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Abstract

This manuscript examines the application of a new parametric method to the segmentation of MS
lesions from structural brain MRI images (sMRI). The data used in this work was provided by the MS
Lesion Segmentation Challenge at MICCAI 2008. The method uses the vector image joint histogram,
built over a training set, as an explicit model of the featurevectors indicating lesion. The histogram is
used to predict lesions in the test data by labeling feature vectors consistent with lesion feature vectors in
the training set. The results are evaluated using STAPLE to compare against two separate human raters.
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Lesion segmentation in magnetic resonance imaging (MRI) presents novel challenges compared to general
tissue segmentation. Lesions have been found to present themselves with somewhat homogeneous signal
across image contrasts such as ischemic lesion cases. However, lesions in Multiple sclerosis (MS) patients
present additional challenges in that they are found to be heterogeneous in itensity variation across image
contrasts e.g. enhancing lesions, black holes, etc. It is assumed that the relationships between the intensities
of the different sequences, along with the spatial information, provide the necessary information to accu-
rately segment the lesions. The efforts presented here represent an attempt to construct a parametric model
of the intensity feature vectors that indicate the presenceof MS lesions in the training set and then use that
model to predict the location of lesions in the testing data.

1 Data

The MS lesion MRI image data provided for the contest was composed of 54 brain MRI images and repre-
sents a range of patients and pathology. Two groups of data were provided consisting of 20 training MRI
images and 25 testing images. The image data was acquired separately by Children’s Hospital Boston (CHB)
and University of North Carolina (UNC). UNC cases were acquired on a Siemens 3T Allegra MRI scanner
with slice thickness of 1mm and in-plane resolution of 0.5mm. The data supplied was rigidly registered to a
common reference frame and resliced to isotropic voxel spacing using b-spline based interpolation. Multiple
sequences were provided, including T1, T2, FLAIR, and DTI.

Figure 1:T1, T2, FLAIR, lesion tracing and unlabeled lesion.

2 Data Quality

There were numerous problems with data quality in the training and test data sets. There were a number
of artifacts in the scans, including poor motion correction, poor registration, and large variations in the
signal to noise ratio. There was also a lack of agreement between experts on lesion location. There were
many instances where one expert considered something a lesion that another expert did not label. There
were also instances of lesions being inside ventricles, as well as connected lesions being labeled as multiple
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separate lesions. Supervised learning approaches are sensitive to the quality of the labeled training set and
consequently all of the data quality issues contributed to the reduced accuracy of the parametric method
presented here.

3 Preprocessing

Lesion segmentation has been shown to be highly susceptibleto variations in field strength both within and
across scans [3, 4, 7]. A number of approaches to correct for these problems have been examined in the
literature but normally the steps taken involve bias correction and intensity standardization [7].

In order to make working with the images more ameable to consistent tissue classification they were first
down sampled to 1mm isotropic resolution. Brain extractionwas performed on each subject using BET2 [9]
on the down sampled T1 and T2. Samples were taken of the grey, white, and CSF tissues of each subject
in order to provide the mean values of each tissue type for bias correction. To reduce variation due to field
strength inhomogeniety, bias correction was then performed on each down sampled T1, T2, and FLAIR
using methods presented by Styner [2]. In order to reduce inter-subject variability intensity standardization
was performed via histogram matching. Histogram matching was accomplished by linearly scaling each bin
of the histogram, independently for each image type, to match a reference exemplar [8].

4 Model Building

The overall goal of parametric approaches is to construct a model of MS lesions that has predictive power
based on some feature set. The training data consisted of T1,T2, FLAIR, FA, and MD images. While
it would have been interesting to extend the analysis to DTI data, only the T1, T2, and FLAIR data was
included in this analysis. The model of MS lesion tissue is thus dependent on the intensities of the T1, T2,
and FLAIR images along with the spatial information embodied by those voxels in the neighborhood of a
given lesion voxel. Parametric methods have shown good results in the past [6], as have spatial methods
[3], but stronger results have been shown by combining the two approaches [5]. The motivation behind the
approach in this paper was to construct an explicit model of the feature vector intensities that identify lesion
tissue. One such model is the joint histogram calculated over the vector image constructed by registering
the T2 and FLAIR to the T1, then creating an image where each voxel contains a vector representing the
T1 intensity, the T2 intensity, the FLAIR intensity, and thetissue class for that voxel’s location. The joint
histogram then represents the number of times a given feature vector was labeled lesion, along with the
number of times that vector was not labeled lesion. By addingthe joint histograms calculated this way for
each subject a combined histogram could be created for the entire dataset.

In order to make the histogram calculation more computationally tractable, the T1, T2, and FLAIR values
for all training and test subjects were quantized into fifteen bins of width one half standard deviation of the
intensities, calculated on a per image basis. There are essentially four tissue class intensity distributions to
identify and those distributions are know to overlap some and to have widths well above 0.5 sigma. Thus it
can be assumed that quantizing does not grossly distort the data, although it may cause errors in relation to
partial volume voxels.

The T1, T2, FLAIR, and lesion label were then treated as a multi-component / vector image and the 4D joint
histogram was calculated. For each possible combination ofT1 value, T2 value, and FLAIR value the joint
histogram contained the number of times that feature vectorresulted in a lesion and the number of times it
did not. By dividing the number of times a feature vector was labeled lesion by the number of times the
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feature vector occurred, the frequency with which that feature vector resulted in lesion was obtained.

5 Prediction

An initial predicted lesion label map was constructed for each test subject by setting the voxel value equal
to the frequency of that voxel location’s feature vector in the 4D joint histogram model. These values were
then thresholded in order to reduce the amount of false positives while keeping the number of false negatives
low. The threshold value was selected empirically and couldlikely be improved through the application of
a more rigorous experimental process.

In order to obtain a rough tissue segmentation, KMeans, withinitial class means, was performed on the T1
image for each subject. This label map was combined with the thresholded lesion mask to create a label
map with different integer values for Grey, White, CSF and Lesion tissue. The generated label map was
then filtered so that lesion tissue that was within 2 voxels ofCSF tissue was discarded. The label map was
then used to pull 200 exemplar points to train a naive Bayesian classifier which then proceeded to classify
the vector image composed of the T1, T2, and FLAIR images.

Each independent connected component in the lesion map produced by the Bayesian classifier was then
filtered based on a minimum lesion size provided by a local MS expert. Each lesion component had to have
a least one dimension with three voxels with the other two dimensions being at least two voxels. While
lesions may occur below this size they are generally not labeled by human experts due to high error rates.

In order to submit the data for evaluation the lesion map was upsampled to 0.5mm by 0.5mm by 0.5mm.

6 Results

Table2 contains the prediction results by comparison to two human raters using the STAPLE algorithm
[10]. A score of 95 is equivalent to the performance of another human rater. The overall performance was
poor, as can be seen by the total scores and the PPV value underSTAPLE. As can be seen from table2 the
method presented here had reasonably good specificity, or true positive rate, and a fairly poor sensitivity, or
false negative rate, as was expected based on the initial work. The table also indicates that for some subjects
the methods were highly effective while for others they wereextremely poor. This could be due to variances
in the volume of lesions between subjects. The table also illustrates the variability between the two raters,
as evidenced by the large difference between the sets of scores for each site.

7 Discussion

Everything presented here is confounded by the lack of ratings performed by each expert on the entire
dataset. Since only UNC cases were rated by the UNC rater and only CHB cases were rated by the CHB
rater, it was impossible to examine lesions that both ratersagreed on.

Initially the lesions as predicted by the joint histogram model were meant to act as a training set for a Support
Vector Machine (SVM). However, when trained on only those feature vectors that had some chance of being
lesions the SVM failed to converge even after 48 hours. The failure to converge may be due to there being
no optimal decision boundary between the classes, which is implied by the joint histogram data.

The joint histograms are explicit models of the feature vectors that were labeled as lesions by each site’s
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CHB UNC
Number of features 991 481

Intersection 420 420
Union 1052 1052

Jaccard Overlap 0.3999 0.3999
Dice Metric 0.5707 0.5707

Spatial Overlap 0.4238 0.8732

Table 1: Feature Vector Overlap Between Raters

experts. By generating histograms for the UNC and CHB training sets independently the difference in raters
can be examined. After thresholding the histograms to form masks various overlap metrics can be calculated.
These metrics convey the agreement between the two site’s raters on what feature vectors actually represent
lesion.

As can be seen from table1 there exists significant disagreement between the raters from the two sites on
what feature vectors indicate lesion. The CHB rater consistently rated more feature vectors as lesion but
there were still feature vectors the UNC rater felt were lesion that the CHB rater did not. The fact that the
Jaccard Overlap is less than 0.4 indicates extreme differences in the feature vectors considered lesion. It is
difficult to believe any automated technique would be able tocorrectly label all lesions in this situation.

In an ideal world the feature vectors of lesions would never be labeled anything other than lesion. If that
were the case, lesion segmentation could be accomplished simply by labeling those feature vectors as lesion.
Unfortunately that is not the case in the MS training set. Figure 2 lays out the relationship between the
number of times a feature vector was labeled lesion along with the number of times that feature vector
occurred. The vectors have been sorted to ascend by frequency of lesion occurrence, calculated as number
of times the feature vector was lesion / number of times the feature vector occurred.

One of the things figure2 expresses is that the majority of lesion feature vectors, 616 out of 1052, were
labeled lesion less than ten times for the entire training set. This indicates that over half of the feature
vectors indicating lesion are unique, represent collectively only 1925 out of the 114634 voxels labeled as
lesion, and most likely can not be labeled lesion without taking into account spatial information. Alternately,
it could also indicate that these particular feature vectors are not lesion, and thus represent noise in the expert
ratings.

The main point embodied by figure2 is that the number of times a given feature vector is labeled as lesion
is generally dwarfed by the number of times it is not labeled lesion. The feature vector with the highest
frequency of being labeled lesion occurred 47 times in the training data set and was labeled lesion only 19
times. If this feature vector was always labeled lesion it would be wrong 60% of the time! The feature
vector representing the most lesion voxels, 3687, occurreda total of 195,344 times and so was lesion less
than 2% of the time. If this feature vector was labeled as not lesion then 3.2% of the lesions would be labeled
as false negatives. If only a few of the feature vectors exhibited these problems the approach could still have
merit, but all the feature vectors exhibited this problem. Determining which feature vectors to label lesion
becomes a tradeoff between the false positive and false negative rate.

The lack of feature vectors clearly indicating lesion conveys four possibilities: First, the ratings are incon-
sistent and inaccurate, a position for which some evidence was presented earlier. Second, the quantization
resolution was too low to truly distinguish the feature vectors from each other. This is unlikely since the
overlap between the lesion distributions and the other distributions is much wider than 0.5 standard devia-
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tions. Third, most of the discriminatory information needed to characterize lesions is contained in the spatial
relationship of lesion voxels to their neighbors, a position consistent with some of the literature [3], although
other MS literature indicates a pure parametric approach asbeing reasonable [6]. The fourth possibility is
that the bias correction and intensity standardization methods used were insufficient or inappropriate. There
is a clear case to be made that performing intensity standardization independently on each image is an ap-
proach that could introduce more noise than it eliminates. The elements of the feature vectors are themselves
not independent so it makes sense to work with vectors of intensities. Most recent approaches to intensity
standardization have taken a vector approach [3, 1, 4, 11].

8 Future Work

There are a number of things that could be done to improve the results of the technique presented here.
Performing joint histogram based intensity standardization as laid out in [3] would likely improve results
since it operates on feature vectors rather than indepedentintensities. Further, experimenting to find the
optimal quantization scheme would simultaneously reduce noise and improve recognition.

There are a number of follow on steps likely to prove valuable, such as using the joint histogram technique
as a means of focusing on only those features that have some chance of being lesion and using those features
as input to an additional classifer. The voxels predicted bythe joint histogram as lesion could also be used as
seed points for a region growing approach, thus incorporating the spatial information. Alternately, training
a Markov Random Field which would then operate over the labelimage as predicted by the histogram, or
the histogram combined with some classifier, would also incorporate spatial information and would likely
outperform the techniques presented here. Additionally, further work into eliminating false positives, likely
through a heirarchical classification approach, would alsoimprove results.
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B Results Table

Ground Truth UNC Rater CHB Rater STAPLE
All Dataset Volume Diff. Avg. Dist. True Pos. False Pos. Volume Diff. Avg. Dist. True Pos. False Pos.TotalSpecificitySensitivity PPV

[%] Score [mm] Score [%] Score [%] Score [%] Score [mm] Score [%] Score [%] Score
UNC test1 Case01 33.3 95 33.1 32 2.3 53 93.9 52 94.9 86 32.0 34 3.1 53 93.9 52 57 0.9342 0.0147 0.0104
UNC test1 Case02 102.0 85 11.2 77 22.1 64 88.5 56 73.3 89 8.1 83 15.9 61 77.9 62 72 0.9911 0.4058 0.8711
UNC test1 Case03 26.5 96 2.6 95 47.2 78 38.5 86 5.1 99 2.1 96 50.0 80 34.1 89 90 0.9856 0.7641 0.7458
UNC test1 Case04 16.2 98 3.7 92 50.0 80 67.2 69 30.1 96 2.4 95 55.6 83 71.9 66 85 0.9842 0.8253 0.8110
UNC test1 Case05 16.0 98 48.9 0 0.0 51 100.0 49 89.7 87 43.4 11 0.0 51 100.0 49 49 0.9557 0.0000 0.0000
UNC test1 Case06 25.3 96 50.3 0 0.0 51 100.0 49 233.5 66 44.9 7 0.0 51 100.0 49 46 0.9361 0.0000 0.0000
UNC test1 Case07 55.6 92 39.2 19 0.0 51 100.0 49 3.1 100 35.7 27 0.0 51 100.0 49 55 0.9730 0.0000 0.0000
UNC test1 Case08 288.6 58 21.9 55 14.9 60 88.1 56 535.1 22 26.9 45 44.4 77 83.6 59 54 0.8567 0.2666 0.0505
UNC test1 Case09 420.2 38 58.4 0 0.0 51 100.0 49 633.9 7 74.7 0 0.0 51 100.0 49 31 0.9411 0.0000 0.0000
UNC test1 Case10 397.9 42 18.7 61 25.0 66 95.4 52 1699.9 0 24.1 50 66.7 89 96.3 51 51 0.9183 0.7070 0.2395
CHB test1 Case01 83.5 88 11.9 76 9.3 57 13.3 100 76.4 89 11.6 76 25.8 66 13.3 100 81 0.9989 0.0944 0.6930
CHB test1 Case02 14.9 98 6.6 86 31.8 70 63.2 71 63.7 91 4.5 91 36.8 72 21.1 97 84 0.9954 0.3711 0.8060
CHB test1 Case03 125.7 82 51.7 0 0.0 51 100.0 49 9.1 99 55.5 0 0.0 51 100.0 49 48 0.9655 0.0000 0.0000
CHB test1 Case04 283.9 58 47.1 3 0.0 51 100.0 49 84.7 88 49.7 0 0.0 51 100.0 49 44 0.9240 0.0000 0.0000
CHB test1 Case05 81.7 88 22.4 54 7.4 56 88.1 56 96.5 86 13.8 72 17.4 61 28.6 92 71 0.9996 0.0278 0.7898
CHB test1 Case06 32.4 95 3.6 93 44.4 77 89.0 55 29.4 96 3.5 93 36.4 72 90.5 55 79 0.9861 0.4395 0.6908
CHB test1 Case07 19.1 97 6.0 88 50.0 80 86.7 57 50.8 93 2.5 95 57.9 84 64.2 71 83 0.9937 0.4020 0.8293
CHB test1 Case08 11.5 98 14.1 71 33.3 70 87.7 56 40.8 94 14.5 70 20.6 63 86.4 57 73 0.9809 0.3119 0.4662
CHB test1 Case09 3.8 99 3.1 94 41.6 75 42.7 84 12.5 98 2.3 95 32.7 70 28.1 93 88 0.9922 0.7212 0.8686
CHB test1 Case10 154.7 77 8.1 83 78.9 96 96.2 51 24.6 96 5.0 90 79.3 97 91.9 54 81 0.9795 0.5347 0.5604
CHB test1 Case11 35.5 95 37.2 23 6.8 55 97.4 50 79.2 88 38.3 21 13.8 59 91.2 54 56 0.9879 0.0195 0.0814
CHB test1 Case12 80.9 88 21.6 55 19.3 62 83.2 59 81.0 88 23.5 52 7.7 56 87.5 56 65 0.9840 0.0451 0.1892
CHB test1 Case13 27.2 96 7.0 86 40.0 74 84.6 58 55.4 92 3.9 92 38.1 73 42.3 84 82 0.9969 0.5486 0.9139
CHB test1 Case15 90.6 87 11.5 76 12.3 59 46.9 81 87.6 87 8.7 82 10.6 58 37.5 87 77 0.9948 0.0523 0.5321

All Average 101.1 85 22.5 55 22.4 64 81.3 60 174.6 81 22.2 57 25.5 66 72.5 65 67 0.9690 0.2730 0.4229
All UNC 138.2 80 28.8 43 16.1 61 87.2 57 339.9 65 29.4 45 23.6 65 85.8 57 59 0.9476 0.2984 0.2728
All CHB 74.7 89 18.0 63 26.8 67 77.1 63 56.5 92 16.9 66 26.9 67 63.0 71 72 0.9842 0.2549 0.5301

Table 2: Evaluation table for MICCAI MS lesion segmentation
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