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Abstract

In this paper, we present a new automatic robust algorithsegment multimodal brain MR images
with Multiple Sclerosis (MS) lesions. The method perforissue classification using a Hidden Markov
Chain (HMC) model and detects MS lesions as outliers to théahd-or this aim, we use the Trimmed
Likelihood Estimator (TLE) to extract outliers. Furtherrapneighborhood information is included
using the HMC model and we propose to incorpoiaferiori information brought by a probabilistic

atlas.
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1 Introduction

Multiple Sclerosis (MS) is a disorder of the central nervaystem. To better understand this disease and
to quantify its evolution, magnetic resonance imaging (MRIncreasingly used nowadays. Nevertheless,
manual delineation of lesion by human experts is a time+omirsg process and is prone to intra- and inter-
observer variability, which deteriorates the significant¢he resulting segmentation analysis. Therefore
fully automated and reproducible methods are requiredgmsat MS lesions in multimodal MR sequences.
MS lesions are often detected as voxels that are not welbigu by a statistical model for normal brain
MR images.

In [15], Schroeteret al. use Gaussian mixtures to model the presence of differenponents within each
voxel, and to robustify the estimation scheme, they add ssabé outliers with a uniform distribution cor-
responding to lesions. Ing], Van Leemputet al. introduce weights reflecting the degree of typicality of
each voxel. Their method also includes neighborhood inédion using a Potts model. In this paper, we
propose to keep neighborhood information during the imfegeprocess by using a Hidden Markov Chain
model taking into accourd priori information brought by a probabilistic atlas, and detagttliers using
the Trimmed Likelihood Estimator.

This paper is organized as follows: next section introdubesHidden Markov Chain model and explains
how information brought by a probabilistic atlas is incaigted to help the segmentation process. Section
3 presents the Trimmed Likelihood Estimator (TLE) used teedebutliers corresponding to ME lesions.
In section4, we apply such estimator to the HMC model for MS lesion datactresults obtained on real
images are shown in sectidn Finally in section6, conclusions are drawn and future developments are
suggested.

2 Robust Hidden Markov Chain Segmentation using Probabilistic Atlas

To segment Brain MRI, we propose to use Hidden Markov Chaid@) by using a 3D Hilbert-Peano
scan of the data cube (Fi§.a)[2]. HMC is a method based on neighborhood information which lieen
widely used to segment 2D images (see &8p). Neighborhood information is included in the HMC model.
The interest of Markov Chain methods for image segmentatiaard to 3D Markov Random Field (MRF)
models is that it is a 1D modeling requiring lower computingts with similar results. Contrary to MRF,
the neighboring information is partially translated in th&in: two neighbors in the chain are neighbors in
the grid, but two neighbors in the cube can be far away in tl@nchHowever, due to strong correlation
within the data cube, this scan will weakly influence the segtation results. The first step of segmentation
algorithms based on HMC consists in transforming the imagea vector?]. Once all the processing has
been carried out on the vector, the inverse transformatiapplied on the segmented chain to obtain the
final segmented image.

Let us now consider two sequences of random variakles(X,)nes the hidden process, aMl= (Yy)nes
the observed one, witB the finite set corresponding to tievoxels of the image. EacK, takes its value

in a finite set ofK classe2 = {wy,...,ux } and eachy, takes its value irR. For this application, we
haveK = 3 classe®2 = {WM, GM,CSF} whereW M, GM andCSF denote respectively white matter, gray
matter and cerebrospinal flui.is a Markov Chain iP(Xn 1 = W, ;[ Xn = W,,..., X1 = W) = P(Xnp1 =
W, ., | Xn = wx,). ThusX will be determined by the initial distribution = P(X; = wx) and the transition
matrix a; = P(Xn+1 = W [Xy = wx). We assume the homogeneity of the Markov Chain which meats th
the transition matrix is independent of the locatioray = ag, for 1< n < N.
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Figure 1:(a) 3D Hilbert-Peano scan used for image vectorization.bpendency graph of Hidden Markov
Chain with atlas information.

The likelihood fx(yn; 8) = P(Yh = Yn|Xn = wx) of the observatiory, conditionally toX, = wx is assumed
to be a Gaussian density with meane {u, ..., } and variances2 = {0%,...,0%}. These parameters
are clustered i. A priori information brought by a probabilistic atlas is introdudedhe model to drive
the segmentation process. This atlas derived from 31 ndona&hs which were registered using a non-
rigid transformation 13] and segmented using a HMC modB].[Then these different segmentations were
averaged to obtain the atlas. This atlas contains probalmiformation about the expected location of
WM, GM, and CSF. The different probabilities in each voredalculated during the HMC algorithm were
multiply by the prior probabilityb, (k) of this voxel to belong to clask given by the atlas in the HMC
modeling. The dependency graph of a HMC is presented in Fiy. Hidden Markov Chain offers the
opportunity to computexactlythe posterior marginals at each location and to obtain ditep& of the
image by using the posterior probabilit9]{

o= arg maxb(X, = wfY =y) 1)
= arg maxin(K)Bn(K) (2)
wEeQ

with an(k) = P(Xn = ax, Y1,. .., Ys) forward probability ang, (k) = P(Yn11, . .., Yn|Xn) backward probabil-
ity. These probabilities can be computed recursivély This recursive computation is detailed in Skin
the robust case.

3 Trimmed Likelihood Estimator

We detect MS lesions as outliers toward statistical modeloomal brain images. To extract these outliers
and to estimate the parameters of the different classesdbust way, the Trimmed Likelihood Estimator
(TLE) was used. The TLE was introduced 2] and developed to estimate mixture of multivariate normals
and generalized linear models in a robust waSj[ The main idea lies in removing thee— h observations
whose values would be highly unlikely to occur if the fitted debwas true. The optimization scheme
used to compute this estimator derives from the optiminagicheme of the Least Trimmed Squares (LTS)
estimators of Rousseeuw and Lerdy]. This algorithm was used to segment brain MRI by Ait-Alitive
frame of Gaussian mixtures without including neighborhaad atlas informationl].
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3.1 Trimmed Likelihood Estimator

The Trimmed Likelihood Estimator (TLEWLD] is defined as:
~ . h
Orie = argergégi;w(yvm 6) (3)

where for a fixed, Y(yy(1);0) < W(Yy(2):0) < ... < W(Yy(n);0), W(Yi;8) = —log f(yi;0), yi € R fori =
1,...,narei.i.d observations with probability densityy, 8) depending on an unknown parameet ©F C
RP. v =(v(1),...,v(n)) is the corresponding permutation of the indices, which ddpen®6, andh is the
trimming parameter.

A h
Orie= argengfrl f(Yo(i): 0) (4)
=

General conditions for the existence of a solution of (Baare proved inT]. Convergence and asymptotic
properties are studied il 7].

3.2 FAST-TLE algorithm

In [11], Neykov and Miiller develop a fast iterative algorithm fibgrivation of the TLE. This FAST-TLE
algorithm can be described as follows: givéAd = {y;,,....y;,} C {y1,-..,¥n},

e Computef®!d := MLE (Maximum Likelihood Estimator) based ¢i°'d.

DefineQ?!d = 5% w(y;,,8°9).

Sorty(y;,8%9) fori = 1,...,nin ascending ordem(yy i), 899) < Y(yy(i,1),6°7) and get the permu-
tationv = (v(1),...,v(n)).

DefineH"™ = {yy(1), .-, Yo }-
Computed™":= MLE based orH"".

DefineQ™Y= 3 1 Y(yy(),6"").

4 Proposed framework

To estimate parameters in a robust way and to detect lesimn#jus adapt the FAST-TLE algorithm pre-
sented in Sec3.2 to the HMC model. We use the following notation(yn;0) = P(Yy = yn|Xn = ax)
denotes the likelihood of the observatignconditionally toX, = wx andby(k) represents the prior proba-
bility of voxel nto belong to clask given by the atla8. This leads to:

1. Computeé(pfl) := MLE using the Expectation-Maximization (EM) algorithrf], based on the
whole dataset;



2. Sort residus, = —log f (Yn,bn; 6PD) = —logP(Yn = yn,Bn,8(PY) for n=1,..., N with:
P(Ya = Yn, Bmé(p_l)) = Yox P(Yn = Yn,Bn,

Xl"l — m@ é(p_]'))
=Ya P =0x)bn(k)
fic(Yn: 6P ) (5)
3. DefineH (P = {W(),--Yu(n) } the subset containing thevectors with the lowest residus f6rP—1;

4. ComputeE)(IO := MLE using EM, based ol (P). We assign the likelihood of data considered as
outliers to one, i.efx(yn) = 1,Vvk in the HMC process. On the location where the data is coreider
as an outlier, only prior distribution takes place in theelaimy process. Calculation of the different
probabilities becomes:

e Forward probabilities:
— a1(k) = i fi(y1; 6P))by (K) i i
— an(k) = 3K an_1(a fk(yn; 8P)bn(K) with fi(yn, 8(P)) = 1 if y, is considered as an out-
lier.
Backward probabilities:
— Bn(k) = X X
— Bn(K) = 1 Brra(Daw fi (Yny1;8P) by 1 (1) with i (yn.1,0P)) = 1if y,.1 is considered as
an outlier.

a posteriorijoint probabilities:
an—l(])ajl fi (Yna ) n(( )Bn( )

Yk 0n(K)
e a posteriorimarginal probabilities:
V(i) = P(Xo = 6 |¥a, ... V) = Bl
o I = z”ly”+(zy>”l with y,, belonging to the subset(P).

g Yoy (D) (Vg —H) (Vny —H)"

°Gi= Sy Vor 1)

with y,, belonging to the subsét(P).

5. Back to step 2 until convergenceldfP).

The trimming parameteh representing the percentage of voxels used to estimateattaenpters has to
be fixed by the user. To carry out this problem, we propose ¢oamsadaptative trimming parameter and
a thresholds for the probability P(Y, = yn,Bn,0) (EQ. 5). At each iteration, the voxels for which the
probability P(Y, = yn,Bn,0) is lower than the threshold are considered as outliers to the model and not
included in HMC parameter estimation. In this case, thertring parameteh will change at each iteration.

Outlier voxels also occur outside MS lesions, especiallihenCSF class. The reason is that the gaussian
model is not true for the CSF class and thus these voxelssrckass will be considered as outliers and thus
parameter estimation of the CSF class will be biased. Ty cautrthis problem, at each iteration, outliers for
which the prior probability of CSF given by the atlas is higtiean 0.5 are excluded and taken into account
in parameter estimation. Moreover, a post-processingvetspadded to our algorithm. Only the outliers for
which the prior probability of WM given by the atlas is hightan 0.5 are kept and lesions with a small
volume (3nn?) were excluded.



5 Results

Tests have been carried out on the T2 and Flair images of shelatgabase. The test database is composed
of 10 cases from the University of North Carolian and 15 cdisea the Children’s Hospital Boston. The
results are reported in FB Different metrics were employed:

e The volume difference captures the absolute percent volliffezence to the expert rater segmenta-
tion

e The average distance captures the symmetric averageeditdance to the expert rater segmentation

e True positive rate = Number of lesions in the segmentatian olrerlaps with a lesion in the expert
segmentation divided by the number of overall lesions iretkggert segmentation.

e False positive rate = Number of lesions in the segmentatiahdoes not overlap with any lesion in
the expert segmentation divided by the number of overabssin the automatic segmentation.

All metrics are scored in relation to how expert rater corepagainst each other. A score of 90 for any
of the metric would equal performance akin an expert rateg. ddtain quite good results concerning the
volume difference and the average distance. For the truéatselpositive rates, we can observe a significant
variablility in the expert segmentation. For example far tiase 09 of the UNC database, we obtain a true
positive rate of 100% with the CHB rater and only a true pesitate of 333% with the UNC rater.

An example of results obtained on the case 04 of the UNC téabdse is presented &

6 Conclusion and Outlook

We have described a robust framework for tissue classificaif multimodal brain MR images and MS
lesions detection. Hidden Markov Chains were used to irchelghborhood information in the model. This
spatial regularization is required to overcome the distnde added during the MRI formation. Moreover
a priori information was introduced using a probabilistic atlas ksibn extraction was carried out using
the Trimmed Likelihood Estimator and an adaptative threshiBurther information on this method can be
found in [3, 4].

References

[1] L.S. Ait-ali, S. Prima, P. Hellier, B. Carsin, G. EdamdaC. Barillot. STREM: a robust multidi-
mensional parametric method to segment MS lesions in MRIJ. IDuncan and G. Gerig, editors,
MICCAI'2005 volume 3749 ofLecture Notes in Computer Sciengeages 409-416, Palm Springs,
USA, October 2005. Springed

[2] Y. Bandoh and A. Kamata. An address generator for a 3-adgiemal pseudo-Hilbert scan in acuboid
region. InProc. of IEEE Int. Conf on Image Proces$999.2

[3] S. Bricq, C. Collet, and J.-P. Armspach. Lesions detecthn 3d brain mri using trimmed likeli-
hood estimator and probabilistic atlas.Hifth IEEE International Symposium on Biomedical Imaging
ISBI'08, Paris, France, may 2008.



References 7
Ground Truth UNC Rater CHB Rater

All Dataset Volume Diff.| Avg. Dist. |True Pos. |False Pos.|Volume Diff.| Avg. Dist. | True Pos. |False Pos.|Total

[%] Score| [mm]Score| [%] Score| [%] Score| [%] Score| [mmn]Score| [¥] Score| [4] Score

UNC testl Case0l| 62.9 91 13.5 721|256 66 (738 65| 457 03 145 70| 281 G671(66.7 69| T4
UNC testl Case02{105.2 85 59 881|338 71605 73| 729 RO 32 93| 182 62 (140 100| 83
UNC test]l Casel3| 584 91 29 041|246 65 (29.7 92| 463 93 22 95| 27.2 67 (203 97| 87
UNC testl Casel4| 30.2 96 32 03474 78333 89| 83 99 1.7 96| 63.0 871|455 82| 80
UNC testl Case5| 7.1 99 29 941|524 81581 T4|142.0 79 36 92| 739 093(7h8 63| 85
UNC testl Case06| 643 91 4.8 90483 79547 76| 594 91 16.7 66| 625 87|79.2 61| 80
UNC testl Case07| 384 94 23 05475 T8 (32,7 90| 428 WM 29 94| 7.0 91 (558 76| 89
UNC testl CaselS| 51.5 92 29 041489 79 452 82| 207 97 23 05| 833 99571 75| 89
UNC testl Case09| 0.9 100 25.0 401333 701(93.8 53| 398 94 284 42 |100.0 100 [93.8 53| 7O
UNC testl Casel0| 43.9 94 163 66 |20.0 63 [84.0 584203 38 18.0 63| 50.0 B80|88.0 56| 65
CHB testl Case01| 78.6 88 6.6 86 (187 62(16.0 100( 694 90 43 91| 419 75280 93| B6
CHB testl Case02| 27.5 96 64 87318 70 |76.5 63| 69.1 90 4.7 90| 421 75382 86| 82
CHB testl Case03| 41.8 94 55 891|571 84652 TO| TL9 B9 7.1 85| 46.7 78 [69.6 67| 82
CHB testl Case0d| 563 92 52 B89 |63.6 88478 S80O| 790 88 11.3 77| 50.0 80|13.0 100 | &7
CHB testl Case05| 60.3 91 10.5 781|206 6B (940 52| 69.6 90 37 02| 478 79573 75| 78
CHD testl Case06| 51.1 93 45 91556 83 |96.7 51| 579 92 46 91| 364 72969 51| 78
CHB testl Case07| 62.1 91 95 80300 69|77.0 63| 769 89 38 02] 342 71363 88| BO
CHB test]l Case0O8 40.5 94 28 041667 89345 80| 602 01 49 90| 471 78 (20,7 97| 90
CHD testl Case09| 162 98 32 931|329 70583 T4| 293 96 26 95| 241 65 (240 95| B6
CHB testl CaselD| 55.5 92 48 90 (526 B1|63.8 71| 783 89 6.5 87| 345 711483 B0O| 83
CHB testl Casell({119.2 83 6.0 838|341 71952 52| 291 96 20 06| 370 73678 68| TF
CHB testl Casel2| 754 89 43 91205 63|51.6 78| 755 89 44 901|282 68408 79| ®1
CHB testl Casel3| 42.4 94 58 88 [|40.0 74 |66.7 69| 64.7 01 40 921|333 70(26.7 93| B4
CHB testl Caselb| 42.1 94 38 021|329 701491 80| 23.7 97 23 05| 404 74 (52.6 TR| B85
All Average 51.3 92 6.6 86 (305 T74|60.8 73| 730 89 6.7 86| 46.7 78([51.1 TR | 82
All UNC 463 93 8.0 84382 731|566 75| 80.8 87 04 81| A7.6 B83([50.6 T 81
All CHB 54.9 92 56 881|404 74638 T1| 61.0 01 47 00| 38.0 74 (449 82| B3

[4] S. Bricq, C. Collet, and J.-P. Armspach. Markovian segtaton of 3d brain mri to detect multiple

Figure 2:Results obtained on the UNC and CHB test database.

sclerosis lesions. IHEEE International Conference on Image Processing ICIR’88n Diego, CA,
USA, october 20086

[5]

[6]

[7]

[8]

S. Bricq, C. Collet, and J.-P. Armspach. Unifying franwwfor Multimodal Brain MRI Segmentation
based on Hidden Markov Chainsledical Image Analysjsn press 20082

P. A. Devijver. Baum’s forward-backward algorithm rsited. Pattern Recognition Letter8(6):369—
373, December 1982

R. Dimova and N.M. Neykov. Generalized d-fullness tdghes for breakdown point study of the
trimmed likelihood estimator with applicationsTheory and applications of recent robust methods
2004.3.1

R. Fjortoft, Y. Delignon, W. Pieczynski, M. Sigelle, arid Tupin. Unsupervised Classification of
Radar Images Using Hidden Markov Chains and Hidden MarkawBan Fields.|IEEE Transactions
on Geoscience and Remote Sens#id3):675-686, March 2002

[9] A. Gelman, J. Carlin, H. Stern, and D. RubiBayesian data analysihapman and Hall - New York,

2005.2



References 8

(d) (e)

Figure 3:Example of results obtained on the case 04 of the UNC tesbdsta (a) and (d) correspond to
the Flair images, (b) and (e) to the T2 images. (c) and (f) egpond to the lesions detected surimposed on
the Flair images.

[10] A.S. Hadi and A. Luceno. Maximum trimmed likelihood iesators: a unified approach, examples,
and algorithms Computational Statistics and Data Analys2$:251-272, 19973.1

[11] N.M. Neykov and C.H. Milller. Breakdown point and contgiiion of trimmed likelihood estimators
in generalized linear models. In R. Dutter, P. FilzmoseiGdtter, and P.J. Rousseeuw, edit@rsyel-
opments in robust statisticpages 277-286, Physica-Verlag, Heidelberg, 2@03.

[12] N.M. Neykov and P.N. Neytchev. A robust alternativeled MLE. Compstat’90 pages 99-100, 1990.
3

[13] V. Noblet, C. Heinrich, F. Heitz, and J.P. Armspach. ®Bformable Image Registration : A Topology
Preservation Scheme Based on Hierarchical Deformationeldaxhd Interval Analysis Optimization.
IEEE Transactions on Image Processifig(5):553-566, 20032

[14] P.J. Rousseeuw and A.M. Lerdgobust Regression and Outlier Detectidiley, 1987.3

[15] P. Schroeter, J.-M. Vesin, T. Langenberger, and R. MeRbbust parameter estimation of intensity
distributions for brain magnetic resonance imad¢ieEE Transactions on Medical Imagingj7(2):172—
186, April 1998.1

[16] M.A. Tanner. Tools for statistical inference : methods for the explaratiof posterior distributions
and likelihood functionsSpringer Verlag, 19931

[17] P. Cizek. Robust estimation in nonlinear regression andditndependent variable modelEconPa-
pers 2002.3.1



References 9

[18] K. Van Leemput, F. Maes, D. Vandermeulen, A. Colchested P. Suetens. Automated Segmentation
of Multiple Sclerosis Lesions by Model Outlier DetectiolEEE Transactions on Medical Imaging
20(8):677-688, August 2001L

[19] D.L.Vandev and N.M. Neykov. Robust Maximum Likelihootdthe Gaussian Case. In S. Morgenthaler
et al., editor,New Directions in Data Analysis and Robustnesages 259-264, Birkhauser Verlag
Basel, Switzerland, 1993



	Introduction
	Robust Hidden Markov Chain Segmentation using Probabilistic Atlas
	Trimmed Likelihood Estimator
	Trimmed Likelihood Estimator
	FAST-TLE algorithm

	Proposed framework
	Results
	Conclusion and Outlook

