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Abstract

In this paper, we present an automatic method for extractémer axis representations (centerlines)
of coronary arteries in contrast enhanced (CE)-CT anggracans. The algorithm first detects the
aorta which is used as an initial mask for ostia detect®n $econd, the ostia locations are detected
via a vessel centerline extraction methd&jl Jhich tracks the center axis of the coronaries starting
from the aorta surface. The full centerline tree of the cargrarteries are computed via the multi-

scale medialness-based vessel tree extraction algorBhmHich starts a tracking process from the

ostia locations until all the braches are reached. The damextraction algorithm is a graph-based

optimization algorithm using multi-scale medialness ffiite
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We present an automatic centerline extraction algorithmdpresenting coronary arteries in CE-CTA data.
The proposed algorithm is based on a centerline trackingrighgn using multi-scale medialness filtefg [
and an automatic aorta segmentation algoritl®n [n clinical applications, a vessel modeling algorithm
must be able to produce robust and accurate resutisart time e.g.in few seconds for a single vessel,

The main focus of this paper is to obtain the centerline pr&tion of coronary arteries automatically
in a timely manner. Gulsun and Tek][have recently developed a method for extracting cenetine
for coronary arteries in less than 30 seconds on a typicalTR({S. algorithm requires seed placement for
each ostia point. In this paper, we propose to use the segtinalgorithm developed by Gradg][to
automatically segment the aorta, permitting us to detexdelostia points automatically. Specifically, the



ostia points are detected by the centerline tracking dlgoriwhich starts from the aorta surface and stops
when two major vessels are detected.

This paper is organized as follows as: In Sectipnve briefly describe the automatic aorta segmentation
algorithm. Sectior describes the multi-scale medialness filters which are irs#te centerline tracking
algorithm. The centerline detection algorithm is first digsed for a centerline segment in Sectidrand
then for the full centerline tree starting from a single speuht in Sectiond. In Section5, we describe the
ostia detection algorithm. Finally, Sectiérpresents some results.

1 Automatic aorta segmentation

Our aorta segmentation is performed using the fast varfaiiedasoperimetric algorithm3] that is applied

to segmenting only a mask, presented4h [The mask in this case was generated by finding a connected
component of voxels with intensity crossing a threshold.isThreshold was computed using the initial
point given inside the aorta. An initial point in the aortasadetermined based on spatial and intensity
priors relative to a left ventricle segmentation. The lefniricle was also segmented using the variant
of the isoperimetric algorithm in3], with an initial point given by searching for bright cireul regions

at the orientation commonly assumed by the left ventriclbis procedure for segmenting the aorta (and
left ventricle) was extremely reliable, producing a cotreegmentation in 99.4% of our test datasets and
requiring a total of 6.2s of computation time.

2 Medialness Measure From 2D Cross-Sectional Models

In this paper, our goal is to obtain the centerline repredemts of vessels directly from images without
creating a binary vessel mask. Specifically, we propose aleshnique for computing medialness measure
which is based on multi-scale cross-sectional vessel rmadeBlood vessels in CTA/MRA have typically
circular/elliptic shapes in cross-sectional views eveugh local variations on them are not too uncommon
due to the presence of nearby vessels or pathologies. ydaaD cross-sectional vessel profile consists
of a circular/elliptic bright disk and darker ring around ®ur medialness measure uses this circularity
assumption and edge responses obtained from multi-sctes fil Specifically, our medialness response,
m(Xp) atXp, is computed from a circl€(Xy, R) centered akp, with radiusR, and is given by

N-1 .
M%) = max < 5 E0o-+ 2N} &)

wheret(a) = sin(a)d; + coga)d, andd; andd; defines a 2D planeE measures the normalized edge
response which is described below. Kriss&n al, [6] proposed a similar medialness measure where the
cross-sectional plane is computed from the eigenvectadrkessian matrix.

Let us consider a 1-D intensity profiléx) along a raydy on a cross-sectional plane of a vessel starting
from the locationxg. Suppose thafp is the center of the vessel with a radids Then the cross-sectional
boundary of the vessel along the ray should occuat- RUy) where the gradient df(x) has a maxima
and the second derivative bfx) has a zero-crossing. We propose to use the gradigh{x) for measuring
responses at vessel boundaries, in wiiatorresponds to the spatial scale of the vessel boundaryseThe
gradients are normalized based on their filter size®, obtain comparable results between different scales.
In general, filter sizes are often selected from the size s$els for computing gradient responséfs i.e.,
larger spatial filters for large vessels. It should be noked vessel scale, nameR/and boundary scale,
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are not always related. For example, the boundary of a laggsel can be detectégtterwith small size
filters when such vessels are surrounded by other brighttates. Similarly, it is possible that small scale
vessels can have long diffused boundaries which cannotdwgately detected via small scale filters.

Let us now define the boundary measure along aragt the locatiorx,
b(x) = max{(|Us! (x)])}signls! (x)) )

wheresign(x) is used to distinguish the rising (dark to bright changes) fafling edges (bright to dark
changes). Observe that this boundary meadugejs contrast dependerite,, it obtains higher values from
high contrast vessels and lower values from low contragelesrespectively. Unfortunately, vessels may
have significant intensity variations on them - especiadigsels in MRA and small size vessels in CTA. In
addition, boundaries of bones, calcifications in CTA andsgisnext to airways can have strong gradients
which usually effect the response of medialness filters. M/dact, believe that medialness responses
should be contrast independent, which can be accomplishedrimalizing the boundary measure via the
highest gradient obtained for differeRtvalues along the ray. Mathematically, we define a normalized
boundary measure &x) = b(X) /bmax Wherebmaxis the maximum falling edge response aldiig) for x =
{X0 + RminUa, -, X0 + Rmaxa } @ndRmin andRmaxare the minimum and maximum vessel scales, respectively.

Since the size of vessels to be modeled is not known a priarin@thod searches for strong edge responses
at the different locations along the ray with differentR, R € [Rmin, Rmay- However, observe that for large
values ofR this produces strong boundary responses at locations vainicbutside the vessel. In general,
there should not be any strong rising edge betwéeand Xy + Ruy where the boundary is searched. If
there exists such a strong rising edge, it probably meansh@gointxg is outside the vessel, thus it should
have a lower medialness measure. This is accomplished bygdimgouting the maximum rising boundary
response up to the locatioh+ Ruy along the ray and then subtracting this value from the respobtained
at Xp + Ruy. Based on these modifications, the final edge response aloag &, starting from atx,
E(X+ Rugy) is given as

ma)((—b()?o + Ru;:() - minXE{XB.XB+RLTu}(b(X)> 0)7 O)

E(X%+Rd,) =
( a) M@ e (x4 Rinti %o+ Remantia) (—P(X), 1)

®3)

The proposed medialness measure gives strong responBesahter of a vessel and responses drop rapidly
towards vessel boundaries and very small responses aiiaaibta non-vascular areas, FiguteAlso, the
presence of bright structures does not have strong impatieoresponses.

3 Local Center-Axis from Graph-Based Optimization

Medialness map of an image alone cannot be used in analyes®els without additional post-processing.
Instead, they are constructed to obtain vessel centergpiegentations which are very useful in visualizing
vessels in curved (or ribbon - flattened) multi-planar nefatting (MPR), in quantification of pathologies,
in navigation during endovascular interventional treattagetc. Local vessel center axis between two user
selected points is often sufficient for analyzing a segméatwessel quickly in clinical applications. Thus,
in this section, we propose a method for extracting sucH loeater axis representations by integrating the
medialness map in a discrete optimization framework. Jipatly, we seek to obtain a cun@&(s) (center
axis) between pointgg andp; which travels through the center of a vessel. This problembessuccessfully
solved by theminimum-cospath detection algorithmd]7, 8]: Let E(C) be the total energy along a curve
C

E(C) = /Q (P(C(s)) +w)ds 4)
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Figure 1: This figure illustrates the medialness responses along a ray on two different examples obtained from our
method (middle column) and the Hessian-based method (right column). Observe that unlike Hessian based methods,
our technique gives low responses between two nearby vessels.

whereP(C) is called potentialw is the regularization term arglis the arch lengthi.e., ||C(s)||> = 1. In
vessel centerline extraction methods, poterRia) atx corresponds to the inverse of a medialness measure
at that location, namelyg(x) = #x) LetAp, p, represents the set of all curves betw@gandp;. The curve

with total minimum energy can be computed from théimum-accumulative cqsp(p) which measures

the minimal energy ap integrated along a curve starting from the pgipt

o(p) = inf {E(C)} (5)
Po:P1

This type of minimization problems has been studied extehsin computer vision for different problems,

e.g, segmentation. They are usually solved by either Dijkstedgorithm P]. In this paper, we propose

to use Dijkstra’s algorithm for solving equatioB)(in a discrete domain. Specifically, I€&t= (N,E) be a

discrete graph whend andE represent nodes and edges, respectively. The minimumvadative cost at

the nodeR;; for a four connected 2D graph is then given by

(P(PIJ') = min((p(Plflj) +C2Ll)j,(P(P|+1j) +CI({+1)]‘ ) (P(Pljfl) +C|Igj71)= (P(Hj+1) +C|Igj+1)) (6)

where, for example(;'{_l)j corresponds to the cost of propagation from péjnty); to Rj which is obtained
from the inverse of medialness measure. This above algoriin be easily implemented by first setting
minimum-accumulative cost of all nodes to infinity (or a krgalue) and then using an explicit discrete
front propagation method where propagation always takaseglfrom the minimum value to its neighbor-
ing nodes. In our implementation, we use 27-connectedtdaiti 3D, i.e., diagonal propagations are also
included for better accuracy. In addition, the medialnesgasure is computed orthogonal to the direction
of propagation instead of computing at nodes. The discratie {@urve) from a poinP; to sourceP, can
then be easily obtained by traversing (backtracking) atbegoropagation. This algorithm works well even
in the presence of nearby vessels, strong calcification sndgscontrast change along a vessel and it is
computationally efficient. For example, a centerline segimoéa coronary artery can be obtained from this
algorithm in 3 seconds via two seed placements.
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Figure 2: (left) The discrete front and centerlines from these front points. (right) The branch removal process. Observe
that front point B is kept while front points A are C are removed.

4 Vessel Tree Modeling

In this section, we extend the local centerline detectigorhm to recover the full vessel tree from a single
point, asourcewhich may be initialized by an user or another process. R#uatl the above algorithm
terminates when the front propagation reachessmbk an end point. When there is no sink point defined
for an explicit stopping, the propagation should continaél it reaches to all the branches. The stopping
criteria that we choose in our algorithm is based on the niresa measure along a discrete front. Specifi-
cally, propagation is forced to stop when the minimum mexiss measure along a discrete front at any time
drops below a threshold. In our experiments, we found thipmhg criteria to be very reliable in clinical
applications since our medialness measure is designedverppdow outside vessels. However, the total
occlusion cases, where piece of a vessel is totally closegline starting the propagation on the other side
of an occlusion, manually or automatically. We first illad& how to determine theorrectvessel centerline
tree from the converged propagation.

Suppose that the propagation has converged atttimwéh a set of graph node§, = (P, ..., Pk ), represent-
ing a discrete fronE, Figure2. A minimum-cost path between each poihof a discrete frontF and the
sourceP; can be computed from the minimum accumulative cost npapesulting inK different paths. It

is obvious that most of these paths are redundanta single vessel branch should represented by a single
centerline or a single front point. In addition, the existerof a vessel branch can be determined by its
length,Lg and its approximate radiuBg along its centerlineC, i.e., Lg >>Rg L. Let us illustrate the basic
idea of selecting one centerline for each vessel branchnviexample, in Figur&b which depicts three
pointsA, B,C on a vessel boundary and their corresponding minimum-aiksplt is clear that the poiii
with its pathCg represents a branch while the front pofktioes not since the length of its path is similar
to its radius. The front poin€ may be considered as representing a vessel branch sincentyté bf its
minimal path to the sourck is significant relative to its average radius. However, thth@g represents
the vessel branch better than the paghstarting fromC. These observations suggest that a front point with
the longest path represents a vessel branch better whendheiseveral front points on the same vessel
boundary, which is the case after stopping the propagalitis can be implemented very efficiently with
the following algorithm:

1. compute the minimum-cost pathafd the length Lfor each point Pin the discrete front set F.

2. compute the average radiusg Rlong the each path;Grom the scale information contained in the
medialness filters.

3. order the paths based on their length and store them in agu@:, i.e., maximum is on top.

1The length of a centerling;, is given byLc = Jcdswheresis the arc length.
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Figure 3: This figure illustrates the results of coronary arteries obtained from our algorithm. Centerlines are drawn in
blue and coronary vessel masks are created by using the scales contained in centerline trees.

4. continue until the queue,Js empty

(a) select the path C from the top of the queue and removenit fin@ queue.

(b) recompute the path by backtracking until the sourgepithe previously computed path on the
minimum-accumulative cost map is encountered

(c) mark the path in the minimum-accumulative cost map duttie tracking process
(d) recompute the length of the new path, L
(e) set the saliency of the path C or its corresponding franhp P as lc /Rc

5. delete the paths whose saliency is less than a user-defireshold,

In our experiments, the saliency threshold is set to 2.0¢clwimeans that length of a vessel branch should be
two times greater than its average radius along its cenéertitherwise it does not appear to be a significant
vessel branch. Figu2illustrates some examples of vessel centerline tree fanawy arteries and cerebral
vessels and others.

5 Automatic Detection of Ostia Locations

The full automatic centerline tree of the coronary arteci&s be obtained by first detecting the ostia points
automatically and then starting the centerline trackirgmfrthese locations. In this paper, we propose
to use our centerline tracking algorithm and the aorta masébtain these ostia points. Specifically, a
front propagation starts from the aorta surface mask angiagiates on the discrete grid by minimizing the
accumulative costs obtained from the multi-scale medsalrfdters as described in the previous section.
The propagation is forced to stop when the distance from tin& surface exceeds a threshold e.g., 8
cm. A centerline between the aorta surface and the front gaiisfying this distance threshold criteria is
computed. The intersection of the centerline and aortaseris marked as the first ostia point. Second
ostia point is detected in a similar fashion. The proposethatehas been tested on more than 150 coronary
artery data set where the ostia locations are obtained indhde in average on a 3.2GHz PC. The accuracy
of the algorithm was 98.7% .
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Table 1: Average overlap per dataset
Dataset oV OF oT Avg.

nr. % score rank| % score rank| % score  rank| rank
8 73.2 409 - | 57.4 417 - | 782 39.2 - -
9 90.0 465 - | 82.3 48.6 - | 91.2 456 - -
10 92.3 57.3 - 25.0 12.5 - 92.5 58.7 - -
11 78.7 40.2 - 33.9 27.5 - 78.7 40.1 - -
12 89.3 46.1 - 5.1 2.6 - 93.2 46.9 - -
13 87.8 44.6 - | 251 126 - | 89.8 45.0 - -
14 91.0 46.1 - 72.3 51.8 - 92.7 58.8 - -
15 83.0 523 - | 734 426 - | 84.0 545 - -
16 90.3 49.8 - 67.9 46.8 - 94.8 59.9 - -
17 86.3 54.7 - 47.2 37.4 - 86.9 58.1 - -
18 86.9 51.3 - | 67.9 405 - | 86.9 435 - -
19 90.6 59.3 - 83.7 66.3 - 90.6 57.8 - -
20 88.5 54.8 - | 52.6 31.8 — | 885 444 - -
21 94.8 56.7 - 47.1 43.9 - 96.9 61.4 - -
22 95.3 48.0 - | 623 311 - | 96.2 48.1 - -
23 84.7 42.8 - 6.3 3.1 - 84.7 42.3 - -
Avg. 87.7 49.5 - 50.6 33.8 - 89.1 50.3 - -

6 Results

The method was evaluated on the 16 CTA datasets of the Tdssagof the challenge. Quantitative results
are given in Tableg, 2, 3. Average overlap results (OV and OT) are high (respecti&&ly’ and 89.1%),

in the order of the inter-observer variability (scores a®0). Average results for OF statistics (before
first error) are crippled by a few very low scores. These camxtmained by the intrinsic behavior of
the method, which, as a minimal path technique, is subjethiartcut’ effects in the presence of partial
or complete occlusions of the vessel. In such cases (dat@det instance), the extracted centerline can
temporarily run outside the vessel. This results in a shadgef positive section, which, given the strict
criteria of the challenge, dramatically lowers the OF stat$ although the corresponding OV statistics is
highly satisfactory. Datasets 12 and 23 suffer from eailyefpositive detections due to the ambiguity in
the definition of the starting point and radius of the artdrtha ostia. Recall that we use a fully automatic
detection of the ostia points. The abnormally low OF scohesiksl not overshadow the fact that even with
inaccurate ostia detection, the tracking process robesthacted the coronaries, as proved by the relatively
high QV percentages.

In terms of accuracy, results for true positive points (Astistics) are satisfactorily in the order of the data
resolution. AD and AT statistics are lowered by false pesitssues, such as the tracking process ’jumping’
into a nearby vein as in dataset 8. Recall that the methodateal is fully automatic. Our framework allows
for easy correction of such cases through minimal useraotem.

Finally, we emphasize the computational efficiency of oysrapch. Such a criterion is absent from the
challenge evaluation but is, in our opinion, essential f@ ¢tlinical applicability of the method. Fully
automatic centerline extraction can be achieved in less 38aseconds and can be carried out as an offline
preprocessing. Furthermore, our framework provides teewgh simple tools for correcting and extending
automatic results at nearly interactive speeds.
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Abstract

In this paper, we present an automatic method for extractmger axis representations (centerlines) of
coronary arteries in contrast enhanced (CE)-CT angiograpdns. The algorithm first detects the aorta
which is used as an initial mask for ostia detection. Secthveostia locations are detected via a vessel
centerline extraction method which tracks the center atissocoronaries starting from the aorta surface.
The full centerline tree of the coronary arteries is comgwia the multi-scale medialness-based vessel
tree extraction algorithm which starts a tracking processfthe ostia locations until all the braches are
reached. The centerline extraction algorithm is a grapet@ptimization algorithm using multi-scale
medialness filters.

Contents

1 Automatic aorta segmentation 2
2 Medialness Measure From 2D Cross-Sectional Models 2
3 Local Center-Axis from Graph-Based Optimization 3
4 Vessel Tree Modeling 5
5 Automatic Detection of Ostia Locations 6
6 Results 7

We present an automatic centerline extraction algorithmdpresenting coronary arteries in CE-CTA data.
The proposed algorithm is based on a centerline trackingrighgn using multi-scale medialness filtefg [
and an automatic aorta segmentation algoritl®n [n clinical applications, a vessel modeling algorithm
must be able to produce robust and accurate resutisart time e.g.in few seconds for a single vessel,

The main focus of this paper is to obtain the centerline pr&tion of coronary arteries automatically
in a timely manner. Gulsun and Tek][have recently developed a method for extracting cenetine
for coronary arteries in less than 30 seconds on a typicalTR({S. algorithm requires seed placement for
each ostia point. In this paper, we propose to use the segtinalgorithm developed by Gradg][to
automatically segment the aorta, permitting us to detexdelostia points automatically. Specifically, the



ostia points are detected by the centerline tracking dlgoriwhich starts from the aorta surface and stops
when two major vessels are detected.

This paper is organized as follows as: In Sectipnve briefly describe the automatic aorta segmentation
algorithm. Sectior describes the multi-scale medialness filters which are irs#te centerline tracking
algorithm. The centerline detection algorithm is first digsed for a centerline segment in Sectidrand
then for the full centerline tree starting from a single speuht in Sectiond. In Section5, we describe the
ostia detection algorithm. Finally, Sectiérpresents some results.

1 Automatic aorta segmentation

Our aorta segmentation is performed using the fast varfaiiedasoperimetric algorithm3] that is applied

to segmenting only a mask, presented4h [The mask in this case was generated by finding a connected
component of voxels with intensity crossing a threshold.isThreshold was computed using the initial
point given inside the aorta. An initial point in the aortasadetermined based on spatial and intensity
priors relative to a left ventricle segmentation. The lafhtricle was also segmented using the variant of
the isoperimetric algorithm in3], with an initial point given by searching for bright ciraulregions at the
orientation commonly assumed by the left ventricle. We hagted the aorta detection algorithm on 150
CTA data sets which are not included in the challarje This procedure for segmenting the aorta (and
left ventricle) was extremely reliable, producing a cotreegmentation in 99.4% of our test datasets and
requiring a total of 6.2s of computation time on a 2.8GHz PC.

2 Medialness Measure From 2D Cross-Sectional Models

In this paper, our goal is to obtain the centerline repregimts of vessels directly from images without cre-
ating a binary vessel mask. Specifically, we propose a neeéhique for computing a medialness measure
which is based on multi-scale cross-sectional vessel rimgdeBlood vessels in CTA/MRA have typically
circular/elliptic shapes in cross-sectional views eveuth local variations on them are not too uncommon
due to the presence of nearby vessels or pathologies. yda&lD cross-sectional vessel profile consists of a
circular/elliptic bright disk and darker ring around it. Ouedialness measure uses this circularity assump-
tion and edge responses obtained from multi-scale filtepgciBcally, our medialness response(Xp) at

Xo, Is computed from a circl€(X, R) centered akp, with radiusR, and is given by

N—-1
M%) = ma] 5 EGo-+Ralzri/N)) &)

wherelt(a) = sin(a)u; + coga)tz andd; and U, defines a 2D planeE measures the normalized edge
response which is described below. Kriss&in al, [6] proposed a similar medialness measure where the
cross-sectional plane is computed from the eigenvectatsedflessian matrix.

Let us consider a 1-D intensity profiléx) along a raydy on a cross-sectional plane of a vessel starting
from the locationxg. Suppose thafy is the center of the vessel with a radids Then the cross-sectional
boundary of the vessel along the ray should occuigt- RUy ) where the gradient df(x) has a maxima
and the second derivative bfx) has a zero-crossing. We propose to use the gradightx) for measuring
responses at vessel boundaries, in whiatorresponds to the spatial scale of the vessel boundaryseThe
gradients are normalized based on their filter sizes, obtain comparable results between different scales.
In general, filter sizes are often selected from the size séels for computing gradient responséks i.e.,
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larger spatial filters for large vessels. It should be noked vessel scale, nameR/and boundary scales,
are not always related. For example, the boundary of a laggsel can be detectéetterwith small size
filters when such vessels are surrounded by other brighttates. Similarly, it is possible that small scale
vessels can have long diffused boundaries which cannotcueately detected via small scale filters.

Let us now define the boundary measure along aiaat the locatior,
b(x) = max{(|Us! (x)])}signls! (x)) )

wheresign(x) is used to distinguish the rising (dark to bright changes) fafling edges (bright to dark
changes). Observe that this boundary measugejs contrast dependeritg,, it obtains higher values from
high contrast vessels and lower values from low contrastelssrespectively. Unfortunately, vessels may
have significant intensity variations on them - especiadigsels in MRA and small size vessels in CTA. In
addition, boundaries of bones, calcifications in CTA andsgksnext to airways can have strong gradients
which usually effect the response of medialness filters. M/dact, believe that medialness responses
should be contrast independent, which can be accomplishedrmalizing the boundary measure via the
highest gradient obtained for differeRtvalues along the ray. Mathematically, we define a normalized
boundary measure &x) = b(X) /bmax Wherebmaxis the maximum falling edge response aldiig) for x =
{X0 + RmninU s -+, X0 + Rmaxa } @ndRmin andRyax are the minimum and maximum vessel scales, respectively.

Since the size of vessels to be modeled is not known a priarim@thod searches for strong edge responses
at the different locations along the ray with differentR, R € [Rmin, Rmay- However, observe that for large
values ofR this produces strong boundary responses at locations vanicbutside the vessel. In general,
there should not be any strong rising edge betw&eand xp + Ruy where the boundary is searched. If
there exists such a strong rising edge, it probably meamsh@gointx is outside the vessel, thus it should
have a lower medialness measure. This is accomplished bgdimgouting the maximum rising boundary
response up to the locatioh+ Ruy along the ray and then subtracting this value from the respobtained

at xp + Rug. Based on these modifications, the final edge response alosg &, starting from atx,

E(X + RUy) is given as

max(—b()?o + Ru;:() - minXE{XB.XB+RLTu}(b(X)> 0)7 O)

E(X% +Rd,) =
( a) M@ e (x4 Rinti %o+ Remantia) (—P(X), 1)

®3)

The proposed medialness measure gives strong responBesahter of a vessel and responses drop rapidly
towards vessel boundaries and very small responses aiiaaibta non-vascular areas, FiguteAlso, the
presence of bright structures does not have strong impatieoresponses.

3 Local Center-Axis from Graph-Based Optimization

The medialness map of an image alone cannot be used in amalyessels without additional post-
processing. Instead, they are constructed to obtain vess&r axis representations which are very useful
in visualizing vessels in curved (or ribbon - flattened) riaplanar reformatting (MPR), in quantification
of pathologies, in navigation during endovascular intetimal treatments, etc. Local vessel center axis
between two user selected points is often sufficient foryaivad) a segment of a vessel quickly in clinical
applications. Thus, in this section, we propose a methodxacting such local center axis representations
by integrating the medialness map in a discrete optimindtiamework. Specifically, we seek to obtain a
curveC(s) (center axis) between poingg and p; which travels through the center of a vessel. This problem
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Figure 1: This figure illustrates the medialness responses along a ray on two different examples obtained from our
method (middle column) and the Hessian-based method (right column). Observe that unlike Hessian based methods,
our technique gives low responses between two nearby vessels.

can be successfully solved by thenimum-cospath detection algorithmdl][7, 9]: Let E(C) be the total
energy along a curvé

E(C) = [ (P(C(S)+wds @

whereP(C) is called potentialw is the regularization term arglis the arch lengthi.e., ||C(s)||> = 1. In
vessel centerline extraction methods, poterRia) atx corresponds to the inverse of a medialness measure
at that location, namelyg(x) = #x) LetAp, p, represents the set of all curves betwggandp;. The curve

with total minimum energy can be computed from thenimum-accumulative cqsp(p) which measures

the minimal energy ap integrated along a curve starting from the pgipt

o(p) = inf {E(C)} (5)
Po:P1
This type of minimization problems has been studied extehsin computer vision for different problems,
e.g, segmentation. They can solved by the Dijkstra’s algoriff2in In this paper, we propose to use
Dijkstra’s algorithm for solving equatiorb{ in a discrete domain. Specifically, I6t= (N, E) be a discrete
graph whereN andE represent nodes and edges, respectively. The minimumradative cost at the node
R for a four connected 2D graph is then given by

(P(PIJ') = min((p(Plflj) +C2L1)j7(p(Pl+1i) +CI({+1)]‘ ) (P(Pljfl) +C|Igj71)= (P(Hj+1) +C|Igj+1)) (6)

where, for example(,‘,'({_l)j corresponds to the cost of propagation from p&jpt;); to B; which is obtained
from the inverse of the medialness measure. This aboveithigoican be easily implemented by first
setting minimum-accumulative cost of all nodes to infinity & large value) and then using an explicit
discrete front propagation method where propagation aviales places from the minimum value to its
neighboring nodes. In our implementation, we use 27-caedeattice in 3D,.e., diagonal propagations
are also included for better accuracy. In addition, the mladss measure is computed orthogonal to the
direction of propagation instead of computing at nodes. digerete path (curve) from a poiRY; to source

Py can then be easily obtained by traversing (backtrackingngathe propagation. This algorithm works
well even in the presence of nearby vessels, strong caladficand strong contrast change along a vessel
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Figure 2: (left) The discrete front and centerlines from these front points. (right) The branch removal process. Observe
that front point B is kept while front points A are C are removed.

and it is computationally efficient. For example, a centerlsegment of a coronary artery can be obtained
from this algorithm in 3 seconds via two seed placements.

4 Vessel Tree Modeling

In this section, we extend the local centerline detectigo@hm to recover the full vessel tree from a single
point, asourcewhich may be initialized by an user or another process. Réual the above algorithm
terminates when the front propagation reachesgimi an end point. When there is no sink point defined
for an explicit stopping, the propagation should continaél it reaches to all the branches. The stopping
criterion that we choose in our algorithm is based on the aleess measure along a discrete front. Specifi-
cally, propagation is forced to stop when the minimum mextiss measure along a discrete front at any time
drops below a threshold. In our experiments, we found tloigmhg criterion to be very reliable in clinical
applications since our medialness measure is designedverpdow outside vessels. However, the total
occlusion cases, where piece of a vessel is totally clogegline starting the propagation on the other side
of an occlusion, manually or automatically. We first illadge how to determine theorrectvessel centerline
tree from the converged propagation.

Suppose that the propagation has converged attiimeéth a set of graph node&; = (Py,...,P«), repre-
senting a discrete frorit, Figure2. A minimum-cost path between each poifof a discrete frontf and

the sourcd? can be computed from the minimum accumulative cost mpaggesulting inK different paths.

It is obvious that most of these paths are redundit,a single vessel branch should be represented by
a single centerline or a single front point. In addition, exstence of a vessel branch can be determined
by its length,Lg and its approximate radiuRg along its centerlineC, i.e., Lg >>Rg. Let us illustrate the
basic idea of selecting one centerline for each vessel braiacan example, in Figurgb which depicts
three pointsA B,C on a vessel boundary and their corresponding minimum-casisp It is clear that the
point B with its pathCg represents a branch while the front pofatioes not since the length of its path is
similar to its radius. The front poif@ may be considered as representing a vessel branch sinentiik bf

its minimal path to the sourd®, is significant relative to its average radius. However, @t Qg represents
the vessel branch better than the paghstarting fromC. These observations suggest that a front point with
the longest path represents a vessel branch better whendheiseveral front points on the same vessel
boundary, which is the case after stopping the propagalitis can be implemented very efficiently with
the following algorithm:

1. compute the minimum-cost pathafd the length Lfor each point Pin the discrete front set F.

2. compute the average radiusg Rlong the each path;Grom the scale information contained in the
medialness filters.
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Figure 3: This figure illustrates the results of coronary arteries obtained from our algorithm. Centerlines are drawn in
blue and coronary vessel masks are created by using the scales contained in centerline trees.

3. order the paths based on their length and store them in agu@:, i.e., maximum is on top.
4. continue until the queue,QJs empty

(a) select the path C from the top of the queue and removenit fin@ queue.

(b) recompute the path by backtracking until the sourgepithe previously computed path on the
minimum-accumulative cost map is encountered

(c) mark the path in the minimum-accumulative cost map duttie tracking process
(d) recompute the length of the new path, L
(e) setthe saliency of the path C or its corresponding franihp P as le /Rc

5. delete the paths whose saliency is less than a user-defireshold,

In our experiments, the saliency threshold is set to 2.0clwimeans that length of a vessel branch should be
two times greater than its average radius along its cenéertitherwise it does not appear to be a significant
vessel branch. Figur@illustrates some examples of vessel centerline tree fanaoy arteries.

5 Automatic Detection of Ostia Locations

The full automatic centerline tree of the coronary artec&s be obtained by first detecting the ostia points
automatically and then starting the centerline trackiramfrthese locations. In this paper, we propose
to use our centerline tracking algorithm and the aorta mastbtain these ostia points. Specifically, a
front propagation starts from the aorta surface mask angagiates on the discrete grid by minimizing the
accumulative costs obtained from the multi-scale medsalrfdters as described in the previous section.
The propagation is forced to stop when the distance from dntia surface exceeds a threshold e.g., 8 cm.
A centerline between the aorta surface and the front poitgfgiag this distance threshold criterion is
computed. The intersection of the centerline and aortaseris marked as the first ostia point. Second
ostia point is detected in a similar fashion. The proposethatchas been tested on more than 150 coronary
artery data set where the ostia locations are obtained irc@nds in average on a 3.2GHz PC. We have
tested the ostia detection algorithm on 150 CTA data setshwdnie not included in the challang®.[ The
accuracy of the algorithm was 98.7% .
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Table 1: Average overlap per dataset
Dataset oV OF oT Avg.

nr. % score rank| % score rank| % score  rank| rank
8 73.2 409 - | 57.4 417 - | 782 39.2 - -
9 90.0 465 - | 82.3 48.6 - | 91.2 456 - -
10 92.3 57.3 - 25.0 12.5 - 92.5 58.7 - -
11 78.7 40.2 - 33.9 27.5 - 78.7 40.1 - -
12 89.3 46.1 - 5.1 2.6 - 93.2 46.9 - -
13 87.8 44.6 - | 251 126 - | 89.8 45.0 - -
14 91.0 46.1 - 72.3 51.8 - 92.7 58.8 - -
15 83.0 523 - | 734 426 - | 84.0 545 - -
16 90.3 49.8 - 67.9 46.8 - 94.8 59.9 - -
17 86.3 54.7 - 47.2 37.4 - 86.9 58.1 - -
18 86.9 51.3 - | 67.9 405 - | 86.9 435 - -
19 90.6 59.3 - 83.7 66.3 - 90.6 57.8 - -
20 88.5 54.8 - | 52.6 31.8 — | 885 444 - -
21 94.8 56.7 - 47.1 43.9 - 96.9 61.4 - -
22 95.3 48.0 - | 623 311 - | 96.2 48.1 - -
23 84.7 42.8 - 6.3 3.1 - 84.7 42.3 - -
Avg. 87.7 49.5 - 50.6 33.8 - 89.1 50.3 - -

6 Results

The method was evaluated on the 16 CTA datasets of the Tektieg of the challenge8]. Quantitative
results are given in Tablels 2, 3. Average overlap results (OV and OT) are high (respecti@alyr and
89.1%), in the order of the inter-observer variability (@soaround 50). Average results for OF statistics
(before first error) are crippled by a few very low scores. skhean be explained by the intrinsic behavior
of the method, which, as a minimal path technique, is sultjeshortcut’ effects in the presence of partial
or complete occlusions of the vessel. In such cases (dat@det instance), the extracted centerline can
temporarily run outside the vessel. This results in a shadgef positive section, which, given the strict
criteria of the challenge, dramatically lowers the OF stat$ although the corresponding OV statistics is
highly satisfactory. Datasets 12 and 23 suffer from eailyefpositive detections due to the ambiguity in
the definition of the starting point and radius of the artdrtha ostia. Recall that we use a fully automatic
detection of the ostia points. The abnormally low OF scohesiksl not overshadow the fact that even with
inaccurate ostia detection, the tracking process robesthacted the coronaries, as proved by the relatively
high QV percentages.

In terms of accuracy, results for true positive points (Astistics) are satisfactorily in the order of the data
resolution. AD and AT statistics are lowered by false pesitssues, such as the tracking process ’jumping’
into a nearby vein as in dataset 8. Recall that the methodateal is fully automatic. Our framework allows
for easy correction of such cases through minimal useraotem.

Finally, we emphasize the computational efficiency of oysrapch. Such a criterion is absent from the
challenge evaluation but is, in our opinion, essential f@ ¢tlinical applicability of the method. Fully
automatic centerline extraction can be achieved in less 38aseconds and can be carried out as an offline
preprocessing. Furthermore, our framework provides teewgh simple tools for correcting and extending
automatic results at nearly interactive speeds.

References

[1] T. Deschamps and L.D. Cohen. Fast extraction of mininagthgin 3d images and applications to virtual
endoscopyMedical Image Analysj$H(4):281-299, 20013

Latest version available at thesight Journa[ htt p: // hdl . handl e. net/ 1926/ xxx]
Distributed undeCreative Commons Attribution License


http://www.insight-journal.org
http://hdl.handle.net/1926/xxx
http://creativecommons.org/licenses/by/3.0/us/

References 8

Table 2: Average accuracy per dataset

Dataset AD Al AT Avg.

nr. mm  score rank| mm score rank| mm score rank| rank
8 497 343 - | 0.39 433 - | 376 36.2 - -
9 217 33.0 - | 026 36.5 - | 205 334 - -
10 0.79 315 - |1 033 341 - |1 078 321 - -
11 3.20 28.0 - | 040 353 - | 320 28.0 - -
12 1.18 30.1 - | 036 333 - | 083 31.8 - -
13 241 31.0 - |1 033 351 - | 187 31.8 - -
14 1.37 377 - | 032 410 - | 112 384 - -
15 1.88 294 - | 0.35 346 - | 176 29.8 - -
16 2.08 30.6 - | 034 332 - | 078 317 - -
17 1.47 46.1 - | 0.38 49.6 - | 1.47 464 - -
18 227 36.0 - | 022 413 - | 227 36.0 - -
19 2.28 39.9 - | 031 437 - | 228 399 - -
20 1.82 325 - | 040 36.2 - | 179 325 - -
21 0.67 30.3 - |1 035 319 - | 045 313 - -
22 0.75 334 - | 042 35.0 - | 0.68 33.7 - -
23 1.47 32.1 - 1034 371 - | 147 321 - -
Avg. 1.92 335 - | 034 376 - | 166 34.1 - -

Table 3: Summary

Measure % / mm score rank
min. max. avg. min.  max. avg.| min. max. avg.
ov 53.2% 100.0% 87.7% | 28.0 100.0 495 - - -
OF 0.0% 100.0% 50.6% | 0.0 100.0 338 - -
oT 53.2% 100.0% 89.1% | 28.1 100.0 50.3] - - -
AD 0.24mm 10.15mm 1.92mm 17.3 753 33.5| - - -
Al 0.21 mm 0.62 mm 0.34 mm 24.0 78.8 37.6| - — -
AT 0.24mm 10.15mm 166mm 184 76.4 34.1] - - -
Total - — -

[2] E. W. Dijkstra. A note on two problems in connections wiffaphs.Numerische Mathematid..269—
271, 1959.3

[3] Leo Grady. Fast, quality, segmentation of large volumedsoperimetric distance trees. In Ales
Leonardis, Horst Bischof, and Axel Pinz, editoBymputer Vision — ECCV 200@olume 3 ofLecture
Notes in Computer Scienggages 449462, Graz, Austria, May 2006. Sprindeiocument) 1

[4] Leo Grady and Eric L. Schwartz. Isoperimetric graph piarting for image segmentatiohEEE Trans.
on Pattern Analysis and Machine Intelligen@8(3):469-475, March 20061

[5] M. A. Gulsun and H. Tek. Robust tree modeling. NMMCCAI, 2008. (document)

[6] K. Krissian, G. Malandain, N. Ayache, R. Vaillant, and Mousset. Model based multiscale detection
of 3d vessels. IMEEE Conf. CVPRpages 722—-727, 1998

[7] Hua Li and Anthony J. Yezzi. Vessels as 4-d curves: Globalimal 4-d paths to extract 3-d tubular
surfaces and centerlinedkeEE Trans. Med. Imagind26(9):1213-1223, 20073

[8] C. Metz, M. Schaap, T. van Walsum, A. van der Giessen, Austiek, G. Krestin N. Mollet, and
W. Niessen. 3d segmentation in the clinic: A grand challeingecoronary artery tracking.Insight
Journal 2008. 1,5, 6

[9] James Alexander Tyrrell, Emmanuelle di Tomaso, DanghHdicky Tong, Kevin Kozak, Edward B.
Brown, Rakesh Jain, and Badrinath Roysam. Robust 3-d nmagdefi vasculature imagery using su-
perellipsoids.IEEE Transactions on Medical Imaging006. 3

Latest version available at thesight Journa[ htt p: // hdl . handl e. net/ 1926/ xxx]
Distributed undeCreative Commons Attribution License


http://www.insight-journal.org
http://hdl.handle.net/1926/xxx
http://creativecommons.org/licenses/by/3.0/us/

	Automatic aorta segmentation
	Medialness Measure From 2D Cross-Sectional Models
	Local Center-Axis from Graph-Based Optimization
	Vessel Tree Modeling
	Automatic Detection of Ostia Locations
	Results
	Automatic aorta segmentation
	Medialness Measure From 2D Cross-Sectional Models
	Local Center-Axis from Graph-Based Optimization
	Vessel Tree Modeling
	Automatic Detection of Ostia Locations
	Results

