is twofold. First, this paper shows a procedure for 
generating an ensemble segmentation algorithm using AdaBoost. Second, we applied 
the proposed procedure to the liver lesion extraction problem and generated an 
ensemble segmentation algorithm. We performed a leave-one-patient-out test on 
contrast enhanced 3D CT volumes taken from 16 patients to validate the generated 
ensemble segmentation algorithm. Moreover, an ensemble segmentation algorithm 
was trained using 16 CT volumes as well as 4 volumes provided by the “Liver Tumor 
Segmentation Challenge 2008”, and the generated segmentation algorithm was then 
applied to the unknown test dataset consisting of 6 volumes given by the competition. 

2   Method 

2.1   Ensemble segmentation by AdaBoost 

Consider a segmentation that distinguishes two different classes in a label set Λ = 
{−1,1}. The segmentation process of a three dimensional image includes mapping 
from the coordinates x to the labels ht: R3 → Λ.  Pseudocode for AdaBoost is 
provided in figure 1. AdaBoost finds an optimum weak segmentation process ht 
repeatedly in a series of training rounds given by t = 1,... ,T, which minimizes a 
weighted error εt computed from the training dataset. Finally the sequence of the 
weak segmentation process is integrated into H(x) with weight αt, which intuitively 
measures the importance assigned to ht (x), and αt increases as error εt of ht (x) 
decreases. The advantages of the AdaBoost algorithm are that it is very simple to 
implement and can maximize the margin, resulting in a high generalization 
performance. The weak segmentation processes employed in this study will be 
explained in the next subsection. 
 



Given (x1,λ1),..., (xm,λm) where xi ∈ X, λi ∈ Λ = {−1,1} 
Initialize D1(i) = 1/m 
For t = 1,... ,T 

1. Train weak segmentation processes using distribution Dt. 
2. Select optimum weak segmentation ht with minimum error 

εt = Pri~Dt{ ht (xi) ≠ λi } 
3. Choose  αt = 0.5 ln{(1 − εt)/εt } 
4. Update distribution Dt. 

Dt + 1(i) = Dt (i)exp{ − αtλi ht (xi)}/Zt 
where Zt is a normalization factor. 

Output the final segmentation H(x): 
 H(x) = sign{ Σt=1,...,T  αt ht (x)} 

Fig. 1. A boosting algorithm for ensemble segmentation based on AdaBoost. 

2.2  Weak segmentation process 

Performance of a generated ensemble segmentation depends on weak segmentation 
process considered in the AdaBoost learning process. In this study, we focused on a 
liver lesion segmentation problem (Figure 2) and prepared 54 weak segmentation 
processes, each of which uses a feature listed in Table 1.  
 

 
Fig. 2. An example of lesions in a liver CT volume. Arrows show a metastasis in the liver. 

According to the following equation, the weak segmentation process 
determines if a voxel of interest belongs to a target lesion. 
 

f  >  Th  ⇒  lesion 

                       else    ⇒  others 
(1) 

 
where f is a value of a feature listed in Table 1. Note that if segmentation error εt is 
greater than 0.5, αt becomes negative, which reverses the inequality sign of the 
equation. In each training round of figure 1, the threshold of weak segmentation 



process was trained so that the error computed on the training dataset would be 
minimum, and an optimum weak segmentation ht with minimum error was selected in 
step 2. 

Table 1.  Features used in the weak segmentation processes. 

 Features Parameters 

Average, variance, skewness and 
kurtosis of CT values 

Size of local region: 
3 × 3 × 3, 5 × 5 × 5, 7 × 7 × 7 

Minimum and maximum of CT values Size of local region: 
7 × 7 × 7, 11 × 11 × 11 

Output of sequential filter;  Minimum 
filter ⇒ Maximum filter 

Size of the filter : 
11 × 11 × 11 

 
 
CT value based 
features computed 
from a local region 

Average of CT values in spherical 
region 

Radius of the region: 
Estimated size of lesion by 
convergence index filters 

C.I. d = 3, r = 5 ~ 33, M = 62* 
C.I. + diffusion filter 

C.I. with absolute operation 
Features based on 
3D convergence 
index filter (C.I.) 

C.I. with absolute operation + diffusion 
filter 

 
d = 3, r = 5 ~ 33, M = 104* 

Norm of sobel filter  

Other features 
Output of matched filter 

Size of the filter:  
Estimated size of lesion by 
convergence index filters 

*d and r will be explained in figure 3, and M indicates the number of 
directions to evaluate gradient vectors in the support region. 

  
The features are divided into three groups. The first group contains CT value 

based features, measured in a region in the neighborhood of the voxel of interest, such 
as the average and variance. All features in the first group are derived from an 
original CT image as well as a normalized CT image. The normalization is performed 
as follows. 

 

f' = ( f − μ )/σ  (2) 

 
where f' is the normalized value of f. μ and σ are the average and standard deviations 
of CT values in the liver, estimated for each image by an EM algorithm without 
segmentation. This normalization can reduce the variance of CT values among 
patients, resulting in increased separability between the lesion and other tissues. 

Features in the second group are based on the output of a 3D point convergence 
index filter developed for enhancing circumscribed lesions [9]. This filter calculates 



the convergence index (see equation (3)) of gradient vector g in a spherical region of 
figure 3, called the support region. It outputs the index to the center P. 

 

[Convergence Index] = maxr {Σi= 0 ~ M − 1 Σj = r + 1 ~ r + d (−cos θij)} (3) 

 
This filter is robust with respect to changes in contrast, and effective in enhancing 
cancers with low contrast, which are difficult to detect by a threshold-based method. 
An additional advantage is that, during computation of the convergence index, it 
estimates the size of the lesion, which can be used by other processes, as shown in 
Table 1 and figure3. 
 

 
 

(a)                (b)              (c)                (d) 

Fig. 3. Illustrations for the point convergence index filter. Here, (b) is an original CT image 
with a metastasis indicated by an arrow,(c) shows the filer output, the bright spots indicate a 
higher convergence index. (d) is a result of the filter followed by a modified diffusion filter that 
spreads the outputs of the convergence index filter within a limited area, whose size matches 
the estimated lesion size using the convergence index filter. 

Although the convergence index filter outputs high values around the center of 
the lesion, as shown in figure 3 (c), the output rapidly decreases near the periphery of 
the lesion. Thus, a weak segmentation process based on thresholding is prone to 
underextract the peripheral region. To avoid this, we combined the filter with an 
isotropic diffusion filter that spreads the outputs of the convergence index filter within 
a limited area, whose size is equal to the convergence index filter’s estimate of the 
lesion size. As shown in figure 3 (d), the diffusion process enhances the entire domain. 
The convergence index filter with absolute operation (Table 1) computes the absolute 
value of the cosine function in equation (3) to enhance the lesion neighboring the lung, 
air in necrosis, or visceral fat area, whose CT value is lower than the lesion. 

 The last group consists of other features, such as the output of a sobel filter 
and a matched filter, computed from an original and a normalized CT image using 
equation (2). The matched filter was designed in terms of CT value profile of the 
lesion.  

Total number of features is 54, and all features are converted to binary values, 
according to equation (1) to extract lesions during the AdaBoost training round. 



2.3 Liver lesion extraction algorithm based on ensemble segmentations 

Figure 4 shows a flowchart of the proposed lesion extraction algorithm from a given 
CT volume. First, it computes the features of Table 1 in the area where the prior 
probability of the liver is greater than 0. Note that a prior probability was estimated 
from a training dataset using an atlas based method [10], and the area used is 
sufficiently large to avoid underextraction of a liver with lesions. Second, the 
ensemble segmentations are performed. In this study, two ensemble segmentation 
algorithms were created to treat lesions of different sizes. We divided the training 
dataset into two sets according to lesion size, and the two ensemble segmentation 
processes were independently trained by the procedure proposed in 2.1. For post-
processing, the segmentation results were refined by morphological operations such 
as opening and closing, and integrated into one by a logical sum operation, followed 
by a cavity filling process. It should be noted that all processes are automated. 

 

Fig. 4. A Liver lesion extraction algorithm. Features were measured from a given image and 
forwarded to the ensemble segmentation processes. Results of the ensemble segmentations 
were refined by morphological operations and integrated. 

3   Experiments 

3.1 Materials and a quantitative metric for validation test 

In the first experiment, we used the data distributed at MICCAI2007 workshop [3]. 
The datasets includes 16 CT volumes with 34 lesions, volumes of which are 
distributed from 0.4 to 400 mL. The images were obtained using multi-detector row 
CT scanners, and provided several hundreds of 512 × 512 pixel slice images, with 12-
bit accuracy. The voxel size of the CT volume in an axial plane is 0.543~0.865 mm, 
and 0.5~5 mm in the z direction.  



The Jaccard index between an extracted tumor region and its corresponding true 
region, manually segmented by the authors and cited as reference segmentation below, 
was adopted to evaluate the segmentation performance. 

 

J (A, B) = | A ∩ B | / | A ∪ B | (4) 

 
where A is a set of extracted voxels, and B is a set of voxels in the reference 
segmentation. 

3.2 Validation by leave-one-patient-out test using 16 CT volumes 

Leave-one-patient-out test using the 16 volumes was performed to validate the 
ensemble segmentation. Extracted lesions from test data with different numbers of 
weak segmentation processes are shown in figure 5. Figure 6 shows the relationship 
between the Jaccard index and the number of weak segmentation processes. The left 
and right graphs show the results for a training dataset of 15 patients, and those for the 
test data of figure 5, respectively.  

 
        (a) T = 1               (b) T = 20              (c) T = 100 

 
(d) Final output of Fig. 4   (e) Boundary of the reference segmentation 

Fig. 5. Results for validation (test) data. The boundaries are black. Figures (a), (b), and (c) 
show the results for T = 1, 20, and 100, respectively. (d) is the final result, which was very 
similar to the true boundary shown in (e). The small false positives and cavity in figure (c) were 
eliminated by the morphological operations followed by the cavity filling process. 

 



 
                 (a)                                 (b) 

Fig. 6. Jaccard index versus the number of weak segmentation processes in the ensemble 
segmentation algorithm. Here, (a) shows the average index for a training dataset from 15 
patients, and (b) is the result for the validation data of figure 5. 

3.3 Validation using testing data and quantitative metrics of the “Liver Tumor 
Segmentation Challenge 2008” 

To evaluate the performance for unknown data, we trained an algorithm using the 16 
CT volumes as well as 10 tumors in 4 CT volumes provided by an organizer of “Liver 
Tumor Segmentation Challenge 2008”, and then applied to unknown 4 testing CT 
volumes including 10 tumors given by the organizer. 

Note that there are some modifications from the above experiment to deal with 
problems found when using the new training data. For example some of the CT value 
based features were improved to extract tumors in the training dataset precisely. The 
error εt in the figure 1 was computed from the neighboring region of a tumor instead 
of whole liver region, because the competition focuses on the accuracy of extracted 
boundaries but not false positives extracted separately from the tumor. The maximum 
number of weak segmentation processes was altered to 200 aiming to reduce the error 
of the training data. In addition, to detect not only metastases but also Hepatocellular 
Carcinoma (HCC) and Hemangioma (HEM) that are enhanced by contrast medium, 
we designed an additional ensemble segmentation algorithm dedicated to such 
contrast enhanced tumors using our own dataset including HCCs and HEMs [2]. The 
output was automatically integrated with that of figure 4 by a logical sum operation. 
Note that no tumor for test was used in the training phase and the whole segmentation 
processes are automated. 
     The results were evaluated quantitatively by the organizer of the competition 
with respect to the following five criteria, (1) volumetric overlap, (2) relative absolute 
volume difference, (3) average symmetric absolute surface distance, (4) symmetric 
RMS surface distance, and (5) maximum symmetric absolute surface distance. For 
more details for these criteria, refer to [11]. Table 2 summarized the performances for 
all testing data. Figure 7 shows a sequence of the extracted tumor regions 
corresponding to the tumor IMG07_L1, in which the regions were improved as the 
number of weak segmentation processes T increased. Figure 8 indicates the change of 
the Jaccard index (= 1 - “volumetric overlap error in Table 2”) of the extracted tumor 
regions with the reference segmentation that was manually delineated by the authors 
after the evaluation process by the organizer. 



Table 2.  Results of the comparison metrics and corresponding scores for all ten test cases. 

 
 
 

 
(a) Original image             (b) T = 10              (c) T = 50 

 

 
(d) T = 100               (e) T = 200            (f) Final result 

 

Fig. 7. Upper left figure is an original image with the tumor IMG07_L1 and lower right figure 
is its corresponding final result. Figures from (b) to (e) show results with different number T of 
weak segmentation processes, in which the regions were improved as the T increased. 
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Fig. 8. The number of weak segmentation processes versus Jaccard index (= 1 - “volumetric 
overlap error”) of the automatically extracted tumor region with the reference segmentation of 
IMG07_01 that was manually defined by the authors. 

4 Discussion and Conclusions 

As shown in figure 5, the extracted regions improved as the number of weak 
segmentation processes T increased. This was also confirmed in figure 6. The Jaccard 
index for the test data of figure 5 was 58.3% at T = 1, and 78.8% at T = 100, resulting 
in a 20.5 points advantage for ensemble segmentation. In addition, the difference 
between the training curve and the test one as shown in figure 6 was small, indicating 
that the generated segmentation provided a high generalization performance. 

The leave-one-patient-out test repeated the above validation, such that each data 
in datasets was used once as validation data. The difference between T = 1 and 100 
was about 12 points on average for 16 CT volumes, and the statistical “paired t test”  
indicated that the difference was significant (p<0.005).  
     The validation results using the testing data provided by the competition’s 
organizer presented some important findings. Table 2 shows the results of the 
comparison metrics and corresponding scores for all ten test cases. A tumor of 
IMG06_L2 was missed due to the differences in distribution of CT value of the tumor 
as well as its shape from those of the training data. Other tumors of the testing dataset 
were segmented successfully. For example figure 7 shows the extracted regions 
corresponding to the tumor IMG07_L1 with different number of weak segmentation 
processes. The proposed ensemble segmentation algorithm over-extracted the 
surrounding tissues, such as muscle and stomach wall, when the number T of weak 
segmentation processes was small. However it succeeded to reduce such false 
positives without increasing false negatives as the number T increased. The Jaccard 
index reached to 74.9% when T =200 (see figure 8), which was improved by the post-
process of figure 4, resulting in 83.8%. Note that the value is different from that (= 



100 – “Overlap Error” = 79.3%) in the Table 2, because the boundary defined by the 
authors can be different from that of the organizer which is not yet open to the public. 
     In conclusion, our results suggest that ensemble segmentation is effective in 
segmentation of liver lesions, and increasing the number of weak segmentation 
processes can boost performance. In future work, we plan to assess the performance 
using a large dataset, and apply the proposed procedure for generating an ensemble 
segmentation algorithm by AdaBoost to other problems such as lesion extraction from 
multi-phase CT volumes or MR images. 
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