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Abstract

Multiple sclerosis diagnosis and patient follow-up can be helped by an evaluation of the lesion load in
MRI sequences. A lot of automatic methods to segment these lesions are available in the literature.
The MICCAI workshop Multiple Sclerosis (MS) lesion segmentation Challenge 08 allows to test and
compare these algorithms. This paper presents a method designed to detect hyperintense signal area on
T2-FLAIR sequence and its results on the Challenge test data. The proposed algorithm uses only three
conventional MRI sequences: T1, T2 and T2-FLAIR. First, images are cropped, spatially unbiased and
skull-stripped. A segmentation of the brain into its different compartments is performed on the T1 and
the T2 sequences. From these segmentations, a threshold for the T2-FLAIR sequence is automatically
computed. Then postprocessing operations select the most plausible lesions in the obtained hyperintense
signals. Average global result on the test data (80/100) is close to the inter-expert variability (90/100).
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Multiple Sclerosis (MS) is a chronic, inflammatory, demyelinating disease of the Central Nervous System
(CNS). In people affected by MS, patches of damage called lesions appear in seemingly random areas of the
CNS. An MRI exam is required to establish MS diagnosis using McDonald crite?ja [n addition they

are often used in patients follow-up and clinical studieg.[ MRI analysis uses currently Barkhof/Tintore
criteria [1, 21] which include lesions number, location enhancement and are taking into account spinal cord
lesions [L5].

These lesions can appear as a hyperintense signal or as a hypointense signal depending on its properties an
on the used MRI sequence. Lesions are hyperintense signals in T2 and proton density sequences. Active
lesions are a piece of evidence of blood-brain barrier leakage and are the only lesion subtype in hyperintense
signals in the T1 sequence with Gadolinium. Necrotic lesions are hypointense signal in T1 sequence. Ex-
cept for necrotic lesions, T2-FLAIR sequence allows a better lesion-healthy tissue differentiation but bony
artefacts and flow artefacts are present in the image.

A binary segmentation of the lesions can help to the MS diagnosis and patient follow-up. Manual lesion
segmentation is a fastidious task and depends on intra and inter-expert variabilities. For this reason, a lot
of automatic lesion segmentation algorithms have been developed in the past 2@gparsi¢ Multiple
Sclerosis (MS) lesion segmentation Challengé @fers the possibility to compare these methods. First, a

set of train data (with manual segmentation of expert) is available to optimize the different methods. Then,
lesion segmentation has to be performed on a set of test data. Results are then compared with manual
segmentation by an expert.

The method which is proposed in this article segments automatically the hyperintense signal in the T2-
FLAIR sequence. First, the method is described. Then results on the test data of the workshop are given and
discussed.

1 Method

The method proposed in this article segments T2-FLAIR lesions from three MRI sequences (T1, T2 and
T2-FLAIR) and is divided in different steps. First, preprocessing steps allow to normalize images and to

focus on a region of interest. Secondly, a classification of the brain is performed thanks to an expectation-
maximization algorithm4] applied on the T1 and T2 sequences. These steps are similgr fo  third

step, information given by the obtained segmentations and morphological operations allow to extract lesions.

1.1 Preprocessing

MRI sequences of the MS lesion segmentation Challenge 08 are already co-registered. This means that a
same voxel in the different sequences represents the same location in the brain. However, different prepro-
cessing steps have to be performed before segmenting the images (Figure

Image cropping

This step aims to decrease the number of voxels belonging to the background. It also improves the compu-
tation speed of following processes. It is performed using the Milas P, 8] and an affine registration
algorithm [L4]. First, the average T2 sequence of the atlas is registered on the T2 sequence. Then, the

Lhttp://www.ia.unc.edu/MSseg
2http://www.mni.mcgill.ca/



1.1 Preprocessing

Figure 1: Preprocessing steps on CHBtestl Case01 test data: (a) given T2 sequence, (b) cropped
T2 sequence, , (c) skull-stripped and unbiased T2 sequence, (d) given T1 sequence, (e) cropped T1
sequence, (f) skull-stripped and unbiased T1 sequence, (g) given T2-FLAIR sequence, (h) cropped
T2-FLAIR sequence, (i) skull-stripped and unbiased T2-FLAIR sequence.
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obtained transformation is applied on all the images of the atlas. The obtained information allow to crop the
MRI sequences focussing on a region of interest.

Skull-stripping

This step extracts the intracranial space from the image. Many methods sd&hl8; 19, 23] are described

in the literature. Our method is described T [A first expectation-maximization algorithm is performed on

the couple of sequences T1 and T2 and leads to a first segmentation of the brain. Morphological operations
(detection of the largest connected component, holes filling ...) allow to get the brain mask.

Intensity Normalization

The aim of this step is to correct the fact that two voxels with the same biological composition may not
have the same intensity. This difference in intensity is called bias and is caused by RF acquisition field
inhomogeneities][3] or biological tissues bias reflecting that the intensity of a same biological structure has
a variability around a mean valu&q]. In our case, we estimate and correct these inhomogeneities with the
Expectation/Conditional Maximization algorithm proposedifi]]

1.2 Segmentation of the brain

To segment the brain, the algorithm presentedjnid applied on the T1 and T2 sequences. This algorithm
uses the principle of the EM algorithmi][to maximize the log-likelihood between the MRI data and a gaus-
sian model of ten classes: white matter (WM), grey matter (GM), cerebro-spinal fluid (CSF), six GM/CSF
partial volume classes (with different proportions), and an outlier class (additional class that corresponds
mainly to the vessels). First, the probability of belonging to the different classes of each voxel is initialized
thanks to thea priori information of the MNI registered atla8,[8]. Second two steps are iterated:

¢ In the maximization step, the parameters (mggrcovariance matrixy) of each classg, are com-
puted from the voxels intensities and their probabilities of belonging to the different classes.

¢ In the expectation step, the probability of belonging to the different classes of each voxel is updated
depending on the classes parameters.

Finally, outliers that do not follow the intensity gaussien model are detected thanks to the computation of
the Mahalanobis distance (Equatibrbetween the intensity vectar, of each voxel and the mean vector of
each class.

de = (V= )T Z (V- ) €y

If this distance is greater than a threshold the voxel is considered as an outlier. The probability segmentations
given by this algorithm are then binarize. Each voxel belongs to the class with the highest probability. At
the end of this step 11 binary images (GM, WM, CSF, 6 partial volume classes, outliers corresponding to
vessels, others outliers) are obtained (Figt)re



1.3 Lesion extraction from the T2-FLAIR 5

(b) (d) (e)

Figure 2:Obtained classification on CHB_testl _Case0Ll test data: (a) CSF, (b) GM, (c) WM, (d) all 6
partial volume classes, (e) all outliers.

1.3 Lesion extraction from the T2-FLAIR

Except for necrotic lesions, lesions are hyperintense signals on the T2-FLAIR. The following steps use this
property to segment the lesions.

Segmentation from T2-FLAIR sequence

The application of the binary segmentations of the brain (Sedtigron the T2-FLAIR sequence gives the
properties (meary, standard deviatiorg) of healthy compartments on this sequence. As lesions are hyper-
intense signals on the T2-FLAIR sequence, a sensitive threshold, T, which gives a preliminary segmentation
of the lesions can be compute automatically from the properties of the GM class (Ed®)ation

T = Uem + 20GMm (2)

The application of this threshold on the T2-FLAIR sequence can help us to "detect” lesions (most of the
lesion have at least a voxel with an intensity higher than the threshold). However lesion voxel intensities are
inhomogeneous and the "delineation” of the lesion is not simple even if a voxel of this lesion is known. For
this reason, we enhance the contrast in the T2-FLAIR sequence before applying the threshold B(Rigure

et b). This is realized with the algorithfn The application of T on the T2-FLAIR sequence with enhanced
contrast gives a candidate lesion segmentagpn,

Refinement using classification results

S contains lesions but also others hyperintense signals like bony artefacts and flow artefacts. To eliminate
the voxels corresponding to these false positives, a region of interest is defined. Like 22][ we are

looking for lesions in the "supposed WM”. This "supposed brain compartment” correspond to the WM that
we should observed if there was no lesion in the sequence. A segmentation of this class can be approximated
by the mask of WM (given by the EM algorithm) in which cavities (holes in the segmentation) have been
filled. This is realized thanks to morphological operations. The application of this m&lkgires a second
preliminary lesion segmentatios;.
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Algorithm 1 Enhancing contrast algorithm.
Require: T2-FLAIR sequence, ima.
Dima= a grey level dilation of ima
Eima= a grey level erosion of ima
Cima= an empty image of the same size of ima
for all Voxeli do
if Dima;) —ima;) < ima;) — Eimg; then

Cimg;) = Dimay;
else ifima;) — Eima;) < Dima;j) —ima;) then
Cimg;) = Eimay,
else
Cimg;) = imay;
end if
end for

Return Cima, the T2-FLAIR sequence with enhanced contrast.

According to p], lesions may be classified as outliers, GM/CSF partial volumes or "pure” GM in the seg-
mentations given by the EM algorithm. Consequently, they are not included in the WM mask or in the
"pure” CSF mask. Voxels belonging to one of these masks are removedsrom

Finally, the holes that are present in the segmentation are filled thanks to morphological operations to im-
prove lesion delineation (Figuf c).

(b) ()

Figure 3: Extraction of T2-FLAIR lesions: (a) T2-FLAIR sequence, (b) T2-FLAIR sequence with
enhanced contrast, (c) Final segmentation of the lesions.

Limitation of the region of interest

We used the property that lesions are hyperintense signals in the T2-FLAIR sequence. In fact, this is not
correct for sub-tentorial lesions. In this case, lesion intensities are close to healthy tissues (GM, WM)
intensities. Consequently, sub-tentorial lesions are not includ&dandS, in most of the cases. To avoid

false positive in this region, all voxel & included in the sub-tentorial region are removed. The mask of
the sus-tentorial region is perform with a locally affine registratigjrof an atlas §] on the data, followed

by morphological operations (Figure 4).



Figure 4:Contours of the sus-tentorial mask on the T2-FLAIR sequence.

2 Results

Results of the method have been sent to the the Challenge managers. A comparison between the automatic
segmentations and manual segmentation performed by two experts has been performed. Different criteria
have been used to compare the different segmentations. This is a short description of them :

e The volume difference captures the absolute percent volume difference to the expert rater segmenta-
tion.

e The average distance captures the symmetric average surface distance to the expert rater segmentation.

e The true positive rate corresponds to the number of lesions in the automatic segmentation that over-
laps with a lesion in the expert segmentation divided by the number of overall lesions in the expert
segmentation.

e The false positive rate is the number of lesions in the automatic segmentation that DON'T overlap
with any lesion in the expert segmentation divided by the number of overall lesions in the automatic
segmentation.

e The sensitivity is the ratio of true positives to the sum of true positives and false negatives.
e The specificity is the ratio of true negatives to the sum of true negatives and false positives.

e The positive predictive value is the ratio of true positives to the sum of true positives and false posi-
tives.

For the true positive rate and the false positive rate criteria, the unity is the lesion (a connected region of the
segmentation). For sensitivity, specificity and positive predictive value, the unity is the voxel.

Table1 gives the results of our method on the test data of the challenge. Figure 5 present the Total score of
each patient repartition with a box-and-whisker plot. Figure 6 gives an example of execution time for the
patient CHB testl Case01.



Results of this method on MS lesion Challenge 08 Test data

Table 1
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—
Step time (min)
Atlas based image cropping 24
i Skull-stripping 2
5" i Intensity Normalization 30
- 1 Segmentation of the brain 16
1 Segmentation from T2-FLAIR 3
] Refinement using classification resujts 3
] Limitation of the region of interest 12
+ ] Total 96 (1h30)

Total score of all 24 patients

. . Figure 6: Example of execution time on
Figure 5: Box-and-whisker plot of the total CHB_testl Case0l

score of the 24 patients: one outlier (with the
value 46) is observed.

3 Discussion and future work

The analysis of individual criteria is complex because of their interdependencies. For example, the true
positive rate give the number of lesion correctly detected but its value does not take into consideration the
volume of the missed lesions. For this reason, our discussion is only based on the global scores.

The comparison of UNC rater and CHB rater is given to be around 90/100. Our method with a global result
of 80/100 is near this inter-expert variability. The box-and-whisker plot (Figushows that the method

scores are between 66 and 91 except for one outlier. Indeed, our method result is only 46 for the patient
UNC_testl Case09. This can be explained by the fact that this patient seems to have necrotic lesions,
a lesion subtype which is not detected by the proposed method. Indeed, necrotic lesions are hypointense
signals in T1 but are not visible in T2-FLAIR. In addition, no lesion is observed on the T2-FLAIR and
the WM appear "dirty”. Consequently, the proposed method detects a lot of false positives. This is also
observed for UNCtestl Case04, CHBtestl Case06 and CHBestl Casel?2. In these three cases, the
score of our method is under 80.

Moreover, our method has a score under 80 for three other data sets: _tefMCCase06,
UNC_testl Casel0 and CHBRestl Case03. Without the segmentation of reference, the best explanation
seems to be that these data correspond to patients with few lesions. Therefore, any error of segmentation
decreases dramatically the score. This assertion has to be further validated with a comparison between the
automatic segmentation and the segmentation of reference.

STAPLE results show that our method is more specific than sensitive. This show an undersegmentation of
the lesions. This effect can also be observed in Figure

The proposed method needs around 1 hour 30 minutes to segment the lesion of the Challenge data (Figure
6). This is often less than manual segmentation. Moreover, the method algorithm has not been optimized.

We have developed a method to detect T2-FLAIR lesions. This method is known to be unable to detect
necrotic lesions and sub-tentorial lesions. Results on test data are close to inter-expert variability. Future
work should segment necrotic and sub-tentorial lesions from information given by other sequences. This
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method will also be included in SepINR¥Aa software allowing analysis of MS MRI).
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