
The cisst libraries for computer assisted
intervention systems

Release 1.00

Anton Deguet, Rajesh Kumar, Russell Taylor, Peter Kazanzides

July 25, 2008

Johns Hopkins University, Baltimore, MD

Abstract

Computer assisted intervention (CAI) systems require the integration of an increasing number of devices,
including medical monitors, sensors, tracking devices and robots. This complexity makes applications
harder to develop, more difficult to debug and the accumulation of ad hoc interfaces reduces the overall
portability. We describe a set of libraries, the cisst libraries, developed at the Johns Hopkins University
to address some of the problems encountered when integrating devices for CAI. We focus on three main
characteristics of the cisst libraries: software architecture, multi-threading and CAI specific interfaces.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1338]
Distributed under Creative Commons Attribution License

Contents

1 Introduction 2

2 Architecture 3
2.1 Commands . 3
2.2 Interfaces . 4
2.3 Self-describing components . 4
2.4 Interactive Research Environment (IRE) . 4

3 Multi-threading 5
3.1 Thread safety . 5
3.2 Efficiency . 5
3.3 Memory . 6

4 API for Computer Assisted Intervention Devices 6
4.1 Transformation Manager . 6
4.2 Parameter types . 7
4.3 Command names . 7

2

5 Conclusions 7

1 Introduction

Task:
CollaborativeControl

Requires:
LeftMaster

Requires:
RightMaster

Requires:
LeftSlave

Requires:
RightSlave

Provides:
LeftMaster

Provides:
RightMaster

Provides:
LeftSlave

Provides:
RightSlave

Task:
daVinci

Figure 1: Teleoperation setup using a da Vinci

Computer assisted intervention (CAI) systems inte-
grate disparate devices such as medical monitors,
sensors, imagers, tracking devices and robots. The
goal of the cisst libraries is to support a wide range
of devices while preserving flexibility. In partic-
ular, we wish to support interchangeability of de-
vices that meet the minimum requirements for the
application. For example, in research on collabora-
tive control or visualization enhancement for tele-
operated interventions, the nature of the patient side
manipulators or master arms might not be a critical
factor. Figures 1 and 2 show two different research
platforms that can be used for telesurgery research.
The first setup utilizes a da Vinci system with a re-
search interface, whereas the second setup replaces
the da Vinci slave arms by a pair of custom research
manipulators (Johns Hopkins “snakes” [8]) and re-
places the da Vinci master arms by a Northern Digital Polaris tool and a SensAble Omni. The flexibility
of the cisst libraries make it possible to re-use the same research component (the CollaborativeControl
task in figures 1 and 2) with different devices as long as they provide the required functionalities. The
OROCOS project [2] provides similar capabilities, though it has chosen to focus on real-time control and
robotics with real-time operating systems; in contrast, cisst also supports conventional operating systems
such as Windows.

Task:
CollaborativeControl

Requires:
LeftMaster

Requires:
RightMaster

Requires:
LeftSlave

Requires:
RightSlave

Provides:
Omni

Provides:
ActiveTool2

Provides:
LeftManipulator

Provides:
RightManipulator

Task:
JHUSnakes

Task:
NDiPolaris

Provides:
ActiveTool1

Provides:
ActiveTool3

Task:
SensableHD

Figure 2: Teleoperation setup using the JHU Snakes, a Northern Digital Polaris tool and a SensAble Omni

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1338]
Distributed under Creative Commons Attribution License

3

2 Architecture

A typical CAI application consists of multiple concurrent tasks (e.g., figures 1 and 2). The cisstMultitask
library provides a safe and efficient framework for multi-threading (see Section 3 for details); this can be
extended to multi-processing via the use of middleware. The design adopts concepts from component-based
software engineering: components must be reusable, composable, and encapsulated. Whether the library is
truly “component-based” depends on the definition of this term, as discussed in [5].

In our introductory examples, we replaced one of the master arms with a tracking device. These two systems
are different by nature but have a common functionality (i.e., provide the 3D position of the surgeon’s hand).
In a typical Object Oriented design, one would argue that a robot class can be derived from a tracker class.
The issue is that a tracker also provides features not available in a robot. Neither one is a subset of the other
in terms of functionality, which precludes the use of inheritance. With a component based approach, the
user task dynamically queries whether the device provides a required functionality and is provided a means
to use that functionality. In cisstMultiTask, functionalities are represented by commands as defined by the
Command Pattern [4].

2.1 Commands

All communications between tasks and devices in cisstMultiTask are performed using commands to ensure
thread-safety and component encapsulation. The actual code (actions) of a command is implemented by the
“provides” task (or device), the user retrieves a command object and executes it when needed. What hap-
pens then varies: on a distributed or multiprocess application, all commands should be serialized, queued,
dequeued and finally executed. In a multi-threaded implementation, serialization is not needed and one can
avoid queuing in some cases, such as when reading from a thread-safe circular (or ring) buffer. These details
of execution are built-in and from a user point of view, all commands have the same API (e.g., trigger with
command.Execute(data)). Note that cisstMultiTask also support events and event callbacks, which also
rely on the command pattern.

The two main restrictions imposed by the use of commands are: 1) parameters must be derived from a base
type, and 2) a finite number of signatures are supported:

• Void commands: These do not have parameters and can be used to send commands such as Stop.

• Read commands: These take one parameter (passed by reference). The parameter is a placeholder
that is used by the called (“provides”) task to return information to the user task.

• Write commands: These take one parameter (passed by const reference). The parameter represents
the payload sent to the called task.

• Qualified read commands: These require two parameters (the qualifier or payload is passed by const
reference and the placeholder by reference).

The fact that one can only support a limited number of signatures can be perceived as a drawback but it
helps to enforce the consistency of interfaces by defining the payload and placeholder as single objects. The
cisstParameterTypes library contains the most common parameter types (see Section 4.2).

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1338]
Distributed under Creative Commons Attribution License

2.2 Interfaces 4

2.2 Interfaces

Another key concept of our design is the possibility to have multiple interfaces. This is used to separate dif-
ferent functionalities (e.g. a da Vinci master and the foot pedals should be seen as two different entities) or to
allow the same functionality to be provided multiple times (e.g. an optical tracker with multiple tools). If we
consider the example of the Polaris, the proper implementation would have a main interface to perform the
setup functions (configure, reset, explore ports, beep) and one interface per tool. If all tools were combined
into a single interface, the commands would have to either be named differently (GetPositionCartesian1,
GetPositionCartesian2, ...) or have a different signature to specify the tool index as a parameter. In both
cases, this would break the interface consistency and prevent reusability.

2.3 Self-describing components

Each component (task or device) owns a set of interfaces and each interface owns a set of commands. These
are populated dynamically and can be searched at runtime. Furthermore, all parameter types must be derived
from a base class that provides the class name (string) and a means to create new objects (object factory
pattern). Thus, all components are self-describing; if a new component is added to the system in binary form,
it is possible after linking (or dynamic loading) to find its list of interfaces and their command signatures.
The application can then determine dynamically if the component provides all required functionality.

2.4 Interactive Research Environment (IRE)

Early on we recognized the need for an interpreted language to interact with our C++ libraries [6]. We chose
Python and decided to use SWIG to wrap our libraries. The main uses of the scripting interface are:

• Rapid prototyping, i.e. write and test simple functions directly on a device (e.g., robot) without having
to stop the device, recompile, restart the device and restore its state.

• Runtime modifications of the application state. This allows users to modify data on the fly without
having to restart the application and add new hooks to the code. This is extremely convenient when
something unexpected happens in the middle of a lengthy experiment.

For our base libraries, SWIG parses the library header files and extracts the list of available symbols (func-
tions, classes and their methods). In cisstMultiTask, task interfaces are populated at run time; hence SWIG
can only wrap the base methods, such as task::GetInterface and interface::GetCommand. It would
be tedious for the user to manually invoke these commands (in Python) to retrieve all the interfaces and the
lists of commands and events for each interface. But, because all components are self-describing objects,
we can augment the Swig-generated proxy with a Python method that automatically populates the Python
object’s dictionary (i.e. its list of methods and data members). Once all the interfaces and commands have
been added to the task, one can trigger the command using an intuitive Python method call:

position = prmPositionCartesianGet()
polaris.Tool1.GetPosition(position) # Tool1 is an interface
print position.Status()

The main result is that users do not have to do anything to use their classes in Python, i.e. they do not need
to create a SWIG interface file, generate the wrappers, compile them and add them to a dynamic library.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1338]
Distributed under Creative Commons Attribution License

5

Another plus is that commands are thread safe, which allows users to manipulate a task from the Python
thread without any problem.

3 Multi-threading

The previous sections discussed the need for concurrent processing. The trend towards multi-core processing
architectures motivated us to consider an efficient multi-threading approach, which can easily be extended
to multi-processing. This section presents features of the cisst libraries that facilitate the development of
safe, efficient and flexible multi-threaded applications.

3.1 Thread safety

The first critical aspect of multi-threaded applications is thread safety. This requirement has been some-
what ignored in many existing libraries and toolkits. A prominent example is the free version of LAPACK
distributed on netlib.org. This library is often used in open source packages but neither the C version nor
the original FORTRAN version is thread-safe. The FORTRAN version maintains global variables in some
basic routines such as SVD and the C version also contains static variables introduced by f2c. We use the
thread-safe, FORTRAN90 based, LAPACK3e for our numerical routines1[1]. We provide a binary distribu-
tion of the FORTRAN code (cisstNetlib) as well as C++ wrappers (cisstNumerical) that can handle memory
allocation and verify that all parameters are set correctly. On a side note, cisstNumerical takes advantage of
the versatility of the cisstVector containers by using memory overlay and different storage orders (C++ row
major and FORTRAN column major, [7]).

3.2 Efficiency

Task 3

queue
state

event

cmd

state

event

thread

State
Table

Task 1

queue

State
Table

thread

queue

queue
Task 2

queue

State
Table

thread

queue

queue

cmd

Command TypesUsage

void, writeevent

read, qualified readstate

void, writecmd

Figure 3: Inter-task communication

Another aspect of multi-threading is ease of use and ef-
ficiency. At the low level, cisstOSAbstraction provides
a simple class with basic thread manipulation (creation,
priority, yield, unique ID, etc.) for different operating
systems (Linux, RTAI-Linux, Windows, Mac OS X, So-
laris). At a higher level, cisstMultiTask provides non-
blocking mechanisms to communicate between tasks (i.e.
threads), as illustrated in figure 3.

When a task needs to retrieve some information from an-
other (“read”), it is possible to use double-buffering, i.e.
the working task maintains two (or more) states, using
the current one for its computation and providing a pre-
vious one for any other thread to read. Instead of using
a mutex when the task needs to copy the current state to
the old one, we can use a circular buffer with at least 3 el-
ements (the State Table) and increase the “current” index
before the “previous” one2.

1Also freely available from netlib.org
2This relies on the fact that pointer increments are atomic.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1338]
Distributed under Creative Commons Attribution License

3.3 Memory 6

When a task needs to send a message to another (“write”), the best solution is to use a message queue. In
this case, cisstMultiTask relies on thread IDs to dedicate one queue per thread. Thus, all queues are single
reader and single writer, thereby avoiding the need for a mutex to control write access to the queue. Thread
safety between the reader and the writer is also based on atomic pointer increments.

3.3 Memory

Finally, it is important to control how memory is handled to prevent excessive allocations and de-allocations
(paging can be a problem in real-time operating systems). The cisst libraries are designed to avoid behind-
the-scene memory allocation and provide mechanisms to use memory in place (e.g. method a.SumOf(b,
c) can be used instead of operator + to avoid allocation of a temporary variable). In cisstMultiTask, all
classes perform their memory allocations (e.g., allocating queues) in the configuration phase.

4 API for Computer Assisted Intervention Devices

cisstMultiTask defines a framework for devices but the API itself still has to be defined within this frame-
work. The main characteristics of the API are:

• Interfaces don’t have to be exactly the same between devices.

• Commands and events must have the same signatures (name AND parameters) to make devices inter-
changeable.

• Because a limited number of signatures are supported (“read”, “write”, ...), the payload is likely to be
a compound object (i.e. a C++ class with multiple data members).

These traits are typical of any component-based software. For the type of message (payload) passed between
devices and tasks in CAI applications, we need to give special attention to Cartesian coordinates.

4.1 Transformation Manager

Most of the devices used in CAI provide and use 3D coordinates. When these devices are integrated within
an application, the first step is to register the different reference frames with respect to each other. In our
second example (fig 2), the positions provided by the Polaris will be defined with respect to the camera
while the Omni will provide positions with respect to its base. These two will likely be meters away from
each other and don’t represent the relative positions of the surgeon’s hands (which themselves should very
likely be defined with respect to the camera frame). The first step in most applications is to calibrate and
register the different reference frames used by the devices and application. This usually leads to a tree
where the different nodes represent the key frames used by the devices and the edges represent the current
transformations. A similar feature can be found in AL [3].

The cisst libraries provide a “transformation manager” (singleton) that manages two types of transforma-
tions, fixed and dynamic. The first type corresponds to a constant transformation between frames (e.g. set
once after registration) while the second corresponds to a moving object (e.g., tracking device, robot end
effector). Dynamic transformations contain a cisstMultiTask read command. When a user requests a trans-
formation between two frames, the transformation manager searches for the path in the tree and multiplies

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1338]
Distributed under Creative Commons Attribution License

4.2 Parameter types 7

the relative transformations along the path. If a node is static, the transformation is directly available. If a
node is dynamic, the read command is used to retrieve the current transformation from the device.

4.2 Parameter types

In our framework, parameters are an integral part of the API and must be carefully defined. They depend
on the devices in the sense that they should carry the information provided by the device but they should be
independent of the device implementation to guarantee the component encapsulation (specification based).
For example, typical tracking devices provide not just a position, but also a metric that expresses the quality
(or confidence) of the provided position. The range of values for this metric can vary between devices,
however, and many devices that provide a position (such as robots) do not provide such a metric.

Based on our experience, we defined the following guidelines to define parameter types for 3D related
commands:

• All parameters must contain a time stamp (time of acquisition or request).

• Parameter types for read and write commands (e.g. PositionGet and PositionSet) are likely to be
different. A “read” command should use the PositionGet parameter type which will only contain
the 3D position. Meanwhile, a “write” command should use PositionSet which will contain the
goal position as well as the motion parameters (velocities, accelerations, synchronization flag) used
by the device (e.g. robot).

• All data types related to 3D positions must provide two frames as defined in the transformation man-
ager. The first is the reference frame and the second represents the frame that should be moved
(“write” commands) or tracked (“read” commands).

Basic types are provided in the cisstParameterTypes library. This includes “Set” and “Get” for positions,
velocities and accelerations of both Cartesian and joint commands.

It is important to note that the payload of events also needs to be standardized across devices (event payloads
are command parameters in cisstMultiTask). These parameter types follow the previous guidelines. For
example, a button press will need a time stamp.

The cisstParameterTypes library is populated as new types of devices are added to our framework and refined
as needed.

4.3 Command names

For the command names, we are populating a dictionary of valid signatures. Our goal is to put in place a
tool to dynamically check that all newly added devices use only authorized signatures. The cisst CppUnit
based test suite runs nightly and uses CDash to report errors. This should detect rogue interfaces in a timely
manner.

5 Conclusions

We have presented elements of the cisst library that facilitate the development of safe and efficient multi-
tasking (multi-threaded) software, using concepts from component-based software engineering to achieve

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1338]
Distributed under Creative Commons Attribution License

References 8

loose coupling between tasks. Each task contains one or more interfaces that are self-describing, in that they
can dynamically provide a list of supported commands and associated parameters. This library can facilitate
the development of computer assisted intervention (CAI) systems, with the ability to dynamically configure
the application software to use available hardware, such as diverse robots and other devices. In particu-
lar, it is enabling the concurrent development of the Surgical Assistant Workstation (SAW), an application
framework that supports research with information-enhanced telesurgical robot systems [9].

The cisst software is available under an open source license. Currently, a subset of the software can be
downloaded from www.cisst.org/cisst. Additional elements will become available when the implementation
and documentation are sufficiently mature to support widespread dissemination.

Acknowledgments

The cisst libraries have been created by many individuals; primary contributors include Ankur Kapoor, Ofri
Sadowsky, Balazs Vagvolgyi, and Daniel Li. This work is supported in part by National Science Foundation
EEC 9731748, EEC 0646678, and MRI 0722943.

References

[1] E. Anderson. LAPACK3E – a Fortran 90-enhanced version of LAPACK. Technical report, Science
Applications International Corporation, 2002. 3.1

[2] H. Bruyninckx, P. Soetens, and B. Koninckx. The real-time motion control core of the Orocos project.
In IEEE Intl. Conf. on Robotics and Automation (ICRA), pages 2776–2771, Taipei, Taiwan, 2003. 1

[3] R. A. Finkel, R. H. Taylor, R. C. Bolles, R. P. Paul, and J. A. Feldman. AL, a programming system for
automation. Technical Report CS-74-456, Stanford University, Stanford, CA, USA, 1974. 4.1

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley Professional, Jan
1995. 2

[5] A. Kapoor, A. Deguet, and P. Kazanzides. Software components and frameworks for medical robot
control. In IEEE Intl. Conf. on Robotics and Automation (ICRA), pages 3813–3818, 2006. 2

[6] P. Kazanzides, A. Deguet, A. Kapoor, O. Sadowsky, A. LaMora, and R. Taylor. Development of open
source software for computer-assisted intervention systems. In MICCAI Workshop on Open-Source
Software, Insight Journal: http://hdl.handle.net/1926/46, Oct 2005. 2.4

[7] O. Sadowsky, D. Li, A. Deguet, and P. Kazanzides. Multidimensional arrays and the nArray package.
In MICCAI Workshop on Open Science, Insight Journal: http://hdl.handle.net/1926/553, Oct 2007. 3.1

[8] N. Simaan, R. Taylor, and P. Flint. High dexterity snake-like robotic slaves for minimally invasive
telesurgery of the upper airway. In MICCAI, pages 17–24, Sep 2004. 1

[9] B. Vagvolgyi, S. DiMaio, A. Deguet, P. Kazanzides, R. Kumar, C. Hasser, and R. Taylor. The
Surgical Assistant Workstation: a software framework for telesurgical robotics research. In
MICCAI Workshop on Systems and Arch. for Computer Assisted Interventions, Insight Journal:
http://hdl.handle.net/1926/???, Sep 2008. 5

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1338]
Distributed under Creative Commons Attribution License

