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Abstract

In this paper, we present a new automatic robust algorithm tosegment multimodal brain MR images
with Multiple Sclerosis (MS) lesions. The method performs tissue classification using a Hidden Markov
Chain (HMC) model and detects MS lesions as outliers to the model. For this aim, we use the Trimmed
Likelihood Estimator (TLE) to extract outliers. Furthermore, neighborhood information is included
using the HMC model and we propose to incorporatea priori information brought by a probabilistic
atlas.
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1 Introduction

Multiple Sclerosis (MS) is a disorder of the central nervoussystem. To better understand this disease and
to quantify its evolution, magnetic resonance imaging (MRI) is increasingly used nowadays. Nevertheless,
manual delineation of lesion by human experts is a time-consuming process and is prone to intra- and inter-
observer variability, which deteriorates the significanceof the resulting segmentation analysis. Therefore
fully automated and reproducible methods are required to segment MS lesions in multimodal MR sequences.
MS lesions are often detected as voxels that are not well explained by a statistical model for normal brain
MR images.

In [15], Schroeteret al. use Gaussian mixtures to model the presence of different components within each
voxel, and to robustify the estimation scheme, they add a class of outliers with a uniform distribution cor-
responding to lesions. In [18], Van Leemputet al. introduce weights reflecting the degree of typicality of
each voxel. Their method also includes neighborhood information using a Potts model. In this paper, we
propose to keep neighborhood information during the inference process by using a Hidden Markov Chain
model taking into accounta priori information brought by a probabilistic atlas, and detecting outliers using
the Trimmed Likelihood Estimator.

This paper is organized as follows: next section introducesthe Hidden Markov Chain model and explains
how information brought by a probabilistic atlas is incorporated to help the segmentation process. Section
3 presents the Trimmed Likelihood Estimator (TLE) used to detect outliers corresponding to ME lesions.
In section4, we apply such estimator to the HMC model for MS lesion detection: results obtained on real
images are shown in section5. Finally in section6, conclusions are drawn and future developments are
suggested.

2 Robust Hidden Markov Chain Segmentation using Probabilistic Atlas

To segment Brain MRI, we propose to use Hidden Markov Chains (HMC) by using a 3D Hilbert-Peano
scan of the data cube (Fig.1.a)[2]. HMC is a method based on neighborhood information which has been
widely used to segment 2D images (see e.g. [8]). Neighborhood information is included in the HMC model.
The interest of Markov Chain methods for image segmentationtoward to 3D Markov Random Field (MRF)
models is that it is a 1D modeling requiring lower computing costs with similar results. Contrary to MRF,
the neighboring information is partially translated in thechain: two neighbors in the chain are neighbors in
the grid, but two neighbors in the cube can be far away in the chain. However, due to strong correlation
within the data cube, this scan will weakly influence the segmentation results. The first step of segmentation
algorithms based on HMC consists in transforming the image into a vector[2]. Once all the processing has
been carried out on the vector, the inverse transformation is applied on the segmented chain to obtain the
final segmented image.

Let us now consider two sequences of random variablesX = (Xn)n∈S the hidden process, andY = (Yn)n∈S

the observed one, withS the finite set corresponding to theN voxels of the image. EachXn takes its value
in a finite set ofK classesΩ = {ω1, . . . ,ωK} and eachYn takes its value inR. For this application, we
haveK = 3 classesΩ = {WM,GM,CSF} whereWM, GM andCSFdenote respectively white matter, gray
matter and cerebrospinal fluid.X is a Markov Chain ifP(Xn+1 = ωkn+1|Xn = ωkn, . . . ,X1 = ωk1) = P(Xn+1 =
ωkn+1|Xn = ωkn). ThusX will be determined by the initial distributionπk = P(X1 = ωk) and the transition
matrix an

kl = P(Xn+1 = ωl |Xn = ωk). We assume the homogeneity of the Markov Chain which means that
the transition matrix is independent of the locationn: an

kl = akl , for 1≤ n < N.
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Figure 1:(a) 3D Hilbert-Peano scan used for image vectorization. (b)Dependency graph of Hidden Markov
Chain with atlas information.

The likelihood fk(yn;θ) = P(Yn = yn|Xn = ωk) of the observationyn conditionally toXn = ωk is assumed
to be a Gaussian density with meanµk ∈ {µ1, . . . ,µK} and varianceσ2

k = {σ2
1, . . . ,σ2

K}. These parameters
are clustered inθ. A priori information brought by a probabilistic atlas is introducedin the model to drive
the segmentation process. This atlas derived from 31 normalbrains which were registered using a non-
rigid transformation [13] and segmented using a HMC model [5]. Then these different segmentations were
averaged to obtain the atlas. This atlas contains probability information about the expected location of
WM, GM, and CSF. The different probabilities in each voxeln calculated during the HMC algorithm were
multiply by the prior probabilitybn(k) of this voxel to belong to classk given by the atlas in the HMC
modeling. The dependency graph of a HMC is presented in Fig.1.b. Hidden Markov Chain offers the
opportunity to computeexactlythe posterior marginals at each location and to obtain a labeling x̂ of the
image by using the posterior probability [9]:

x̂n = arg max
ωk∈Ω

P(Xn = ωk|Y = y) (1)

= arg max
ωk∈Ω

αn(k)βn(k) (2)

with αn(k) = P(Xn = ωk,Y1, . . . ,Yn) forward probability andβn(k) = P(Yn+1, . . . ,YN|Xn) backward probabil-
ity. These probabilities can be computed recursively [6]. This recursive computation is detailed in Sec4 in
the robust case.

3 Trimmed Likelihood Estimator

We detect MS lesions as outliers toward statistical model ofnormal brain images. To extract these outliers
and to estimate the parameters of the different classes in a robust way, the Trimmed Likelihood Estimator
(TLE) was used. The TLE was introduced in [12] and developed to estimate mixture of multivariate normals
and generalized linear models in a robust way [19]. The main idea lies in removing then−h observations
whose values would be highly unlikely to occur if the fitted model was true. The optimization scheme
used to compute this estimator derives from the optimization scheme of the Least Trimmed Squares (LTS)
estimators of Rousseeuw and Leroy [14]. This algorithm was used to segment brain MRI by Aı̈t-Ali inthe
frame of Gaussian mixtures without including neighborhoodand atlas information [1].
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3.1 Trimmed Likelihood Estimator

The Trimmed Likelihood Estimator (TLE) [10] is defined as:

θ̂TLE = arg min
θ∈Θp

h

∑
i=1

ψ(yν(i);θ) (3)

where for a fixedθ, ψ(yν(1);θ) ≤ ψ(yν(2);θ) ≤ . . . ≤ ψ(yν(n);θ), ψ(yi ;θ) = − log f (yi ;θ), yi ∈ R
q for i =

1, . . . ,n are i.i.d observations with probability densityf (y,θ) depending on an unknown parameterθ ∈ Θp ⊂
R

p. ν = (ν(1), . . . ,ν(n)) is the corresponding permutation of the indices, which depends onθ, andh is the
trimming parameter.

θ̂TLE = arg max
θ∈Θp

h

∏
i=1

f (yν(i);θ) (4)

General conditions for the existence of a solution of (Eq.3) are proved in [7]. Convergence and asymptotic
properties are studied in [17].

3.2 FAST-TLE algorithm

In [11], Neykov and Müller develop a fast iterative algorithm forderivation of the TLE. This FAST-TLE
algorithm can be described as follows: givenHold = {y j1, . . . ,y jn} ⊂ {y1, . . . ,yn},

• Computeθ̂old := MLE (Maximum Likelihood Estimator) based onHold.

• DefineQold = ∑k
i=1ψ(y ji , θ̂old).

• Sortψ(yi , θ̂old) for i = 1, . . . ,n in ascending order:ψ(yν(i), θ̂old) ≤ ψ(yν(i+1), θ̂old) and get the permu-
tationν = (ν(1), . . . ,ν(n)).

• DefineHnew= {yν(1), . . . ,yν(n)}.

• Computeθ̂new := MLE based onHnew.

• DefineQnew= ∑k
i=1 ψ(yν(i), θ̂new).

4 Proposed framework

To estimate parameters in a robust way and to detect lesions,we thus adapt the FAST-TLE algorithm pre-
sented in Sec.3.2 to the HMC model. We use the following notations:fk(yn;θ) = P(Yn = yn|Xn = ωk)
denotes the likelihood of the observationyn conditionally toXn = ωk andbn(k) represents the prior proba-
bility of voxel n to belong to classk given by the atlasB. This leads to:

1. Computeθ̂(p−1) := MLE using the Expectation-Maximization (EM) algorithm [16], based on the
whole dataset;
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2. Sort residusrn = − log f (yn,bn; θ̂(p−1)) = − logP(Yn = yn,Bn, θ̂(p−1)) for n = 1, . . . ,N with:

P(Yn = yn,Bn, θ̂(p−1)) = ∑ωk
P(Yn = yn,Bn,

Xn = ωk, θ̂(p−1))

= ∑ωk
P(Xn = ωk)bn(k)

fk(yn; θ̂(p−1)) (5)

3. DefineH(p) = {yν(1), ...,yν(h)} the subset containing theh vectors with the lowest residus forθ̂(p−1);

4. Computeθ̂(p) := MLE using EM, based onH(p). We assign the likelihood of data considered as
outliers to one, i.e.fk(yn) = 1,∀k in the HMC process. On the location where the data is considered
as an outlier, only prior distribution takes place in the labeling process. Calculation of the different
probabilities becomes:

• Forward probabilities:

– α1(k) = πk fk(y1; θ̂(p))b1(k)
– αn(k) = ∑K

l=1 αn−1(l)alk fk(yn; θ̂(p))bn(k) with fk(yn, θ̂(p)) = 1 if yn is considered as an out-
lier.

• Backward probabilities:

– βN(k) = 1
– βn(k) = ∑K

l=1 βn+1(l)akl fl (yn+1; θ̂(p))bn+1(l) with fl (yn+1, θ̂(p)) = 1 if yn+1 is considered as
an outlier.

• a posteriori joint probabilities:

ξn(i, j) = P(Xn = ωi ,Xn+1 = ω j |Y = y,B)

=
αn−1( j)a ji fi(yn, θ̂(p))bn(i)βn(i)

∑k αn(k)

• a posteriorimarginal probabilities:
γn(i) = P(X1 = ωi |Y1, ...,YN) = αn(i)βn(i)

∑ j αN( j)

• µi =
∑n1

γn1(i)yn1

∑n1
γn1(i) with yn1 belonging to the subsetH(p).

• σi =
∑n1

γn1(i)(yn1−µi)(yn1−µi)
t

∑n1
γn1(i) with yn1 belonging to the subsetH(p).

5. Back to step 2 until convergence ofH(p).

The trimming parameterh representing the percentage of voxels used to estimate the parameters has to
be fixed by the user. To carry out this problem, we propose to use an adaptative trimming parameter and
a thresholds for the probabilityP(Yn = yn,Bn,θ) (Eq. 5). At each iteration, the voxels for which the
probability P(Yn = yn,Bn,θ) is lower than the thresholds are considered as outliers to the model and not
included in HMC parameter estimation. In this case, the trimming parameterh will change at each iteration.

Outlier voxels also occur outside MS lesions, especially inthe CSF class. The reason is that the gaussian
model is not true for the CSF class and thus these voxels in this class will be considered as outliers and thus
parameter estimation of the CSF class will be biased. To carry out this problem, at each iteration, outliers for
which the prior probability of CSF given by the atlas is higher than 0.5 are excluded and taken into account
in parameter estimation. Moreover, a post-processing stepwas added to our algorithm. Only the outliers for
which the prior probability of WM given by the atlas is higherthan 0.5 are kept and lesions with a small
volume (3mm3) were excluded.
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5 Results

Tests have been carried out on the T2 and Flair images of the test database. The test database is composed
of 10 cases from the University of North Carolian and 15 casesfrom the Children’s Hospital Boston. The
results are reported in Fig2. Different metrics were employed:

• The volume difference captures the absolute percent volumedifference to the expert rater segmenta-
tion

• The average distance captures the symmetric average surface distance to the expert rater segmentation

• True positive rate = Number of lesions in the segmentation that overlaps with a lesion in the expert
segmentation divided by the number of overall lesions in theexpert segmentation.

• False positive rate = Number of lesions in the segmentation that does not overlap with any lesion in
the expert segmentation divided by the number of overall lesions in the automatic segmentation.

All metrics are scored in relation to how expert rater compare against each other. A score of 90 for any
of the metric would equal performance akin an expert rater. We obtain quite good results concerning the
volume difference and the average distance. For the true andfalse positive rates, we can observe a significant
variablility in the expert segmentation. For example for the case 09 of the UNC database, we obtain a true
positive rate of 100% with the CHB rater and only a true positive rate of 33.3% with the UNC rater.

An example of results obtained on the case 04 of the UNC test database is presented in3.

6 Conclusion and Outlook

We have described a robust framework for tissue classification of multimodal brain MR images and MS
lesions detection. Hidden Markov Chains were used to include neighborhood information in the model. This
spatial regularization is required to overcome the disturbance added during the MRI formation. Moreover
a priori information was introduced using a probabilistic atlas andlesion extraction was carried out using
the Trimmed Likelihood Estimator and an adaptative threshold. Further information on this method can be
found in [3, 4].
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