
Software Architecture of a System for Robotic
Surgery

Hermann Mayer1, Alois Knoll1, Darius Burschka1, Eva U. Braun2, Rüdiger Lange2

and Robert Bauernschmitt2

July 17, 2008

1{mayerh|burschka|knoll}@in.tum.de
Technische Universität München, Department of Roboticsand Embedded Systems

2{brauneva|lange|bauernschmitt}@dhm.mhn.de
German Heart Center Munich, Department of Cardiovascular Surgery

Abstract

At the German Heart Center Munich we have installed and evaluated a novel system for robotic surgery.
Its main features are the incorporation of haptics (by meansof strain gauge sensors at the instruments)
and partial automation of surgical tasks. However, in this paper we focus on the software engineering
aspects of the system. We present a hierarchical approach, which is inspired by the modular architecture
of the hardware. Each component of the system, and thereforeeach component of the control software
can be easily interchanged by another instance (e.g. different types of robots may be employed to carry
the surgical instruments). All operations are abstracted by an intuitive user interface, which provides a
high level of transparency. In addition, we have included techniques known from character animation
(socalled key-framing) in order to enable operation of the system by users with non-engineering back-
grounds. The introduced concepts have proven effective during an extensive evaluation with 30 surgeons.
Thereby, the system was used to conduct simplified operations in the field of heart surgery, including the
replacement of a papillary tendon and the occlusion of an atrial septal defect.

Contents

1 Introduction 2

2 Materials and Methods 3

3 Planning Interface 4

4 Software Architecture 6

5 Conclusion 8

2

1 Introduction

Endoscopic surgery is a challenging technique for thoracicinterventions. Its application is especially expe-
dient in the field of heart surgery, because sternotomy or large intercostal cuts can be avoided. Therefore,
the collateral surgical trauma of the patients is minimized, which results in quicker recovery of patients. In
addition, the time of hospitalization and the infection rate can be reduced. Therefore, patients massively
profit from this endoscopic treatment option. On the other hand, surgeons have to cope with increasingly
complex working conditions, but the design of intuitive user interfaces can help to overcome these barriers.
Since endoscopic surgery is performed through a small port or “key-hole” in the patient’s chest (cf. fig.1),
surgeons must learn to operate with unfamiliar and often awkward surgical instruments. All movements
have to be performed using “P” as fulcrum and visual impressions of the field of operation can only be
provided by means of an endoscopic camera. Hence, the techniques of endoscopic surgery have been

P

P

Figure 1:Location of endoscopic ports for instruments and camera

applied uncommonly, particularly in the field of heart surgery. An important step to push this technology
was the introduction of telemanipulation, which was especially designed to overcome the fulcrum effect of
endoscopic instruments. The surgeon no longer operates theinstruments directly, but they are driven by
a special device with a Cartesian user interface, which surgeons can handle as usual, i.e. like instruments
for open surgery. Commercial examples for such systems are the daVinciT M [2] and ZEUSTM [8] systems
(the latter has been discontinued). They are good examples of how the proper design of user interfaces
can push forward new technologies like minimally invasive and endoscopic surgery. They offer as much
freedom of movement as the hand of the surgeon in conventional open surgery, thus providing six degrees
of freedom instead of four like conventional endoscopic instruments. In addition, they assist the surgeon
with motion scaling, tremor filtering and a stereo vision interface at the input console. Surgeons can now
operate with a surgical mechatronic assistant in a comfortable, dextrous and intuitive manner [1]. Despite
the obvious potential advantages of robot assisted surgery, most researchers and surgeons in this area agree
that the lack of a haptic interface is a crucial drawback of currently available systems [7]. The inability of
the operator to sense the applied forces causes increased tissue trauma and frequent suture material damage.
The systems are telemanipulators with no Cartesian position control (the control loop is implicitly closed
by visual servoing of the surgeon). In addition, it is not possible for users from other fields to program new
trajectories for those devices. Therefore, our main research interests are the construction and evaluation
of force sensory / force feedback and the development of an easy-to-use interface for trajectory planning.
After a short introduction of our hardware and software we will focus on the presentation of a the planning
interface and software architecture of the system.

3

2 Materials and Methods

Figure 2:System setup at the German Heart Center

We have developed an experimental system for robotic surgery (cf. fig. 2). Four robotic manipulators are
controlled by two PHANToMTMdevices from Sensable Inc. This device is available in different versions
with different capabilities. We have chosen the version Premium 1.5, which provides a 20× 25× 40 cm
workspace that is large enough for surgical procedures. Theuser controls a stylus pen that is equipped with
a switch that can be used to open and close the micro-grippers. The most interesting feature of the employed
PHANToMTMdevices is their capability of displaying forces to the user. Forces are fed back by small servo
motors incorporated in the device. They are used to steer thestylus pen in a certain direction. This creates
the impression of occurring forces, while the user is holding the pen at a certain posture. Our version of the
PHANToMTMdevice can display forces in all translational directions,while no torque is fed back. In order
to be able to display realistic forces during operations, wehave equipped the instruments with force sensors.
Since the shaft of the surgical instrument is made of carbon fiber, force sensors have to be very sensitive
and reliable. Therefore, we decided to apply strain gauge sensors, which are employed in industrial force
registration. For efficient telemanipulation, it is critical to have a 3D-interface providing a clear view of the
operating area. In order to allow for such a feature, we equipped an additional robot with a 3D endoscopic
camera. Like the surgical instruments, this camera can alsobe moved by means of trocar kinematics and
can either be actively controlled by the operator or automatically tracked by the system. To enable stereo
vision we have integrated an optical system with a semi transparent mirror that displays for each eye the
corresponding camera view. More details about the system may be found at [6].

4

3 Planning Interface

Apart from the manual user interface (master console with PHANToMs), our system also comprises an in-
terface for offline and real-time trajectory planning. The central part of this tool is a virtual emulation of the
system where the user can easily manipulate its state. In fig.3 a robotic arm of the system is selected. Items
in the scene can either be selected by directly clicking on them or by choosing them from the scene browser
on the upper right side of the GUI. The scene browser can be used as a basic CAD program. It is possible to
insert new primitives (like cones, spheres, cubes etc.) or VRML objects, e.g. an endoscopic instrument. If
these objects are selected, a context menu for the corresponding parameters is displayed. Therefore, in fig.
3, a corresponding context menu to adjust the different joints of the robot is displayed. Each context menu
of an object contains functionality to translate or rotate the object. With the help of the scene browser it is
also possible to aggregate objects to groups, which can be manipulated on their part. It is also possible to
move objects in the hierarchy of the scene graph or to remove them completely. In addition, we have imple-
mented copy and paste functions in order to reuse preassembled parts. The scene graph, or parts of it, can be
stored to disk in order to get a permanent copy. This functions constitute an intuitive interface for users to
manage different scenes and make certain modifications. Alloperations on the scene graph are implemented
by means of the open sourceCoin3D interface from Systems in Motion AS. This is a high-level graphics
language based onOpenGL.
The GUI provides different modes of interaction with the robots or surgical instruments. As mentioned

Figure 3:Graphical User Interface

above, the robots can be moved by means of sliders; one for each joint of the robot. In addition, the robots
can also be moved in Cartesian space, i.e. linear translations in x,y and z direction and corresponding ro-
tations about these axes. After the configuration of the robot has been determined, Cartesian movements
will be mapped onto joint angles by a specific inverse kinematics. The same applies to the minimal invasive
instruments, which require a special inverse kinematics ifmoved in Cartesian space (so-called port kinemat-
ics [5]). Port kinematics arranges for movements of the instrument about a small incision in the patient’s

5

body and is indispensable for robotic applications in endoscopic surgery. Since each instrument is linked
to a dedicated robot, any movement that changes the positionof the instrument’s base will consequently
induce corresponding movements of the robot where the base is attached to. So far, we can use this interface
to move the robots or instruments from one posture to another. This can either be executed in real-time or
offline. In realtime mode, the robot directly follows the movements that are instructed by the GUI sliders.
Since this is quite dangerous (particularly in Cartesian mode: small slider changes can result in wide-ranging
robot movements), we have disabled this feature during normal operation. In contrast, offline operation pro-
vides more safety. After adjusting the posture of the robot by the sliders in offline mode, the robot will not
move until the user has acknowledged the new stage. For more sophisticated trajectories, as they may occur
in robotic knot-tying, this kind of interface for point-to-point movements will not be sufficient. Therefore,
we have developed a planning interface based on keyframing.
Speaking of keyframing regarding trajectory planning, therobots are moved to certain consecutive positions,
which are interpreted as keyframes. Afterwards, we apply a certain policy (e.g. linear or spline interpola-
tion) to generate all other points of the trajectory lying inbetween those keyframes (see fig.4). There are

A

D
C

B

A

D
C

B

Figure 4:Linear and spline interpolation between keyframes

two different modes of moving on a trajectory with keyframes: one is to stop at each keyframe, the other,
more complex possibility is to perform an continuous movement through all keyframes between start and
end. Being the most difficult possibility, we restrict ourselves to the description of continuous movements
via spline interpolation. We have to take into account that every robot needs a certain time for acceleration
after starting and for deceleration before stopping. Otherwise it is not possible to achieve jerkfree motions.
Another prerequisite for our application is, that keyframes occur at certain points in time which have to be
met exactly. I.e. if the robot starts in point A (cf. fig.4) it will first accelerate to a certain speed which
depends on the time when point B has to be reached. Accordingly, there is a fixed time to move from B to
C. Therefore, the robot will have to adapt its speed after leaving point B. For calculating the speed during
acceleration and decelerations, we have employed the functionsva(t) andvb(t), respectively:

va(t) =
v0

1+ en(1− 2t
ta

)
vb(t) =

v0

1+ e−n(1− 2t
tb

)
(1)

Those are sigmoid functions shifted along the positivet-axis. The factorn changes the acclivity of the curve,
which reaches its maximum att = tmax

2 . The time needed for acceleration and deceleration is denoted asta
andtb, respectively. Another nice feature of these functions is,that the area underneath the curve (i.e. the
traveled path) amounts to12tav0. Therefore, we can easily determine the residual speedv0, given a certain
path length and frame time (the same holds for deceleration). Determining the path length is easy for linear
keyframe interpolations, but analytically not feasible for splines (in that case Hermite splines). This issue
can be solved by using the adapted formulas of [3]. Therefore, it is guaranteed that the next keyframe will
be reached at the right time and with the right velocity. The only thing left to do for the user is to set the
keyframes on a timeline within the GUI. All trajectories canbe displayed in the simulation environment and
a preview of the corresponding movements is possible. If collisions occur, it is not possible to execute the
trajectory before it is safely replanned.

6

Figure 5:Display of the keyframes and the calculated trajectory

4 Software Architecture

After describing the planning interface, we also want to present some software engineering aspects of our
control architecture. First of all, we have tried to design the software to be independent from a specific
operation system. Currently, our system is based on a Linux 64bit platform, but it may be compiled for
other platforms without major changes as well. All modules,including the HAL and all superordinate parts,
are written in plain C++ using only standard extensions likeSTL, which are available for most platforms.
The code contains only types, which are independent from a specific word-length, and therefore, will run on
both 32bit and 64bit systems. We have experienced that our software profits from running on a 64bit system,
since the accumulated errors within the inverse kinematicsare significantly reduced. All libraries used in
our software are available as public domain source code and may be compiled for various operating systems.
In detail, we useMySQL as database,Qt for constructing the GUI,Coin3D for visualizing the 3D models
andGNU GSL provides some of the scientific functions like SVD. The only parts of the software, which are
platform dependent, are the drivers for the PHANToM devicesand the CAN-bus interface. However, both
are also available for other platforms.
In order to guarantee scalability and quick response times,we have based the architecture of our software
on multi-threading. Thus, all important control loops of the software are implemented as threads (platform
independentPOSIX threads). Every manipulator added to the scene has to provide its own control thread,
which interacts with the corresponding robots and instruments. These threads are set to real-time priority
in order to guarantee accurately timed transmission of joint angles. They are scheduled to be executed ev-
ery 3ms. Therefore, new joint angles arrive at the robot at least once in a control cycle of 6.8ms. If more
than one set of joints arrives during a cycle, additional values are simply omitted by the controller and will
cause no unexpected behavior. The same strategy applies to the control threads of the PHANToM devices,
which arrange for proper acquisition of postures and realistic force feedback. Although being implemented
as real-time threads, they are set to a lower priority as the control threads. This is due to the fact that a
violation of the timeliness of the control threads will leadto a system crash, while a reduced timeliness of
the PHANToM threads will only induce minor jerks regarding the movement of the controlled robots and
the force feedback. The thread for interactions with the user interface is set to non-real-time priority, since
no interactions are required during manual operation of thesystem (with all other threads activated) and a
timely display of the 3D models is not critical. Since the threads have to interchange data with each other
(e.g. the PHANToM threads provide data for the control threads of the robots, or the collision detection must
be able to stop all robot threads), we have implemented a central class calledControlUnit providing shared
access. In addition, this class also provides an interface to theMySQL data base in order to store trajectories
and other features. Due to the one-way flow of data, mutual exclusion of data access is not necessary. This
leads to a significant increase of speed and intrinsically avoids starvation of threads.

The architecture of our software is mostly based on the model-view-controller design pattern. We will
explain this concept on the basis of the classes, which have been implemented in order to interact with the

7

QRobotWidget SoMitsubishi6SL

Mitsubishi6SL

robot

1

model

1

- VRMLModel: 3dmodel

+ getAngles() : void

+ setCollision(): void
…

- Qt: guiElements

- setAngles(robot) : void

+ setCollision(): void
…

- MitsuController: ctrl

+ setAngles() : void

+ start(): void
…

Figure 6: Model-View-Controller (MVC) architecture of therobot interface

Mitsubishi robots. The model is realized by the classMitsubishi6SL and contains all functionality for on-
and offline interaction with the robot (e.g. establish a connection to the controller, start servos, set joints...).
The view is implemented as a 3D model, which is going to be displayed in the simulation environment.
This is the only part of the robot’s interface depending on the Coin3D API. Therefore, the corresponding
class,SoMitsubishi6SL, contains a VRML model of theMitsubishi MELFA 6SL, functions for chang-
ing its angles and methods to visualize the collision detection. This class contains a pointer to the model
(Mitsubishi6SL) in order to update the angles in the 3D view. In contrast, themodel contains no pointers
to the view class in order to allow for implementations of thecontrol software without 3D graphics, or even
without any GUI. Thus, the model also contains no pointer to the controller class,QRobotWidget. The cap-
ital “Q” indicates that this (and only this) part of the software was implemented withQt, a widespread API
for implementation of GUIs. This class contains the contextmenu for robot interaction (see above), thus,
providing sliders for adjustment of angles, Cartesian control, or movements in tool frame. In addition, the
menu exhibits some buttons to activate functions of the model (e.g. starting and stopping the servos of the
robot). TheQRobotWidget-class contains no direct pointer to the model (Mitsubishi6SL), but a pointer to
an abstract class. Therefore, it is easy to exchange the robot model without greater modifications.
This abstract robot class can be implemented by various types of robots. While the robot-specific parts
(e.g. low-level communication with the controller) are hidden within these specific classes, they have to
implement standardized functions for interaction with certain GUI elements. For example, every class im-
plementingRobot has to provide functions for starting and stopping the servos, and for the adjustment of
angles (cf. fig.7). A similar concept is used for the classes implementing theview of a robot. They are all
derived from aCoin3D base class,SoRobot.

Robot

setAngles() : void

start(): void
…

<< interface >>

Mitsubishi6SL

setAngles() : void

start(): void
…

Kuka

setAngles() : void

start(): void
…

KineMedic

setAngles() : void

start(): void
…

Figure 7: Different models of robots are implementations ofthe same abstract class

8

5 Conclusion

We have presented the software platform of a robotic system for minimally invasive surgery. In order to
provide an intuitive user interface we have adopted a keyframing approach like it is known from computer
animation. All relevant motion parameters, which are usually difficult to determine, will be calculated
automatically. Therefore, the operator can concentrate ontask-specific work, e.g. planning the trajectory for
endoscopic knot-tying. In addition, we have based our approach on a flexible software architecture, which
enables an easy adaption of the system to new hardware technology. We hope this work will simplify the
handling of complex technical systems and hopefully will beadopted by programmers from other fields,
e.g. industrial robotics. At least in the field of robotic surgery this technique has advanced the acceptance
of robots in the operating room by surgeons. In the near future we will provide the possibility to integrate
preoperative, patient centered image data like CT or MR scans. In addition, we are planning to augment the
user interface by haptic concepts like virtual fixtures [4].

References

[1] V. Falk, S. Jacobs, J. Gummert, and T. Walther. Robotic coronary artery bypass grafting: The Leipzig
experience.The Surgical Clinics of North America, 83(6):1381–1386, 2003.1

[2] G. Guthart and J. Salisbury. The IntuitiveTM telesurgery system: Overview and application. InProceed-

ings of the IEEE International Conference on Robotics and Automation, pages 618–621, San Francisco,
USA, April 2000. 1

[3] D. Kochanek and R. Bartels. Interpolating splines with local tension, continuity, and bias control.ACM
SIGGRAPH, 18(3):33–41, 1984.3

[4] P. Marayong, M. Li, A. Okamura, and G. Hager. Spatial motion constraints: Theory and demonstrations
for robot guidance using virtual fixtures. InProceedings of the IEEE International Conference on
Robotics and Automation, pages 1270–1275, Taipei, Taiwan, September 2003.5

[5] H. Mayer, I. Nagy, and A. Knoll. Kinematics and modeling of a system for robotic surgery. In J. Lenarcic
and C. Galletti, editors,On Advances in Robot Kinematics (Conf. Proceedings), pages 181–190, Sestri
Levante, Italy, June 2004. Kluwer Academic Publishers.3

[6] H. Mayer, I. Nagy, A. Knoll, E.U. Braun, R. Lange, and R. Bauernschmitt. Adaptive control for human-
robot skilltransfer: Trajectory planning based on fluid dynamics. InProceedings of the IEEE Interna-
tional Conference on Robotics and Automation, pages 1800–1807, Rome, Italy, April 2007.2

[7] M. Mitsuishi, S. Tomisaki, T. Yoshidome, H. Hashizume, and K. Fujiwara. Tele-micro-surgery system
with intelligent user interface. InProceedings of the IEEE International Conference on Robotics and
Automation, pages 1607–1614, San Francisco, USA, April 2000.1

[8] H. Reichenspurner, R. Damiano, M. Mack, D. Boehm, H. Gulbins, C. Detter, B. Meiser, R. Ellgass, and
B. Reichart. Use of the voice-controlled and computer-assisted surgical system ZEUS for endoscopic
coronary artery bypass grafting.Journal of Thoracic and Cardiovasc. Surgery, 118(1):11–16, 1999.1

	Introduction
	Materials and Methods
	Planning Interface
	Software Architecture
	Conclusion

