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Abstract

This manuscript examines the application of a new parametethod to the segmentation of MS
lesions from structural brain MRI images (sMRI). The datadus this work was provided by the MS
Lesion Segmentation Challenge at MICCAI 2008. The methas tise vector image joint histogram,
built over a training set, as an explicit model of the featumetors indicating lesion. The histogram is
used to predict lesions in the test data by labeling featecgovs consistent with lesion feature vectors in
the training set. The results are evaluated using STAPLBrgpare against two separate human raters.
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Lesion segmentation in magnetic resonance imaging (MRIggts novel challenges compared to general
tissue segmentation. Lesions have been found to presenséhees with somewhat homogeneous signal
across image contrasts such as ischemic lesion cases. Eipyesions in Multiple sclerosis (MS) patients
present additional challenges in that they are found to berdgeneous in itensity variation across image
contrasts e.g. enhancing lesions, black holes, etc. Isigasd that the relationships between the intensities
of the different sequences, along with the spatial inforomatprovide the necessary information to accu-
rately segment the lesions. The efforts presented heresept an attempt to construct a parametric model
of the intensity feature vectors that indicate the presefdéS lesions in the training set and then use that
model to predict the location of lesions in the testing data.

1 Data

The MS lesion MRI image data provided for the contest was as®g of 54 brain MRI images and repre-
sents a range of patients and pathology. Two groups of data pvevided consisting of 20 training MRI
images and 25 testing images. The image data was acquiractap by Children’s Hospital Boston (CHB)
and University of North Carolina (UNC). UNC cases were agpion a Siemens 3T Allegra MRI scanner
with slice thickness of 1mm and in-plane resolution of 0.5nime data supplied was rigidly registered to a
common reference frame and resliced to isotropic voxelisgagsing b-spline based interpolation. Multiple
sequences were provided, including T1, T2, FLAIR, and DTI.

Figure 1:T1, T2, FLAIR, lesion tracing and unlabeled lesion.

2 Data Quality

There were numerous problems with data quality in the tngirsnd test data sets. There were a number
of artifacts in the scans, including poor motion correctipoor registration, and large variations in the
signal to noise ratio. There was also a lack of agreementdmtvexperts on lesion location. There were
many instances where one expert considered somethingoa lgsit another expert did not label. There
were also instances of lesions being inside ventricles,eflsas connected lesions being labeled as multiple
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separate lesions. Supervised learning approaches argveettsthe quality of the labeled training set and
consequently all of the data quality issues contributechéoreduced accuracy of the parametric method
presented here.

3 Preprocessing

Lesion segmentation has been shown to be highly susceftibbiations in field strength both within and
across scans3[ 4, 7]. A number of approaches to correct for these problems haea lexamined in the
literature but normally the steps taken involve bias cdivecand intensity standardizatio]|

In order to make working with the images more ameable to sta1s tissue classification they were first
down sampled to 1mm isotropic resolution. Brain extracti@s performed on each subject using BEJR [
on the down sampled T1 and T2. Samples were taken of the gretg,vand CSF tissues of each subject
in order to provide the mean values of each tissue type fardmarection. To reduce variation due to field
strength inhomogeniety, bias correction was then perfdrore each down sampled T1, T2, and FLAIR
using methods presented by Styng& [[n order to reduce inter-subject variability intensitaisdardization
was performed via histogram matching. Histogram matchiag accomplished by linearly scaling each bin
of the histogram, independently for each image type, to mateference exemplad]|

4 Model Building

The overall goal of parametric approaches is to construcbdetof MS lesions that has predictive power
based on some feature set. The training data consisted ofZ;IFLAIR, FA, and MD images. While
it would have been interesting to extend the analysis to Cafhdonly the T1, T2, and FLAIR data was
included in this analysis. The model of MS lesion tissue istlependent on the intensities of the T1, T2,
and FLAIR images along with the spatial information embddig those voxels in the neighborhood of a
given lesion voxel. Parametric methods have shown goodtsesuthe past §], as have spatial methods
[3], but stronger results have been shown by combining the ppocachesq]. The motivation behind the
approach in this paper was to construct an explicit modédi@féature vector intensities that identify lesion
tissue. One such model is the joint histogram calculated thesvector image constructed by registering
the T2 and FLAIR to the T1, then creating an image where eagblvapntains a vector representing the
T1 intensity, the T2 intensity, the FLAIR intensity, and tiesue class for that voxel's location. The joint
histogram then represents the number of times a given featator was labeled lesion, along with the
number of times that vector was not labeled lesion. By adtliegoint histograms calculated this way for
each subject a combined histogram could be created for tive éataset.

In order to make the histogram calculation more computatigriractable, the T1, T2, and FLAIR values

for all training and test subjects were quantized into fifteans of width one half standard deviation of the
intensities, calculated on a per image basis. There arategiefour tissue class intensity distributions to

identify and those distributions are know to overlap sonetarhave widths well above 0.5 sigma. Thus it
can be assumed that quantizing does not grossly distortatae although it may cause errors in relation to
partial volume voxels.

The T1, T2, FLAIR, and lesion label were then treated as airnaihponent / vector image and the 4D joint
histogram was calculated. For each possible combinatidrieflue, T2 value, and FLAIR value the joint

histogram contained the number of times that feature veegurlted in a lesion and the number of times it
did not. By dividing the number of times a feature vector watseled lesion by the number of times the
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feature vector occurred, the frequency with which thatueatector resulted in lesion was obtained.

5 Prediction

An initial predicted lesion label map was constructed fartegest subject by setting the voxel value equal
to the frequency of that voxel location’s feature vectortia 4D joint histogram model. These values were
then thresholded in order to reduce the amount of falseipesiivhile keeping the number of false negatives
low. The threshold value was selected empirically and ctikédy be improved through the application of
a more rigorous experimental process.

In order to obtain a rough tissue segmentation, KMeans, iwitial class means, was performed on the T1

image for each subject. This label map was combined withtresholded lesion mask to create a label

map with different integer values for Grey, White, CSF andgibr tissue. The generated label map was
then filtered so that lesion tissue that was within 2 voxel€ 8F tissue was discarded. The label map was
then used to pull 200 exemplar points to train a naive Baped&ssifier which then proceeded to classify

the vector image composed of the T1, T2, and FLAIR images.

Each independent connected component in the lesion mapiggddoy the Bayesian classifier was then
filtered based on a minimum lesion size provided by a local k&&. Each lesion component had to have
a least one dimension with three voxels with the other twoedlisions being at least two voxels. While
lesions may occur below this size they are generally noldéabigy human experts due to high error rates.

In order to submit the data for evaluation the lesion map vpssunpled to 0.5mm by 0.5mm by 0.5mm.

6 Results

Table 2 contains the prediction results by comparison to two hunaders using the STAPLE algorithm
[1Q]. A score of 95 is equivalent to the performance of anothendau rater. The overall performance was
poor, as can be seen by the total scores and the PPV value STAELE. As can be seen from tatféhe
method presented here had reasonably good specificityepusitive rate, and a fairly poor sensitivity, or
false negative rate, as was expected based on the initiél ibe table also indicates that for some subjects
the methods were highly effective while for others they wetiemely poor. This could be due to variances
in the volume of lesions between subjects. The table algstilites the variability between the two raters,
as evidenced by the large difference between the sets dsstmreach site.

7 Discussion

Everything presented here is confounded by the lack of gatiperformed by each expert on the entire
dataset. Since only UNC cases were rated by the UNC rater @gd_¢iB cases were rated by the CHB
rater, it was impossible to examine lesions that both ratgrsed on.

Initially the lesions as predicted by the joint histogramdelovere meant to act as a training set for a Support
Vector Machine (SVM). However, when trained on only thossee vectors that had some chance of being
lesions the SVM failed to converge even after 48 hours. Theréato converge may be due to there being
no optimal decision boundary between the classes, whichpsed by the joint histogram data.

The joint histograms are explicit models of the feature eecthat were labeled as lesions by each site’s
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CHB | UNC

Number of features 991 481
Intersection 420 420
Union 1052 | 1052

Jaccard Overlap | 0.3999| 0.3999
Dice Metric 0.5707| 0.5707
Spatial Overlap | 0.4238| 0.8732

Table 1: Feature Vector Overlap Between Raters

experts. By generating histograms for the UNC and CHB tngjiisiets independently the difference in raters
can be examined. After thresholding the histograms to foaaks various overlap metrics can be calculated.
These metrics convey the agreement between the two sitel's @ what feature vectors actually represent
lesion.

As can be seen from tablethere exists significant disagreement between the ratams the two sites on
what feature vectors indicate lesion. The CHB rater comsilt rated more feature vectors as lesion but
there were still feature vectors the UNC rater felt weredeghat the CHB rater did not. The fact that the
Jaccard Overlap is less than 0.4 indicates extreme diffesem the feature vectors considered lesion. Itis
difficult to believe any automated technique would be ableotwectly label all lesions in this situation.

In an ideal world the feature vectors of lesions would newetdbeled anything other than lesion. If that
were the case, lesion segmentation could be accomplishigadlysby labeling those feature vectors as lesion.
Unfortunately that is not the case in the MS training set.ureé@ lays out the relationship between the
number of times a feature vector was labeled lesion along thié number of times that feature vector
occurred. The vectors have been sorted to ascend by fregoéfesion occurrence, calculated as number
of times the feature vector was lesion / number of times th&ufe vector occurred.

One of the things figur@ expresses is that the majority of lesion feature vector§, @it of 1052, were
labeled lesion less than ten times for the entire trainirtg $éis indicates that over half of the feature
vectors indicating lesion are unique, represent collettionly 1925 out of the 114634 voxels labeled as
lesion, and most likely can not be labeled lesion withouintglinto account spatial information. Alternately,

it could also indicate that these particular feature vescéoe not lesion, and thus represent noise in the expert
ratings.

The main point embodied by figugzis that the number of times a given feature vector is labeteldsion

is generally dwarfed by the number of times it is not labeksidn. The feature vector with the highest
frequency of being labeled lesion occurred 47 times in thmitng data set and was labeled lesion only 19
times. If this feature vector was always labeled lesion itlddoe wrong 60% of the time! The feature
vector representing the most lesion voxels, 3687, occuaredal of 195,344 times and so was lesion less
than 2% of the time. If this feature vector was labeled ase®ibh then 3.2% of the lesions would be labeled
as false negatives. If only a few of the feature vectors étdulihese problems the approach could still have
merit, but all the feature vectors exhibited this problenetddmining which feature vectors to label lesion
becomes a tradeoff between the false positive and falsdinegate.

The lack of feature vectors clearly indicating lesion corsvéour possibilities: First, the ratings are incon-
sistent and inaccurate, a position for which some evidera® presented earlier. Second, the quantization
resolution was too low to truly distinguish the feature westfrom each other. This is unlikely since the
overlap between the lesion distributions and the otheriligions is much wider than 0.5 standard devia-
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tions. Third, most of the discriminatory information nedde characterize lesions is contained in the spatial
relationship of lesion voxels to their neighbors, a positionsistent with some of the literatui®,[although
other MS literature indicates a pure parametric approadiess) reasonables]. The fourth possibility is
that the bias correction and intensity standardizatiorhods used were insufficient or inappropriate. There
is a clear case to be made that performing intensity staraddiah independently on each image is an ap-
proach that could introduce more noise than it eliminaté® dlements of the feature vectors are themselves
not independent so it makes sense to work with vectors ofgities. Most recent approaches to intensity
standardization have taken a vector appro&ci,[4, 11].

8 Future Work

There are a number of things that could be done to improvedbalts of the technique presented here.
Performing joint histogram based intensity standardizafis laid out in 3] would likely improve results
since it operates on feature vectors rather than indepediemsities. Further, experimenting to find the
optimal quantization scheme would simultaneously redwisenand improve recognition.

There are a number of follow on steps likely to prove valuableh as using the joint histogram technique
as a means of focusing on only those features that have saneebf being lesion and using those features
as input to an additional classifer. The voxels predictethkyjoint histogram as lesion could also be used as
seed points for a region growing approach, thus incorpuydtie spatial information. Alternately, training
a Markov Random Field which would then operate over the lababe as predicted by the histogram, or
the histogram combined with some classifier, would alsorpm@te spatial information and would likely
outperform the techniques presented here. Additionallyh&r work into eliminating false positives, likely
through a heirarchical classification approach, would sigwrove results.
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B Results Table

Ground Truth UNC Rater CHB Rater STAPLE

All Dataset Volume Diff. | Avg. Dist. | True Pos.| False Pos,| Volume Diff. | Avg. Dist. | True Pos.| False Pos.[Tota|SpecificitySensitivity PPV
[%] Score |[[mm] Score| [%] Scorg [%] Score [%] Score| [mm]Score [%] Scorgd [%] Score
UNC testl Case01 33.3 95 |33.1 32 | 23 53| 939 52| 949 86 | 320 34| 3.1 53| 939 52|57| 0.9342 0.0147 0.0104
UNC testl Case02 102.0 85 |11.2 77 | 221 64| 885 56| 73.3 89 81 83|159 61| 779 62| 72| 09911 0.4058 0.8711
UNC testl Case03 265 96 |26 95 | 472 78| 385 86| 51 99 21 96| 500 80| 34.1 89|90| 0.9856 0.7641 0.7458
UNC testl Case04 16.2 98 |3.7 92 | 50.0 80| 67.2 69| 30.1 96 24 95| 556 83| 71.9 66|85| 0.9842 0.8253 0.811(
UNC testl Case03 16.0 98 (489 O 0.0 51| 100.0 49| 89.7 87 | 434 11| 0.0 51| 100.0 49| 49| 0.9557 0.0000 0.000(
UNC testl Case0§ 25.3 96 |50.3 O 0.0 51| 100.0 49| 2335 66 | 449 7 | 0.0 51| 100.0 49| 46| 0.9361 0.0000 0.000(
UNC testl Case0f 55.6 92 |39.2 19 | 0.0 51| 1000 49| 3.1 100| 357 27| 0.0 51| 100.0 49|55| 0.9730 0.0000 0.000(
UNC testl Case0§ 288.6 58 |21.9 55 | 149 60| 88.1 56| 5351 22 | 269 45| 444 77| 83.6 59| 54| 0.8567 0.2666 0.0501
UNC testl Case09 420.2 38 |584 O 0.0 51| 100.0 49| 6339 7 747 0 | 0.0 51| 100.0 49| 31| 0.9411 0.0000 0.000(
UNC testl Caseld 397.9 42 |18.7 61 | 25.0 66| 954 52| 1699.9 O 241 50| 66.7 89| 96.3 51|51| 0.9183 0.7070 0.2391
CHB testl Case01 835 88 |11.9 76 | 93 57| 13.3 100 764 89 | 11.6 76| 25.8 66 | 13.3 100| 81| 0.9989 0.0944 0.693(
CHB testl Case04 149 98 |66 86 | 318 70| 63.2 71| 63.7 091 45 91| 36.8 72| 21.1 97|84 0.9954 0.3711 0.806(
CHB testl Case03 125.7 82 |51.7 O 0.0 51| 1000 49| 91 99 | 555 O | 0.0 51| 100.0 49| 48| 0.9655 0.0000 0.000(
CHB testl Case04 283.9 58 |47.1 3 0.0 51| 100.0 49| 84.7 88 | 49.7 0 | 0.0 51| 100.0 49| 44| 0.9240 0.0000 0.000(
CHB testl Case04 81.7 88 |224 54 | 74 56| 881 56| 965 86 | 13.8 72| 17.4 61| 28.6 92| 71| 0.9996 0.0278 0.789¢
CHB testl Case0f§ 324 95 |36 93 | 444 77| 89.0 55| 294 96 35 93]364 72| 90.5 55|79| 0.9861 0.4395 0.690¢
CHB testl Case07 19.1 97 6.0 88 |50.0 80| 86.7 57| 50.8 93 25 95| 579 84| 64.2 71|83| 0.9937 0.4020 0.8291
CHB testl Case04 115 98 |14.1 71 | 333 70| 87.7 56| 408 94 | 145 70| 20.6 63| 86.4 57| 73| 0.9809 0.3119 0.4662
CHB testl Case09 3.8 99 31 94 | 416 75| 427 84| 125 98 23 95327 70| 28.1 93|88| 0.9922 0.7212 0.868¢
CHB testl Casel( 154.7 77 |81 83 | 789 96| 96.2 51| 246 96 50 90| 79.3 97| 919 54|81| 0.9795 0.5347 0.5604
CHB testl Casell 355 95 |37.2 23 | 68 55| 974 50| 79.2 88 | 383 21| 13.8 59| 91.2 54|56| 0.9879 0.0195 0.0814
CHB testl Caselqd 80.9 88 |21.6 55 | 193 62| 832 59| 810 88 | 235 52| 7.7 56| 875 56| 65| 0.9840 0.0451 0.1892
CHB testl Casel3 27.2 96 |70 86 | 400 74| 846 58| 554 92 39 92381 73| 423 84|82| 0.9969 0.5486 0.9139
CHB testl Caselq 90.6 87 |11.5 76 | 123 59| 469 81| 876 87 8.7 82| 106 58| 37.5 87| 77| 0.9948 0.0523 0.5321

All Average 101.1 85 |225 55 | 224 64| 813 60| 1746 81 | 222 57| 255 66| 725 65|67 | 0.9690 0.2730 0.4229

AllUNC 138.2 80 (288 43 | 16.1 61| 87.2 57| 3399 65| 294 45| 236 65| 858 57|59| 0.9476 0.2984 0.272§
All CHB 747 89 |180 63 | 268 67| 771 63| 565 92 | 169 66| 269 67| 63.0 71| 72| 0.9842 0.2549 0.5301

Table 2: Evaluation table for MICCAI MS lesion segmentation
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