Software Architecture of a System for Robotic
Surgery

Hermann Mayerl, Alois Knoll1, Darius Burschkal, Eva U. Braun?, Rudiger Lange2
and Robert Bauernschmitt?

July 17, 2008

Lmayerhburschkénoll} @in.tum.de

Technische Universitat Miinchen, Department of Robatitd Embedded Systems
2{praunevédangebauernschmit@dhm.mhn.de
German Heart Center Munich, Department of Cardiovasculagedy

Abstract

At the German Heart Center Munich we have installed and et@tlLia novel system for robotic surgery.
Its main features are the incorporation of haptics (by medussrain gauge sensors at the instruments)
and partial automation of surgical tasks. However, in tliipgy we focus on the software engineering
aspects of the system. We present a hierarchical approaath v8 inspired by the modular architecture
of the hardware. Each component of the system, and therefmte component of the control software
can be easily interchanged by another instance (e.qg. elifféypes of robots may be employed to carry
the surgical instruments). All operations are abstractedrbintuitive user interface, which provides a
high level of transparency. In addition, we have includeghtéques known from character animation
(socalled key-framing) in order to enable operation of th&tesm by users with non-engineering back-
grounds. The introduced concepts have proven effectiiaglan extensive evaluation with 30 surgeons.
Thereby, the system was used to conduct simplified opesaiithe field of heart surgery, including the
replacement of a papillary tendon and the occlusion of dalseptal defect.

Contents

1 Introduction 2
2 Materials and Methods 3
3 Planning Interface 4
4 Software Architecture 6

5 Conclusion 8

1 Introduction

Endoscopic surgery is a challenging technique for thoratérventions. Its application is especially expe-
dient in the field of heart surgery, because sternotomy gelartercostal cuts can be avoided. Therefore,
the collateral surgical trauma of the patients is minimjzeldich results in quicker recovery of patients. In
addition, the time of hospitalization and the infectioneraain be reduced. Therefore, patients massively
profit from this endoscopic treatment option. On the otherdhaurgeons have to cope with increasingly
complex working conditions, but the design of intuitive usgerfaces can help to overcome these barriers.
Since endoscopic surgery is performed through a small pdkey-hole” in the patient’s chest (cf. fidl),
surgeons must learn to operate with unfamiliar and oftenvaat surgical instruments. All movements
have to be performed using “P” as fulcrum and visual impssiof the field of operation can only be
provided by means of an endoscopic camera. Hence, the tpemiof endoscopic surgery have been

Figure 1:Location of endoscopic portsfor instrumentsand camera

applied uncommonly, particularly in the field of heart suygeAn important step to push this technology
was the introduction of telemanipulation, which was esggcdesigned to overcome the fulcrum effect of
endoscopic instruments. The surgeon no longer operataadttaments directly, but they are driven by
a special device with a Cartesian user interface, whichesurg can handle as usual, i.e. like instruments
for open surgery. Commercial examples for such systemsham@avinci™ [2] and ZEUS™ [8] systems
(the latter has been discontinued). They are good exampleevo the proper design of user interfaces
can push forward new technologies like minimally invasivel @ndoscopic surgery. They offer as much
freedom of movement as the hand of the surgeon in convehtimea surgery, thus providing six degrees
of freedom instead of four like conventional endoscopidrimaents. In addition, they assist the surgeon
with motion scaling, tremor filtering and a stereo visiorenfdice at the input console. Surgeons can now
operate with a surgical mechatronic assistant in a conifl@talextrous and intuitive mannet][Despite

the obvious potential advantages of robot assisted sungerst researchers and surgeons in this area agree
that the lack of a haptic interface is a crucial drawback ofantly available system&]. The inability of

the operator to sense the applied forces causes increased ttauma and frequent suture material damage.
The systems are telemanipulators with no Cartesian postiomtrol (the control loop is implicitly closed

by visual servoing of the surgeon). In addition, it is notgibke for users from other fields to program new
trajectories for those devices. Therefore, our main rebesterests are the construction and evaluation
of force sensory / force feedback and the development of ayrteause interface for trajectory planning.
After a short introduction of our hardware and software wk f@cus on the presentation of a the planning
interface and software architecture of the system.

2 Materials and Methods

Figure 2:System setup at the German Heart Center

We have developed an experimental system for robotic sugér fig. 2). Four robotic manipulators are
controlled by two PHANToMMdevices from Sensable Inc. This device is available in wifie versions
with different capabilities. We have chosen the versiomituen 1.5, which provides a 20 25x 40 cm
workspace that is large enough for surgical procedures.usbecontrols a stylus pen that is equipped with
a switch that can be used to open and close the micro-gripphesmost interesting feature of the employed
PHANToM™devices is their capability of displaying forces to the ug@rces are fed back by small servo
motors incorporated in the device. They are used to steestyihes pen in a certain direction. This creates
the impression of occurring forces, while the user is hadhmre pen at a certain posture. Our version of the
PHANToM™device can display forces in all translational directionkjle no torque is fed back. In order
to be able to display realistic forces during operationshexe equipped the instruments with force sensors.
Since the shaft of the surgical instrument is made of carlwer,fforce sensors have to be very sensitive
and reliable. Therefore, we decided to apply strain gaugease, which are employed in industrial force
registration. For efficient telemanipulation, it is créldo have a 3D-interface providing a clear view of the
operating area. In order to allow for such a feature, we gupdpan additional robot with a 3D endoscopic
camera. Like the surgical instruments, this camera cantssmoved by means of trocar kinematics and
can either be actively controlled by the operator or autaraby tracked by the system. To enable stereo
vision we have integrated an optical system with a semi praest mirror that displays for each eye the
corresponding camera view. More details about the systeynbm#ound at §].

3 Planning Interface

Apart from the manual user interface (master console witARTFbMSs), our system also comprises an in-
terface for offline and real-time trajectory planning. Tleaizal part of this tool is a virtual emulation of the
system where the user can easily manipulate its state. 18 igobotic arm of the system is selected. Items
in the scene can either be selected by directly clicking emtbr by choosing them from the scene browser
on the upper right side of the GUI. The scene browser can lzbassa basic CAD program. It is possible to
insert new primitives (like cones, spheres, cubes etc.) R¥\V objects, e.g. an endoscopic instrument. If
these objects are selected, a context menu for the corrdisigoparameters is displayed. Therefore, in fig.
3, a corresponding context menu to adjust the different goirithe robot is displayed. Each context menu
of an object contains functionality to translate or rotdie object. With the help of the scene browser it is
also possible to aggregate objects to groups, which can béuiated on their part. It is also possible to
move objects in the hierarchy of the scene graph or to rent@mra tompletely. In addition, we have imple-
mented copy and paste functions in order to reuse preasseémpaits. The scene graph, or parts of it, can be
stored to disk in order to get a permanent copy. This funstmonstitute an intuitive interface for users to
manage different scenes and make certain modificationspg&lations on the scene graph are implemented
by means of the open sour@»in3D interface from Systems in Motion AS. This is a high-levelgrizs
language based dDpenGL.

The GUI provides different modes of interaction with theatsbor surgical instruments. As mentioned

BEEEEEN

Joint 1 [26.1788 B
joint 2 [—

jont 3 [Feas0 5

ot & (75078 E

jont's A

righty: [] elbowup: [] wrist fiip

[2ame: manual

[wite Data |

Currant Activity

Piercing () Knot Tying @ Free Movement

[simulation Only [Col
[Measure Forces [Force Feed
- start

Figure 3:Graphical User Interface

above, the robots can be moved by means of sliders; one fhrjeiat of the robot. In addition, the robots
can also be moved in Cartesian space, i.e. linear transtaiiox,y and z direction and corresponding ro-
tations about these axes. After the configuration of thetrblbs been determined, Cartesian movements
will be mapped onto joint angles by a specific inverse kingcaail he same applies to the minimal invasive
instruments, which require a special inverse kinemationzoed in Cartesian space (so-called port kinemat-
ics [5]). Port kinematics arranges for movements of the instrunabout a small incision in the patient’s

body and is indispensable for robotic applications in endp& surgery. Since each instrument is linked
to a dedicated robot, any movement that changes the posititre instrument’s base will consequently
induce corresponding movements of the robot where the bagtached to. So far, we can use this interface
to move the robots or instruments from one posture to anofftds can either be executed in real-time or
offline. In realtime mode, the robot directly follows the neowvents that are instructed by the GUI sliders.
Since this is quite dangerous (particularly in Cartesiad@emall slider changes can result in wide-ranging
robot movements), we have disabled this feature during abogeration. In contrast, offline operation pro-
vides more safety. After adjusting the posture of the rolyathle sliders in offline mode, the robot will not
move until the user has acknowledged the new stage. For raphesticated trajectories, as they may occur
in robotic knot-tying, this kind of interface for point-faeint movements will not be sufficient. Therefore,
we have developed a planning interface based on keyframing.

Speaking of keyframing regarding trajectory planning,rtifets are moved to certain consecutive positions,
which are interpreted as keyframes. Afterwards, we applgream policy (e.g. linear or spline interpola-
tion) to generate all other points of the trajectory lyingogtween those keyframes (see #). There are

A A

Figure 4:Linear and spline interpolation between keyframes

two different modes of moving on a trajectory with keyframesge is to stop at each keyframe, the other,
more complex possibility is to perform an continuous movetibrough all keyframes between start and
end. Being the most difficult possibility, we restrict olvss to the description of continuous movements
via spline interpolation. We have to take into account tivatyerobot needs a certain time for acceleration
after starting and for deceleration before stopping. Qtfser it is not possible to achieve jerkfree motions.
Another prerequisite for our application is, that keyfranoecur at certain points in time which have to be
met exactly. l.e. if the robot starts in point A (cf. fig) it will first accelerate to a certain speed which
depends on the time when point B has to be reached. Accoydithglre is a fixed time to move from B to
C. Therefore, the robot will have to adapt its speed afterimgapoint B. For calculating the speed during
acceleration and decelerations, we have employed thedasat(t) andw,(t), respectively:

140

Vo
n(l—%)

Va(t) Vp(t) = 1)

l+e
Those are sigmoid functions shifted along the positiagis. The facton changes the acclivity of the curve,
which reaches its maximum at= t% The time needed for acceleration and deceleration is ddraxt,
andty, respectively. Another nice feature of these functionshiat the area underneath the curve (i.e. the
traveled path) amounts t%tavo. Therefore, we can easily determine the residual spgegiven a certain
path length and frame time (the same holds for deceleratidefermining the path length is easy for linear
keyframe interpolations, but analytically not feasible $plines (in that case Hermite splines). This issue
can be solved by using the adapted formulas3hf Therefore, it is guaranteed that the next keyframe will
be reached at the right time and with the right velocity. Thi dhing left to do for the user is to set the
keyframes on a timeline within the GUI. All trajectories damdisplayed in the simulation environment and
a preview of the corresponding movements is possible. listmhs occur, it is not possible to execute the
trajectory before it is safely replanned.

Figure 5:Display of the keyframes and the calculated trajectory

4 Software Architecture

After describing the planning interface, we also want taspré some software engineering aspects of our
control architecture. First of all, we have tried to desige software to be independent from a specific
operation system. Currently, our system is based on a Lidint @latform, but it may be compiled for
other platforms without major changes as well. All modulesluding the HAL and all superordinate parts,
are written in plain C++ using only standard extensions 8Ke., which are available for most platforms.
The code contains only types, which are independent froneeifspword-length, and therefore, will run on
both 32bit and 64bit systems. We have experienced that dwage profits from running on a 64bit system,
since the accumulated errors within the inverse kinematiessignificantly reduced. All libraries used in
our software are available as public domain source code aydmcompiled for various operating systems.
In detail, we useMySQL as database&t for constructing the GUICoin3D for visualizing the 3D models
andGNU G3. provides some of the scientific functions like SVD. The ordytp of the software, which are
platform dependent, are the drivers for the PHANToM devimed the CAN-bus interface. However, both
are also available for other platforms.
In order to guarantee scalability and quick response timedhave based the architecture of our software
on multi-threading. Thus, all important control loops o tboftware are implemented as threads (platform
independenPOS X threads). Every manipulator added to the scene has to pragidwn control thread,
which interacts with the corresponding robots and instmisieThese threads are set to real-time priority
in order to guarantee accurately timed transmission of gmgles. They are scheduled to be executed ev-
ery 3ns. Therefore, new joint angles arrive at the robot at leaseona@ control cycle of 8ms. If more
than one set of joints arrives during a cycle, additionaligalare simply omitted by the controller and will
cause no unexpected behavior. The same strategy applies ¢ontrol threads of the PHANToM devices,
which arrange for proper acquisition of postures and réaligrce feedback. Although being implemented
as real-time threads, they are set to a lower priority as timtral threads. This is due to the fact that a
violation of the timeliness of the control threads will lel@mda system crash, while a reduced timeliness of
the PHANToM threads will only induce minor jerks regarditge tmovement of the controlled robots and
the force feedback. The thread for interactions with the ugerface is set to non-real-time priority, since
no interactions are required during manual operation oftstem (with all other threads activated) and a
timely display of the 3D models is not critical. Since theetlmls have to interchange data with each other
(e.g. the PHANTOM threads provide data for the control ttiseaf the robots, or the collision detection must
be able to stop all robot threads), we have implemented aadetass callecont r ol Uni t providing shared
access. In addition, this class also provides an interfateetMySQL data base in order to store trajectories
and other features. Due to the one-way flow of data, mutudlision of data access is not necessary. This
leads to a significant increase of speed and intrinsicalbydgvstarvation of threads.

The architecture of our software is mostly based on the madel-controller design pattern. We will
explain this concept on the basis of the classes, which hese Implemented in order to interact with the

QRobotWidget SoMitsubishi6SL
- Qt: guiElements - VRMLModel: 3dmodel
- setAngles(robot) : void + getAngles() : void
+ setCollision(): void + setCollision(): void

Mitsubishi6SL

- MitsuController: ctrl
robot model

1 |+ setAngles() : void 1

+ start(): void

Figure 6: Model-View-Controller (MVC) architecture of tihebot interface

Mitsubishi robots. The model is realized by the clds$ subi shi 6SL and contains all functionality for on-
and offline interaction with the robot (e.g. establish a @mtion to the controller, start servos, set joints...).
The view is implemented as a 3D model, which is going to belaysal in the simulation environment.
This is the only part of the robot’s interface depending an@bin3D API. Therefore, the corresponding
class,SoM t subi shi 6SL, contains a VRML model of thélitsubishi MELFA 63, functions for chang-
ing its angles and methods to visualize the collision d&tactThis class contains a pointer to the model
(M t subi shi 6SL) in order to update the angles in the 3D view. In contrastitioelel contains no pointers
to the view class in order to allow for implementations of tloatrol software without 3D graphics, or even
without any GUI. Thus, the model also contains no pointeh&dontroller classRobot W dget . The cap-
ital “Q” indicates that this (and only this) part of the softsg was implemented wit@t, a widespread API
for implementation of GUIs. This class contains the contaghu for robot interaction (see above), thus,
providing sliders for adjustment of angles, Cartesian @nbr movements in tool frame. In addition, the
menu exhibits some buttons to activate functions of the m@dg. starting and stopping the servos of the
robot). TheQRobot W dget -class contains no direct pointer to the modél ubi shi 6SL), but a pointer to
an abstract class. Therefore, it is easy to exchange thé¢ mudel without greater modifications.

This abstract robot class can be implemented by variousstgpeobots. While the robot-specific parts
(e.g. low-level communication with the controller) are dth within these specific classes, they have to
implement standardized functions for interaction withtaer GUI elements. For example, every class im-
plementingRobot has to provide functions for starting and stopping the serand for the adjustment of
angles (cf. fig.7). A similar concept is used for the classes implementingvtbe of a robot. They are all
derived from aCoin3D base classSoRobot .

<< interface >>
Robot

setAngles() : void

start(): void
A
Mitsubishi6SL Kuka KineMedic
setAngles() : void setAngles() : void setAngles() : void
start(): void start(): void start(): void

Figure 7: Different models of robots are implementationthefsame abstract class

5 Conclusion

We have presented the software platform of a robotic systermfnimally invasive surgery. In order to
provide an intuitive user interface we have adopted a keyifrg approach like it is known from computer
animation. All relevant motion parameters, which are dgudifficult to determine, will be calculated
automatically. Therefore, the operator can concentratagiaspecific work, e.g. planning the trajectory for
endoscopic knot-tying. In addition, we have based our agremn a flexible software architecture, which
enables an easy adaption of the system to new hardware tegiind®e hope this work will simplify the
handling of complex technical systems and hopefully willdspted by programmers from other fields,
e.g. industrial robotics. At least in the field of robotic @eny this technique has advanced the acceptance
of robots in the operating room by surgeons. In the near éutve will provide the possibility to integrate
preoperative, patient centered image data like CT or MRssdaraddition, we are planning to augment the
user interface by haptic concepts like virtual fixturép [

References

[1] V. Falk, S. Jacobs, J. Gummert, and T. Walther. Robotrowary artery bypass grafting: The Leipzig
experience.The Surgical Clinics of North America, 83(6):1381-1386, 2003.

[2] G. Guthart and J. Salisbury. The Intuith¥ telesurgery system: Overview and applicationPinceed-

ings of the |EEE International Conference on Robotics and Automation, pages 618—-621, San Francisco,
USA, April 2000. 1

[3] D. Kochanek and R. Bartels. Interpolating splines witbdl tension, continuity, and bias contréiCM
S GGRAPH, 18(3):33-41, 19843

[4] P. Marayong, M. Li, A. Okamura, and G. Hager. Spatial mttonstraints: Theory and demonstrations
for robot guidance using virtual fixtures. Proceedings of the IEEE International Conference on
Robotics and Automation, pages 1270-1275, Taipei, Taiwan, September 2803.

[5] H. Mayer, I. Nagy, and A. Knoll. Kinematics and modelinfeosystem for robotic surgery. In J. Lenarcic
and C. Galletti, editorddn Advances in Robot Kinematics (Conf. Proceedings), pages 181-190, Sestri
Levante, Italy, June 2004. Kluwer Academic Publish&s.

[6] H. Mayer, I. Nagy, A. Knoll, E.U. Braun, R. Lange, and R.lgasnschmitt. Adaptive control for human-
robot skilltransfer: Trajectory planning based on fluid dymics. InProceedings of the IEEE Interna-
tional Conference on Robotics and Automation, pages 1800-1807, Rome, Italy, April 20 .

[7] M. Mitsuishi, S. Tomisaki, T. Yoshidome, H. HashizumadaK. Fujiwara. Tele-micro-surgery system
with intelligent user interface. IRroceedings of the IEEE International Conference on Robotics and
Automation, pages 1607-1614, San Francisco, USA, April 2QD0.

[8] H. Reichenspurner, R. Damiano, M. Mack, D. Boehm, H. GwdbC. Detter, B. Meiser, R. Ellgass, and
B. Reichart. Use of the voice-controlled and computersésdisurgical system ZEUS for endoscopic
coronary artery bypass graftingournal of Thoracic and Cardiovasc. Surgery, 118(1):11-16, 19991

	Introduction
	Materials and Methods
	Planning Interface
	Software Architecture
	Conclusion

