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Abstract

In this paper, we present an automatic method for extractingcenter axis representations (centerlines)
of coronary arteries in contrast enhanced (CE)-CT angiography scans. The algorithm first detects the
aorta which is used as an initial mask for ostia detection [3]. Second, the ostia locations are detected
via a vessel centerline extraction method [5] which tracks the center axis of the coronaries starting
from the aorta surface. The full centerline tree of the coronary arteries are computed via the multi-
scale medialness-based vessel tree extraction algorithm [5] which starts a tracking process from the
ostia locations until all the braches are reached. The centerline extraction algorithm is a graph-based
optimization algorithm using multi-scale medialness filters.
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We present an automatic centerline extraction algorithm for representing coronary arteries in CE-CTA data.
The proposed algorithm is based on a centerline tracking algorithm using multi-scale medialness filters [5]
and an automatic aorta segmentation algorithm [3]. In clinical applications, a vessel modeling algorithm
must be able to produce robust and accurate results inshort time e.g.in few seconds for a single vessel,

The main focus of this paper is to obtain the centerline representation of coronary arteries automatically
in a timely manner. Gulsun and Tek [5] have recently developed a method for extracting centerline tree
for coronary arteries in less than 30 seconds on a typical PC.This algorithm requires seed placement for
each ostia point. In this paper, we propose to use the segmentation algorithm developed by Grady [3] to
automatically segment the aorta, permitting us to detect these ostia points automatically. Specifically, the
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ostia points are detected by the centerline tracking algorithm which starts from the aorta surface and stops
when two major vessels are detected.

This paper is organized as follows as: In Section1, we briefly describe the automatic aorta segmentation
algorithm. Section2 describes the multi-scale medialness filters which are usedin the centerline tracking
algorithm. The centerline detection algorithm is first described for a centerline segment in Section3 and
then for the full centerline tree starting from a single seedpoint in Section4. In Section5, we describe the
ostia detection algorithm. Finally, Section6 presents some results.

1 Automatic aorta segmentation

Our aorta segmentation is performed using the fast variant of the isoperimetric algorithm [3] that is applied
to segmenting only a mask, presented in [4]. The mask in this case was generated by finding a connected
component of voxels with intensity crossing a threshold. This threshold was computed using the initial
point given inside the aorta. An initial point in the aorta was determined based on spatial and intensity
priors relative to a left ventricle segmentation. The left ventricle was also segmented using the variant
of the isoperimetric algorithm in [3], with an initial point given by searching for bright circular regions
at the orientation commonly assumed by the left ventricle. This procedure for segmenting the aorta (and
left ventricle) was extremely reliable, producing a correct segmentation in 99.4% of our test datasets and
requiring a total of 6.2s of computation time.

2 Medialness Measure From 2D Cross-Sectional Models

In this paper, our goal is to obtain the centerline representations of vessels directly from images without
creating a binary vessel mask. Specifically, we propose a novel technique for computing medialness measure
which is based on multi-scale cross-sectional vessel modeling. Blood vessels in CTA/MRA have typically
circular/elliptic shapes in cross-sectional views even though local variations on them are not too uncommon
due to the presence of nearby vessels or pathologies. Ideally, a 2D cross-sectional vessel profile consists
of a circular/elliptic bright disk and darker ring around it. Our medialness measure uses this circularity
assumption and edge responses obtained from multi-scale filters. Specifically, our medialness response,
m(~x0) at~x0, is computed from a circleC(~x0,R) centered at~x0, with radiusR, and is given by

m(~x0) = max
R

{
1
N

N−1

∑
i=0

E(~x0 +R ~u(2πi/N))} (1)

where~u(α) = sin(α)~u1 + cos(α)~u2 and ~u1 and ~u1 defines a 2D plane.E measures the normalized edge
response which is described below. Krissianet. al., [6] proposed a similar medialness measure where the
cross-sectional plane is computed from the eigenvectors ofHessian matrix.

Let us consider a 1-D intensity profileI(x) along a ray~uα on a cross-sectional plane of a vessel starting
from the location~x0. Suppose that~x0 is the center of the vessel with a radiusR. Then the cross-sectional
boundary of the vessel along the ray should occur at(~x0 + R~uα) where the gradient ofI(x) has a maxima
and the second derivative ofI(x) has a zero-crossing. We propose to use the gradient,∇σI(x) for measuring
responses at vessel boundaries, in whichσ corresponds to the spatial scale of the vessel boundary. These
gradients are normalized based on their filter sizes,σ to obtain comparable results between different scales.
In general, filter sizes are often selected from the size of vessels for computing gradient responses [6], i.e.,
larger spatial filters for large vessels. It should be noted that vessel scale, namelyR and boundary scale,σ
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are not always related. For example, the boundary of a large vessel can be detectedbetterwith small size
filters when such vessels are surrounded by other bright structures. Similarly, it is possible that small scale
vessels can have long diffused boundaries which cannot be accurately detected via small scale filters.

Let us now define the boundary measure along a ray~uα at the locationx,

b(x) = max
σ

{(|∇σI(x)|)}sign(∇σ I(x)) (2)

wheresign(x) is used to distinguish the rising (dark to bright changes) and falling edges (bright to dark
changes). Observe that this boundary measure,∇σI is contrast dependent,i.e., it obtains higher values from
high contrast vessels and lower values from low contrast vessels, respectively. Unfortunately, vessels may
have significant intensity variations on them - especially vessels in MRA and small size vessels in CTA. In
addition, boundaries of bones, calcifications in CTA and vessels next to airways can have strong gradients
which usually effect the response of medialness filters. We,in fact, believe that medialness responses
should be contrast independent, which can be accomplished by normalizing the boundary measure via the
highest gradient obtained for differentR values along the ray. Mathematically, we define a normalized
boundary measure asb̂(x) = b(x)/bmax wherebmax is the maximum falling edge response alongI(x) for x=
{~x0+Rmin~uα, .., ~x0 +Rmax~uα} andRmin andRmaxare the minimum and maximum vessel scales, respectively.

Since the size of vessels to be modeled is not known a priori, our method searches for strong edge responses
at the different locations along the rayuα with differentR, R∈ [Rmin,Rmax]. However, observe that for large
values ofR this produces strong boundary responses at locations whichare outside the vessel. In general,
there should not be any strong rising edge between~x0 and~x0 + R~uα where the boundary is searched. If
there exists such a strong rising edge, it probably means that the point~x0 is outside the vessel, thus it should
have a lower medialness measure. This is accomplished by first computing the maximum rising boundary
response up to the location~x0+R~uα along the ray and then subtracting this value from the response obtained
at ~x0 + R~uα. Based on these modifications, the final edge response along aray, ~uα, starting from at~x0,
E(~x0 +R~uα) is given as

E(~~x0 +R~uα) =
max(−b(~x0 +R~uα)−minx∈{~x0,~x0+R~uα}(b(x),0),0)

maxx∈(~x0+Rmin~uα,~x0+Rmax~uα)(−b(x),1)
(3)

The proposed medialness measure gives strong responses at the center of a vessel and responses drop rapidly
towards vessel boundaries and very small responses are obtained in non-vascular areas, Figure1. Also, the
presence of bright structures does not have strong impact onthe responses.

3 Local Center-Axis from Graph-Based Optimization

Medialness map of an image alone cannot be used in analyzing vessels without additional post-processing.
Instead, they are constructed to obtain vessel center axis representations which are very useful in visualizing
vessels in curved (or ribbon - flattened) multi-planar reformatting (MPR), in quantification of pathologies,
in navigation during endovascular interventional treatments, etc. Local vessel center axis between two user
selected points is often sufficient for analyzing a segment of a vessel quickly in clinical applications. Thus,
in this section, we propose a method for extracting such local center axis representations by integrating the
medialness map in a discrete optimization framework. Specifically, we seek to obtain a curveC(s) (center
axis) between pointsp0 andp1 which travels through the center of a vessel. This problem can be successfully
solved by theminimum-costpath detection algorithms [1, 7, 8]: Let E(C) be the total energy along a curve
C

E(C) =
∫

Ω
(P(C(s))+w)ds (4)
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Figure 1: This figure illustrates the medialness responses along a ray on two different examples obtained from our

method (middle column) and the Hessian-based method (right column). Observe that unlike Hessian based methods,

our technique gives low responses between two nearby vessels.

whereP(C) is called potential,w is the regularization term ands is the arch length,i.e., ||C(s)||2 = 1. In
vessel centerline extraction methods, potentialP(x) atx corresponds to the inverse of a medialness measure
at that location, namely,P(x) = 1

m(x) . LetAp0,p1 represents the set of all curves betweenp0 andp1. The curve
with total minimum energy can be computed from theminimum-accumulative cost, φ(p) which measures
the minimal energy atp integrated along a curve starting from the pointp0:

φ(p) = inf
Ap0,p1

{E(C)} (5)

This type of minimization problems has been studied extensively in computer vision for different problems,
e.g., segmentation. They are usually solved by either Dijkstra’s algorithm [2]. In this paper, we propose
to use Dijkstra’s algorithm for solving equation (5) in a discrete domain. Specifically, letG = (N,E) be a
discrete graph whereN andE represent nodes and edges, respectively. The minimum-accumulative cost at
the nodePi j for a four connected 2D graph is then given by

φ(Pi j ) = min(φ(Pi−1 j)+Ci j
(i−1) j ,φ(Pi+1 j)+Ci j

(i+1) j ,φ(Pi j−1)+Ci j
i( j−1),φ(Pi j+1)+Ci j

i( j+1)) (6)

where, for example,Ci j
(i−1) j corresponds to the cost of propagation from pointP(i−1) j to Pi j which is obtained

from the inverse of medialness measure. This above algorithm can be easily implemented by first setting
minimum-accumulative cost of all nodes to infinity (or a large value) and then using an explicit discrete
front propagation method where propagation always takes places from the minimum value to its neighbor-
ing nodes. In our implementation, we use 27-connected lattice in 3D, i.e., diagonal propagations are also
included for better accuracy. In addition, the medialness measure is computed orthogonal to the direction
of propagation instead of computing at nodes. The discrete path (curve) from a pointPi j to sourceP0 can
then be easily obtained by traversing (backtracking) alongthe propagation. This algorithm works well even
in the presence of nearby vessels, strong calcification and strong contrast change along a vessel and it is
computationally efficient. For example, a centerline segment of a coronary artery can be obtained from this
algorithm in 3 seconds via two seed placements.
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Figure 2: (left) The discrete front and centerlines from these front points. (right) The branch removal process. Observe

that front point B is kept while front points A are C are removed.

4 Vessel Tree Modeling

In this section, we extend the local centerline detection algorithm to recover the full vessel tree from a single
point, asourcewhich may be initialized by an user or another process. Recall that the above algorithm
terminates when the front propagation reaches to asink, an end point. When there is no sink point defined
for an explicit stopping, the propagation should continue until it reaches to all the branches. The stopping
criteria that we choose in our algorithm is based on the medialness measure along a discrete front. Specifi-
cally, propagation is forced to stop when the minimum medialness measure along a discrete front at any time
drops below a threshold. In our experiments, we found this stopping criteria to be very reliable in clinical
applications since our medialness measure is designed to bevery low outside vessels. However, the total
occlusion cases, where piece of a vessel is totally closed, require starting the propagation on the other side
of an occlusion, manually or automatically. We first illustrate how to determine thecorrectvessel centerline
tree from the converged propagation.

Suppose that the propagation has converged at timet f with a set of graph nodes,F = (P1, ...,PK), represent-
ing a discrete frontF, Figure2. A minimum-cost path between each pointPi of a discrete front,F and the
sourceP0 can be computed from the minimum accumulative cost map,φ, resulting inK different paths. It
is obvious that most of these paths are redundant,i.e., a single vessel branch should represented by a single
centerline or a single front point. In addition, the existence of a vessel branch can be determined by its
length,LB and its approximate radius,RB along its centerline,C, i.e., LB >>RB

1. Let us illustrate the basic
idea of selecting one centerline for each vessel branch via an example, in Figure2b which depicts three
pointsA,B,C on a vessel boundary and their corresponding minimum-cost paths. It is clear that the pointB
with its pathCB represents a branch while the front pointA does not since the length of its path is similar
to its radius. The front pointC may be considered as representing a vessel branch since the length of its
minimal path to the sourceP0 is significant relative to its average radius. However, the pathCB represents
the vessel branch better than the pathCC starting fromC. These observations suggest that a front point with
the longest path represents a vessel branch better when there are several front points on the same vessel
boundary, which is the case after stopping the propagation.This can be implemented very efficiently with
the following algorithm:

1. compute the minimum-cost path Ci and the length Li for each point Pi in the discrete front set F.

2. compute the average radius, RC along the each path Ci from the scale information contained in the
medialness filters.

3. order the paths based on their length and store them in a queue, QC, i.e., maximum is on top.

1The length of a centerline,C, is given byLC =
∫
C dswheres is the arc length.
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Figure 3: This figure illustrates the results of coronary arteries obtained from our algorithm. Centerlines are drawn in

blue and coronary vessel masks are created by using the scales contained in centerline trees.

4. continue until the queue, QC is empty

(a) select the path C from the top of the queue and remove it from the queue.

(b) recompute the path by backtracking until the source, P0 or the previously computed path on the
minimum-accumulative cost map is encountered

(c) mark the path in the minimum-accumulative cost map during the tracking process

(d) recompute the length of the new path, LC

(e) set the saliency of the path C or its corresponding front point, P as LC/RC

5. delete the paths whose saliency is less than a user-definedthreshold,

In our experiments, the saliency threshold is set to 2.0, which means that length of a vessel branch should be
two times greater than its average radius along its centerline, otherwise it does not appear to be a significant
vessel branch. Figure3 illustrates some examples of vessel centerline tree for coronary arteries and cerebral
vessels and others.

5 Automatic Detection of Ostia Locations

The full automatic centerline tree of the coronary arteriescan be obtained by first detecting the ostia points
automatically and then starting the centerline tracking from these locations. In this paper, we propose
to use our centerline tracking algorithm and the aorta mask to obtain these ostia points. Specifically, a
front propagation starts from the aorta surface mask and propagates on the discrete grid by minimizing the
accumulative costs obtained from the multi-scale medialness filters as described in the previous section.
The propagation is forced to stop when the distance from the aorta surface exceeds a threshold e.g., 8
cm. A centerline between the aorta surface and the front point satisfying this distance threshold criteria is
computed. The intersection of the centerline and aorta surface is marked as the first ostia point. Second
ostia point is detected in a similar fashion. The proposed method has been tested on more than 150 coronary
artery data set where the ostia locations are obtained in 6 seconds in average on a 3.2GHz PC. The accuracy
of the algorithm was 98.7% .
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Table 1: Average overlap per dataset
Dataset OV OF OT Avg.

nr. % score rank % score rank % score rank rank
8 73.2 40.9 – 57.4 41.7 – 78.2 39.2 – –
9 90.0 46.5 – 82.3 48.6 – 91.2 45.6 – –
10 92.3 57.3 – 25.0 12.5 – 92.5 58.7 – –
11 78.7 40.2 – 33.9 27.5 – 78.7 40.1 – –
12 89.3 46.1 – 5.1 2.6 – 93.2 46.9 – –
13 87.8 44.6 – 25.1 12.6 – 89.8 45.0 – –
14 91.0 46.1 – 72.3 51.8 – 92.7 58.8 – –
15 83.0 52.3 – 73.4 42.6 – 84.0 54.5 – –
16 90.3 49.8 – 67.9 46.8 – 94.8 59.9 – –
17 86.3 54.7 – 47.2 37.4 – 86.9 58.1 – –
18 86.9 51.3 – 67.9 40.5 – 86.9 43.5 – –
19 90.6 59.3 – 83.7 66.3 – 90.6 57.8 – –
20 88.5 54.8 – 52.6 31.8 – 88.5 44.4 – –
21 94.8 56.7 – 47.1 43.9 – 96.9 61.4 – –
22 95.3 48.0 – 62.3 31.1 – 96.2 48.1 – –
23 84.7 42.8 – 6.3 3.1 – 84.7 42.3 – –

Avg. 87.7 49.5 – 50.6 33.8 – 89.1 50.3 – –

6 Results

The method was evaluated on the 16 CTA datasets of the Testing1 set of the challenge. Quantitative results
are given in Tables1, 2, 3. Average overlap results (OV and OT) are high (respectively87.7 and 89.1%),
in the order of the inter-observer variability (scores around 50). Average results for OF statistics (before
first error) are crippled by a few very low scores. These can beexplained by the intrinsic behavior of
the method, which, as a minimal path technique, is subject to’shortcut’ effects in the presence of partial
or complete occlusions of the vessel. In such cases (dataset10 for instance), the extracted centerline can
temporarily run outside the vessel. This results in a short false positive section, which, given the strict
criteria of the challenge, dramatically lowers the OF statistics although the corresponding OV statistics is
highly satisfactory. Datasets 12 and 23 suffer from early false positive detections due to the ambiguity in
the definition of the starting point and radius of the artery at the ostia. Recall that we use a fully automatic
detection of the ostia points. The abnormally low OF scores should not overshadow the fact that even with
inaccurate ostia detection, the tracking process robustlyextracted the coronaries, as proved by the relatively
high OV percentages.

In terms of accuracy, results for true positive points (AI statistics) are satisfactorily in the order of the data
resolution. AD and AT statistics are lowered by false positive issues, such as the tracking process ’jumping’
into a nearby vein as in dataset 8. Recall that the method evaluated is fully automatic. Our framework allows
for easy correction of such cases through minimal user interaction.

Finally, we emphasize the computational efficiency of our approach. Such a criterion is absent from the
challenge evaluation but is, in our opinion, essential for the clinical applicability of the method. Fully
automatic centerline extraction can be achieved in less than 30 seconds and can be carried out as an offline
preprocessing. Furthermore, our framework provides the user with simple tools for correcting and extending
automatic results at nearly interactive speeds.
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Abstract

In this paper, we present an automatic method for extractingcenter axis representations (centerlines) of
coronary arteries in contrast enhanced (CE)-CT angiography scans. The algorithm first detects the aorta
which is used as an initial mask for ostia detection. Second,the ostia locations are detected via a vessel
centerline extraction method which tracks the center axis of the coronaries starting from the aorta surface.
The full centerline tree of the coronary arteries is computed via the multi-scale medialness-based vessel
tree extraction algorithm which starts a tracking process from the ostia locations until all the braches are
reached. The centerline extraction algorithm is a graph-based optimization algorithm using multi-scale
medialness filters.
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We present an automatic centerline extraction algorithm for representing coronary arteries in CE-CTA data.
The proposed algorithm is based on a centerline tracking algorithm using multi-scale medialness filters [5]
and an automatic aorta segmentation algorithm [3]. In clinical applications, a vessel modeling algorithm
must be able to produce robust and accurate results inshort time e.g.in few seconds for a single vessel,

The main focus of this paper is to obtain the centerline representation of coronary arteries automatically
in a timely manner. Gulsun and Tek [5] have recently developed a method for extracting centerline tree
for coronary arteries in less than 30 seconds on a typical PC.This algorithm requires seed placement for
each ostia point. In this paper, we propose to use the segmentation algorithm developed by Grady [3] to
automatically segment the aorta, permitting us to detect these ostia points automatically. Specifically, the
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ostia points are detected by the centerline tracking algorithm which starts from the aorta surface and stops
when two major vessels are detected.

This paper is organized as follows as: In Section1, we briefly describe the automatic aorta segmentation
algorithm. Section2 describes the multi-scale medialness filters which are usedin the centerline tracking
algorithm. The centerline detection algorithm is first described for a centerline segment in Section3 and
then for the full centerline tree starting from a single seedpoint in Section4. In Section5, we describe the
ostia detection algorithm. Finally, Section6 presents some results.

1 Automatic aorta segmentation

Our aorta segmentation is performed using the fast variant of the isoperimetric algorithm [3] that is applied
to segmenting only a mask, presented in [4]. The mask in this case was generated by finding a connected
component of voxels with intensity crossing a threshold. This threshold was computed using the initial
point given inside the aorta. An initial point in the aorta was determined based on spatial and intensity
priors relative to a left ventricle segmentation. The left ventricle was also segmented using the variant of
the isoperimetric algorithm in [3], with an initial point given by searching for bright circular regions at the
orientation commonly assumed by the left ventricle. We havetested the aorta detection algorithm on 150
CTA data sets which are not included in the challange [8]. This procedure for segmenting the aorta (and
left ventricle) was extremely reliable, producing a correct segmentation in 99.4% of our test datasets and
requiring a total of 6.2s of computation time on a 2.8GHz PC.

2 Medialness Measure From 2D Cross-Sectional Models

In this paper, our goal is to obtain the centerline representations of vessels directly from images without cre-
ating a binary vessel mask. Specifically, we propose a novel technique for computing a medialness measure
which is based on multi-scale cross-sectional vessel modeling. Blood vessels in CTA/MRA have typically
circular/elliptic shapes in cross-sectional views even though local variations on them are not too uncommon
due to the presence of nearby vessels or pathologies. Ideally, a 2D cross-sectional vessel profile consists of a
circular/elliptic bright disk and darker ring around it. Our medialness measure uses this circularity assump-
tion and edge responses obtained from multi-scale filters. Specifically, our medialness response,m(~x0) at
~x0, is computed from a circleC(~x0,R) centered at~x0, with radiusR, and is given by

m(~x0) = max
R

{
1
N

N−1

∑
i=0

E(~x0 +R~u(2πi/N))} (1)

where~u(α) = sin(α)~u1 + cos(α)~u2 and ~u1 and ~u2 defines a 2D plane.E measures the normalized edge
response which is described below. Krissianet. al., [6] proposed a similar medialness measure where the
cross-sectional plane is computed from the eigenvectors ofthe Hessian matrix.

Let us consider a 1-D intensity profileI(x) along a ray~uα on a cross-sectional plane of a vessel starting
from the location~x0. Suppose that~x0 is the center of the vessel with a radiusR. Then the cross-sectional
boundary of the vessel along the ray should occur at(~x0 + R~uα) where the gradient ofI(x) has a maxima
and the second derivative ofI(x) has a zero-crossing. We propose to use the gradient,∇σI(x) for measuring
responses at vessel boundaries, in whichσ corresponds to the spatial scale of the vessel boundary. These
gradients are normalized based on their filter sizes,σ to obtain comparable results between different scales.
In general, filter sizes are often selected from the size of vessels for computing gradient responses [6], i.e.,
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larger spatial filters for large vessels. It should be noted that vessel scale, namelyR and boundary scale,σ
are not always related. For example, the boundary of a large vessel can be detectedbetterwith small size
filters when such vessels are surrounded by other bright structures. Similarly, it is possible that small scale
vessels can have long diffused boundaries which cannot be accurately detected via small scale filters.

Let us now define the boundary measure along a ray~uα at the locationx,

b(x) = max
σ

{(|∇σI(x)|)}sign(∇σ I(x)) (2)

wheresign(x) is used to distinguish the rising (dark to bright changes) and falling edges (bright to dark
changes). Observe that this boundary measure,∇σI is contrast dependent,i.e., it obtains higher values from
high contrast vessels and lower values from low contrast vessels, respectively. Unfortunately, vessels may
have significant intensity variations on them - especially vessels in MRA and small size vessels in CTA. In
addition, boundaries of bones, calcifications in CTA and vessels next to airways can have strong gradients
which usually effect the response of medialness filters. We,in fact, believe that medialness responses
should be contrast independent, which can be accomplished by normalizing the boundary measure via the
highest gradient obtained for differentR values along the ray. Mathematically, we define a normalized
boundary measure asb̂(x) = b(x)/bmax wherebmax is the maximum falling edge response alongI(x) for x=
{~x0+Rmin~uα, .., ~x0 +Rmax~uα} andRmin andRmaxare the minimum and maximum vessel scales, respectively.

Since the size of vessels to be modeled is not known a priori, our method searches for strong edge responses
at the different locations along the rayuα with differentR, R∈ [Rmin,Rmax]. However, observe that for large
values ofR this produces strong boundary responses at locations whichare outside the vessel. In general,
there should not be any strong rising edge between~x0 and~x0 + R~uα where the boundary is searched. If
there exists such a strong rising edge, it probably means that the point~x0 is outside the vessel, thus it should
have a lower medialness measure. This is accomplished by first computing the maximum rising boundary
response up to the location~x0+R~uα along the ray and then subtracting this value from the response obtained
at ~x0 + R~uα. Based on these modifications, the final edge response along aray, ~uα, starting from at~x0,
E(~x0 +R~uα) is given as

E(~~x0 +R~uα) =
max(−b(~x0 +R~uα)−minx∈{~x0,~x0+R~uα}(b(x),0),0)

maxx∈(~x0+Rmin~uα,~x0+Rmax~uα)(−b(x),1)
(3)

The proposed medialness measure gives strong responses at the center of a vessel and responses drop rapidly
towards vessel boundaries and very small responses are obtained in non-vascular areas, Figure1. Also, the
presence of bright structures does not have strong impact onthe responses.

3 Local Center-Axis from Graph-Based Optimization

The medialness map of an image alone cannot be used in analyzing vessels without additional post-
processing. Instead, they are constructed to obtain vesselcenter axis representations which are very useful
in visualizing vessels in curved (or ribbon - flattened) multi-planar reformatting (MPR), in quantification
of pathologies, in navigation during endovascular interventional treatments, etc. Local vessel center axis
between two user selected points is often sufficient for analyzing a segment of a vessel quickly in clinical
applications. Thus, in this section, we propose a method forextracting such local center axis representations
by integrating the medialness map in a discrete optimization framework. Specifically, we seek to obtain a
curveC(s) (center axis) between pointsp0 andp1 which travels through the center of a vessel. This problem
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Figure 1: This figure illustrates the medialness responses along a ray on two different examples obtained from our

method (middle column) and the Hessian-based method (right column). Observe that unlike Hessian based methods,

our technique gives low responses between two nearby vessels.

can be successfully solved by theminimum-costpath detection algorithms [1, 7, 9]: Let E(C) be the total
energy along a curveC

E(C) =
∫

Ω
(P(C(s))+w)ds (4)

whereP(C) is called potential,w is the regularization term ands is the arch length,i.e., ||C(s)||2 = 1. In
vessel centerline extraction methods, potentialP(x) atx corresponds to the inverse of a medialness measure
at that location, namely,P(x) = 1

m(x) . LetAp0,p1 represents the set of all curves betweenp0 andp1. The curve
with total minimum energy can be computed from theminimum-accumulative cost, φ(p) which measures
the minimal energy atp integrated along a curve starting from the pointp0:

φ(p) = inf
Ap0,p1

{E(C)} (5)

This type of minimization problems has been studied extensively in computer vision for different problems,
e.g., segmentation. They can solved by the Dijkstra’s algorithm[2]. In this paper, we propose to use
Dijkstra’s algorithm for solving equation (5) in a discrete domain. Specifically, letG = (N,E) be a discrete
graph whereN andE represent nodes and edges, respectively. The minimum-accumulative cost at the node
Pi j for a four connected 2D graph is then given by

φ(Pi j ) = min(φ(Pi−1 j)+Ci j
(i−1) j ,φ(Pi+1 j)+Ci j

(i+1) j ,φ(Pi j−1)+Ci j
i( j−1),φ(Pi j+1)+Ci j

i( j+1)) (6)

where, for example,Ci j
(i−1) j corresponds to the cost of propagation from pointP(i−1) j to Pi j which is obtained

from the inverse of the medialness measure. This above algorithm can be easily implemented by first
setting minimum-accumulative cost of all nodes to infinity (or a large value) and then using an explicit
discrete front propagation method where propagation always takes places from the minimum value to its
neighboring nodes. In our implementation, we use 27-connected lattice in 3D,i.e., diagonal propagations
are also included for better accuracy. In addition, the medialness measure is computed orthogonal to the
direction of propagation instead of computing at nodes. Thediscrete path (curve) from a pointPi j to source
P0 can then be easily obtained by traversing (backtracking) along the propagation. This algorithm works
well even in the presence of nearby vessels, strong calcification and strong contrast change along a vessel
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Figure 2: (left) The discrete front and centerlines from these front points. (right) The branch removal process. Observe

that front point B is kept while front points A are C are removed.

and it is computationally efficient. For example, a centerline segment of a coronary artery can be obtained
from this algorithm in 3 seconds via two seed placements.

4 Vessel Tree Modeling

In this section, we extend the local centerline detection algorithm to recover the full vessel tree from a single
point, asourcewhich may be initialized by an user or another process. Recall that the above algorithm
terminates when the front propagation reaches to asink, an end point. When there is no sink point defined
for an explicit stopping, the propagation should continue until it reaches to all the branches. The stopping
criterion that we choose in our algorithm is based on the medialness measure along a discrete front. Specifi-
cally, propagation is forced to stop when the minimum medialness measure along a discrete front at any time
drops below a threshold. In our experiments, we found this stopping criterion to be very reliable in clinical
applications since our medialness measure is designed to bevery low outside vessels. However, the total
occlusion cases, where piece of a vessel is totally closed, require starting the propagation on the other side
of an occlusion, manually or automatically. We first illustrate how to determine thecorrectvessel centerline
tree from the converged propagation.

Suppose that the propagation has converged at timet f with a set of graph nodes,F = (P1, ...,PK), repre-
senting a discrete frontF , Figure2. A minimum-cost path between each pointPi of a discrete front,F and
the sourceP0 can be computed from the minimum accumulative cost map,φ, resulting inK different paths.
It is obvious that most of these paths are redundant,i.e., a single vessel branch should be represented by
a single centerline or a single front point. In addition, theexistence of a vessel branch can be determined
by its length,LB and its approximate radius,RB along its centerline,C, i.e., LB >>RB. Let us illustrate the
basic idea of selecting one centerline for each vessel branch via an example, in Figure2b which depicts
three pointsA,B,C on a vessel boundary and their corresponding minimum-cost paths. It is clear that the
point B with its pathCB represents a branch while the front pointA does not since the length of its path is
similar to its radius. The front pointC may be considered as representing a vessel branch since the length of
its minimal path to the sourceP0 is significant relative to its average radius. However, the pathCB represents
the vessel branch better than the pathCC starting fromC. These observations suggest that a front point with
the longest path represents a vessel branch better when there are several front points on the same vessel
boundary, which is the case after stopping the propagation.This can be implemented very efficiently with
the following algorithm:

1. compute the minimum-cost path Ci and the length Li for each point Pi in the discrete front set F.

2. compute the average radius, RC along the each path Ci from the scale information contained in the
medialness filters.
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Figure 3: This figure illustrates the results of coronary arteries obtained from our algorithm. Centerlines are drawn in

blue and coronary vessel masks are created by using the scales contained in centerline trees.

3. order the paths based on their length and store them in a queue, QC, i.e., maximum is on top.

4. continue until the queue, QC is empty

(a) select the path C from the top of the queue and remove it from the queue.

(b) recompute the path by backtracking until the source, P0 or the previously computed path on the
minimum-accumulative cost map is encountered

(c) mark the path in the minimum-accumulative cost map during the tracking process

(d) recompute the length of the new path, LC

(e) set the saliency of the path C or its corresponding front point, P as LC/RC

5. delete the paths whose saliency is less than a user-definedthreshold,

In our experiments, the saliency threshold is set to 2.0, which means that length of a vessel branch should be
two times greater than its average radius along its centerline, otherwise it does not appear to be a significant
vessel branch. Figure3 illustrates some examples of vessel centerline tree for coronary arteries.

5 Automatic Detection of Ostia Locations

The full automatic centerline tree of the coronary arteriescan be obtained by first detecting the ostia points
automatically and then starting the centerline tracking from these locations. In this paper, we propose
to use our centerline tracking algorithm and the aorta mask to obtain these ostia points. Specifically, a
front propagation starts from the aorta surface mask and propagates on the discrete grid by minimizing the
accumulative costs obtained from the multi-scale medialness filters as described in the previous section.
The propagation is forced to stop when the distance from the aorta surface exceeds a threshold e.g., 8 cm.
A centerline between the aorta surface and the front point satisfying this distance threshold criterion is
computed. The intersection of the centerline and aorta surface is marked as the first ostia point. Second
ostia point is detected in a similar fashion. The proposed method has been tested on more than 150 coronary
artery data set where the ostia locations are obtained in 6 seconds in average on a 3.2GHz PC. We have
tested the ostia detection algorithm on 150 CTA data sets which are not included in the challange [8]. The
accuracy of the algorithm was 98.7% .
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Table 1: Average overlap per dataset
Dataset OV OF OT Avg.

nr. % score rank % score rank % score rank rank
8 73.2 40.9 – 57.4 41.7 – 78.2 39.2 – –
9 90.0 46.5 – 82.3 48.6 – 91.2 45.6 – –
10 92.3 57.3 – 25.0 12.5 – 92.5 58.7 – –
11 78.7 40.2 – 33.9 27.5 – 78.7 40.1 – –
12 89.3 46.1 – 5.1 2.6 – 93.2 46.9 – –
13 87.8 44.6 – 25.1 12.6 – 89.8 45.0 – –
14 91.0 46.1 – 72.3 51.8 – 92.7 58.8 – –
15 83.0 52.3 – 73.4 42.6 – 84.0 54.5 – –
16 90.3 49.8 – 67.9 46.8 – 94.8 59.9 – –
17 86.3 54.7 – 47.2 37.4 – 86.9 58.1 – –
18 86.9 51.3 – 67.9 40.5 – 86.9 43.5 – –
19 90.6 59.3 – 83.7 66.3 – 90.6 57.8 – –
20 88.5 54.8 – 52.6 31.8 – 88.5 44.4 – –
21 94.8 56.7 – 47.1 43.9 – 96.9 61.4 – –
22 95.3 48.0 – 62.3 31.1 – 96.2 48.1 – –
23 84.7 42.8 – 6.3 3.1 – 84.7 42.3 – –

Avg. 87.7 49.5 – 50.6 33.8 – 89.1 50.3 – –

6 Results

The method was evaluated on the 16 CTA datasets of the Testing1 set of the challenge [8]. Quantitative
results are given in Tables1, 2, 3. Average overlap results (OV and OT) are high (respectively87.7 and
89.1%), in the order of the inter-observer variability (scores around 50). Average results for OF statistics
(before first error) are crippled by a few very low scores. These can be explained by the intrinsic behavior
of the method, which, as a minimal path technique, is subjectto ’shortcut’ effects in the presence of partial
or complete occlusions of the vessel. In such cases (dataset10 for instance), the extracted centerline can
temporarily run outside the vessel. This results in a short false positive section, which, given the strict
criteria of the challenge, dramatically lowers the OF statistics although the corresponding OV statistics is
highly satisfactory. Datasets 12 and 23 suffer from early false positive detections due to the ambiguity in
the definition of the starting point and radius of the artery at the ostia. Recall that we use a fully automatic
detection of the ostia points. The abnormally low OF scores should not overshadow the fact that even with
inaccurate ostia detection, the tracking process robustlyextracted the coronaries, as proved by the relatively
high OV percentages.

In terms of accuracy, results for true positive points (AI statistics) are satisfactorily in the order of the data
resolution. AD and AT statistics are lowered by false positive issues, such as the tracking process ’jumping’
into a nearby vein as in dataset 8. Recall that the method evaluated is fully automatic. Our framework allows
for easy correction of such cases through minimal user interaction.

Finally, we emphasize the computational efficiency of our approach. Such a criterion is absent from the
challenge evaluation but is, in our opinion, essential for the clinical applicability of the method. Fully
automatic centerline extraction can be achieved in less than 30 seconds and can be carried out as an offline
preprocessing. Furthermore, our framework provides the user with simple tools for correcting and extending
automatic results at nearly interactive speeds.
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