
The Surgical Assistant Workstation
Release 1.00

Balazs Vagvolgyi1, Simon P. DiMaio2, Anton Deguet1, Peter Kazanzides1, Rajesh Kumar1,
Christopher Hasser2, and Russell H. Taylor1

July 25, 2008
1Johns Hopkins University, Baltimore, MD

2Intuitive Surgical Inc., Sunnyvale, CA

Abstract

The Surgical Assistant Workstation (SAW) is a software development framework that can be used to
develop new applications in robot-assisted surgery with augmented visualization. Robot-assisted la-
paroscopic surgery and micro-surgery—as presented by the da Vinci telerobotic system and the Johns
Hopkins Steady Hand, respectively—can be improved by providing fully-integrated image guidance and
information-enhanced intra-operative assistance to the surgical team and to the surgeon in particular.
This paper describes several use case applications of the SAW framework, as well as a novel user inter-
face library being developed to support 3D interactive menu systems and overlays for surgical guidance.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1466]
Distributed under Creative Commons Attribution License

Contents

1 Introduction 2

2 Use Cases 2
2.1 Image Guidance: da Vinci with Laparoscopic Ultrasound Instrument 2
2.2 Image Guidance: da Vinci with Medical Image Overlay . 3
2.3 Haptic Guidance: Virtual Fixtures . 3
2.4 Research Hardware: Snake Robot . 3

3 Application Framework Components 4
3.1 The Video Processing Pipeline . 4
3.2 Interactive Surgical Interface . 5
3.3 User Interactions . 6

4 Conclusion 8

2

1 Introduction

Intuitive API

Intuitive Communications
Interface

Device APIs

Robot API

Optimization
Virtual

Fixtures

Video
Subsystem

Visualization
Subsystem

Research
Applications

and Subsystems

• Haptics
• Task modeling
• Skill Assessment
• Remote telesurgery
• Etc.

• Stereo processing
• Tool tracking
• Image registration
• Interactive visualization
• Ultrasound

HMD;
Stereo

TV
Research Robot Interfaces

(JHU, Other)

U
ltr

as
ou

nd

E
nd

os
co

pe
s

M
ic

ro
sc

op
es

Figure 1: Architecture Overview

The Surgical Assistant Workstation (SAW) project
provides a modular software framework to support
rapid prototyping of telesurgical research systems,
enhanced 3D visualization, and user interactions
based on 3D manipulations (see Figure 1). This
framework includes a library of components that
can be used to implement master-slave or collab-
orative robot control systems with support for com-
plex video pipelines and a novel interactive surgical
visualization environment. This library is intended
to be easily extensible, such that developers can add
support for their own robotic devices and associated
hardware platforms. The intent is similar to mobile
robot frameworks, such as Player [4], that support
various actuators and sensors. In addition, the Im-
age Guided Surgery Toolkit (IGSTK) [3] is targeted at image-guided interventions, but currently focuses
primarily on navigation and 2D user interfaces.

The paper is organized as follows: Section 2 describes several use cases for the SAW framework, in order
to clarify its application scope. Section 3 outlines two key components of the framework, namely the video
processing pipeline that is used to manage video acquisition and processing for visualization and vision-
based guidance, as well as a surgical interface manager that can be used to build complex interactive 3D
user interfaces and visualization environments.

2 Use Cases

This section describes a selection of specific use cases that provide context and motivation for the SAW
framework. One common element is the use of a Masters-as-Mice mode that allows the surgeon to inter-
act with the SAW user interface directly from the surgical console, where the term “Master” refers to the
user input manipulandum of a telesurgical system. This allows the surgeon to use the Masters as 3D point-
ers/cursors to activate controls (e.g., buttons displayed in the stereo view) or to directly manipulate graphical
objects. When using a da Vinci surgical system (Intuitive Surgical Inc., Sunnyvale, CA) [5], the Masters-
as-Mice mode is entered by pressing the master clutch pedal on the surgeon’s console, followed by closing
and releasing both master grips. Typically, one master is used as the primary 3D cursor input. The surgeon
can activate a control (e.g., a menu item) by placing this 3D cursor over it and closing the master grip; this
is analogous to a “mouse click”. The surgeon exits Masters-as-Mice mode by releasing the master clutch.

2.1 Image Guidance: da Vinci with Laparoscopic Ultrasound Instrument

This scenario assumes that a laparoscopic ultrasound (LapUS) instrument is attached to one of the active
Patient Side Manipulators (PSMs) and is inserted through a cannula into the body cavity. If the ultrasound
transducer has been calibrated to the da Vinci instrument, then it should be possible to dynamically overlay
the ultrasound image on the tracked LapUS instrument in the stereo view of the da Vinci master console [8].

In this use case, the surgeon enters Masters-as-Mice mode to select one of the following options: “LapUS

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1466]
Distributed under Creative Commons Attribution License

2.2 Image Guidance: da Vinci with Medical Image Overlay 3

Flashlight View” and “LapUS Inset View.” In the first case, the ultrasound image plane is overlaid onto
the ultrasound instrument, and moves with the LapUS instrument. In the second case, the ultrasound image
plane is displayed as an inset in the stereo view (i.e., it is not affixed to the LapUS instrument).

2.2 Image Guidance: da Vinci with Medical Image Overlay

In this use case, the surgeon enters Masters-as-Mice mode and selects “View Image Volume” to overlay a
medical image volume within the surgical console of a da Vinci system. Once an image volume is selected
and loaded, the surgeon can move the 3D pointer over the crosshair at the origin of the image volume and
“click” (close the grip) to perform any of the following actions:

1. PAN: the primary Master TeleManipulator (MTM) translates the origin of the image volume.

2. ZOOM: the secondary MTM is selected (by closing its grip); the distance between the primary and
secondary MTMs controls the zoom level.

3. ROTATE: the secondary MTM is selected and positioned over one corner of the image volume; rela-
tive motion between the primary and secondary MTMs controls volume orientation.

The surgeon can reformat the slice plane by moving the 3D pointer over one of the corners of the slice plane
and “clicking” (closing the grip) to achieve any of the following actions:

1. TRANSLATE: the slice plane follows the motion of the primary MTM.

2. ROTATE: the secondary MTM is selected and positioned over a second corner of the slice plane;
relative motion of the primary and secondary MTMs controls slice plane orientation.

2.3 Haptic Guidance: Virtual Fixtures

In this use case, the surgeon shares control of the robot with the computer process. The goal of these
task-dependent computer processes is to provide assistance to the surgeon by limiting the robot’s motion
within restricted regions and/or by influencing it to move along desired paths. The literature on virtual
fixtures (VFs) classifies these behaviors as either forbidden region virtual fixtures (FRVFs) or guidance
virtual fixtures (GVFs). FRVFs allow desired motion only in a predefined task space, whereas GVFs provide
assistance in keeping the motion on desired paths or surfaces. In this architecture, FRVFs are defined using
a fixed number of virtual planes, whereas GVFs can be selected from a predefined set of primitives [9].

The surgeon enters Masters-as-Mice mode to initiate “virtual fixture mode” and proceeds to place constraint
planes within the surgical field. Using the 3D pointer, the surgeon may grab and move control points that
describe these planes, in order to adjust the position and orientation of forbidden regions. This interactive
manipulation of the virtual fixtures is similar to that described in Section 2.2.

2.4 Research Hardware: Snake Robot

This use case describes an application in which a da Vinci console is used to control a snake robot system
that is being developed at Johns Hopkins University for laryngeal surgery [6]. Such a hybrid system could

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1466]
Distributed under Creative Commons Attribution License

4

potentially leverage the da Vinci platform to develop and test specialized surgical slave mechanisms, as
proof-of-concept demonstrations.

In this case, both the da Vinci console and the Snake robot are connected to the SAW application. Endoscopic
video outputs would also be connected to the SAW for display on the surgeon’s console.

3 Application Framework Components

The SAW application development framework is modular by design, such that it can be used to imple-
ment different physical architectures and applications. It provides the main application context and event
loops, as well as communication mechanisms for interconnecting modules and devices with the application
logic. A generic API is used to interface with robotic manipulators, while extensive support is provided for
implementing video pipelines and an interactive user interface.

This paper focuses on SAW modules that have been developed to support visualization and user interaction
at the “surgeon’s console”. For a broader discussion of the cisst libraries that underlie the SAW framework,
as well as the research interface that is used to interface with the da Vinci surgical system (Intuitive Surgical
Inc., Sunnyvale, CA), please refer to the following companion papers in the proceedings of this workshop:
[1, 2]. The heirarchy of SAWsoftware components is illustrated in Figure 2.

cisstCommon

cisstInteractive cisstVector

cisstNumerical

cisstImagecisstOSAbstraction

cisstParameterTypes cisstMultiTask cisstStereoVision

Calibration Device Interfaces cisstDevices Video Processing

3D UI Manager Collaborative Control Instrument Tracking

SAW Application Framework

Python

Lapack3e

cisstISI

VTK

UI Interaction

daVinci API

OpenGL

Figure 2: SAW Components

3.1 The Video Processing Pipeline

A library of video pipeline functions provides mechanisms for acquiring and processing streams of images,
including stereo endoscopic video and 2D ultrasound. The SAW framework is designed to facilitate the
development of augmented reality displays for surgical navigation. This is done either by providing means to
enhance the images displayed in the surgical console, or by fusing multi-modality image data into one easily
comprehensible visual display. For live image enhancement, the Video Processing Pipeline incorporates a
number of image filters that may be used to correct various optical and image distortions or to perform
simple image manipulations, such as image resizing, cropping, rotating, spatial filtering, etc. This same
pipeline may also include more complex machine vision algorithms, such as instrument and tissue tracking,
and image registration. Graphical overlays and user interface widgets are rendered using the Visualization
Toolkit (VTK, Kitware Inc., New York); therefore, SAW is capable of leveraging a wide range of existing
3D rendering capabilities. The library provides infrastructure for displaying live stereoscopic video and
multiple layers of complex 3D overlays of various imaging modalities, including live 2D ultrasound or
preoperative 3D CT/MRI data sets that may be registered to the live video background.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1466]
Distributed under Creative Commons Attribution License

3.2 Interactive Surgical Interface 5

3.2 Interactive Surgical Interface

The surgeon’s user interface facilitates interactive manipulation and visualization of 2D and 3D data
objects—including medical images and video—directly within the surgical console, as described in several
of the use cases outlined in Section 2. A 3D graphical user interface manages user interaction from various
input devices (including the master manipulators of the da Vinci Surgical System) and renders a menu sys-
tem and graphical overlays to the stereo display of the surgical console. A 3D User Interface Manager—as
opposed to a 2D Window Manager—provides application-level “widgets” and interaction logic.

Many surgical interventional procedures may benefit greatly from the ability to render images on stereo-
scopic displays similar to the surgical console of the da Vinci system. Stereo vision provides 3D perception
for the human visual system, which not only improves immersion but enables new kinds of 3D user interac-
tions, thus allowing the surgeon to visualize and interact with three dimensional data—such as preoperative
image volumes, intraoperative imaging and navigation systems—that augment the surgical field. The SAW
architecture incorporates support for a wide variety of stereoscopic displays for visualization, while remain-
ing compatible with traditional monoscopic rendering. While 3D virtual environments are beneficial for
many applications, they present a number of new challenges for system developers, namely in terms of
visual ergonomics.

Central to the SAW User Interface Manager is the concept of Behaviors and a Behavior Manager.

Behaviors

In the SAW architecture, individual features (or application modules) are called behaviors. For example,
each of the use cases described in Section 2 constitutes a behavior. The “da Vinci with Medical Image
Overlay” use case can be considered to be a behavior that is capable of loading CT datasets, displaying them
on an image overlay layer on top of the stereoscopic live camera view, and allowing the surgeon to interact
with this dataset through the surgical console.

The SAW software framework provides an easy and transparent interface to access system resources and user
inputs and to seamlessly integrate application logic into the Surgical Assistant Workstation. Behaviors may
create toolbars using a standard set of widgets provided by the SAW framework. These widgets include
buttons, two- or multiple-state check boxes, static text widgets, menu bars, and sliders. The toolbars are
managed by the Behavior Manager, which notifies the behavior when the user interacts with any of the
graphical widgets. In this way the framework can provide a consistent user interface look and feel—with
careful consideration of the limited visual field of a surgical display.

Although most use cases can be implemented using a single behavior, there are application scenarios for
which multiple behaviors may be needed to perform more complex tasks. For example, in order to im-
plement dynamic virtual fixtures, one might want to use features from both a “Video to CT Registration”
behavior and a “Static Virtual Fixtures” behavior. In this case, instead of implementing a single new be-
havior, it makes sense to build a communication channel between the two existing behaviors in order that
the registration filter may adjust the virtual fixtures should the anatomy move within the surgical field. In
terms of user experience, this new dynamic virtual fixture feature would then only be an option that can be
enabled or disabled in the ‘Virtual Fixtures’ behavior, which can in turn automatically start the registration
behavior when needed.

Behaviors may be in one of the following three states: idle, background, foreground. Idle behaviors are not
allowed to perform any computations, the behavior manager does not dispatch any user events to them, and
they cannot draw anything on the display. In the background state they are allowed to render to the surgical

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1466]
Distributed under Creative Commons Attribution License

3.3 User Interactions 6

console and will receive notification of user and system inputs/events. In the foreground state the behavior
manager displays the behavior’s toolbar and dispatches all user inputs to the behavior.

Behavior Manager

The module responsible for managing behaviors and providing the interface for user interactions is called the
Behavior Manager. All behaviors added to an application get registered with the Manager, which generates
the behavior control menu on the main user interface. This control menu lists all behaviors implemented
by the application, and displays their status changes over time. When the application starts up, the manager
initializes all registered behaviors automatically and sets them to the idle state. Initially, no visual overlays
are displayed on the screen. When the surgeon switches to the SAW user input mode, the manager displays
the main behavior menu and lets the user select which behavior to open. Once a behavior is opened, the
manager sets it to the foreground state and enables behavior-specific user interactions. While the behavior
might have its own controls on the screen, the manager keeps the behavior control menu visible so that
the user can exit or hide the running behavior(s) at any time, similar to the ‘close’ and ‘minimize’ buttons
in traditional 2D windowing systems. The Behavior Manager is in fact implemented as a special type of
behavior that implements the menu system, and that in turn enables application behaviors and facilitates
transitions between forground and background behaviors.

3.3 User Interactions

One of the main contributions of the SAW project is that it provides a standard interface for 3D pointer
devices, in a way that is similar to their 2D counterparts. User interactions on traditional 2D user interfaces
have been widely studied and understood. Users have become quite familiar with the computer mouse,
which allows full freedom to explore the two dimensional desktop space. In three dimensions, however,
the methods for efficient user interaction have yet to be developed. The SAW architecture implements
a user interface programming environment where 3D user inputs from a variety of input devices can be
transparently mapped to a simple set of standard pointer events, such as click, drag, or move gestures. The
standard set of events then can easily be accessed by the behaviors regardless of the type of pointer device.
The translation from raw inputs to pointer events is done by device-dependent input interpreters.

The role of the pointer device is crucial in many user interfaces. In the virtual surgical environment, the
position of the cursor indicates the place of interest or intent and usually pointer actions trigger different
application features. The simplest example is clicking a button on the main behavior menu to start a behavior.
In the case of the da Vinci system, the master grip position is directly mapped to the 3D cursor position in
the virtual 3D enviroment. As the surgeon moves the master handle in the console, the cursor follows his/her
movements. To “push” a button, the surgeon moves the cursor over the button of the behavior, then quickly
closes and opens the grip with his/her fingers to generate a click event. A more complex example is to grab
a 3D object in the medical image viewer behavior and move it to another 3D position. In this case, the user
needs to move the cursor inside the volume of the object, close the grip to grab it, then move the master arm
to reposition the cursor and the object with it. Once satisfied, the user opens the grip to release the object
and leave it in its current position.

Some of these functionalities can be found in existing toolkits (e.g., VR-VTK [7]); however, these are either
incomplete for our application, or impose an execution flow that is incompatible with that of the SAW
framework (e.g., VR-VTK relies on VTK’s events).

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1466]
Distributed under Creative Commons Attribution License

3.3 User Interactions 7

2D Interactions

Graphical widgets, menus and toolbars that are handled by the Behavior Manager are rendered on the control
layer. The control layer is an overlay plane—perpendicular to the camera axis—that appears as a 2D desktop
layer upon which all 2D widgets are placed. The apparent depth of this layer is a function of the cursor
position.

During perceptual experiments we observed that when the control layer is maintained at a fixed apparent
depth within the stereo view, users tend to have difficulty when trying to adjust to a different stereo disparity
each time they switch their attention between the work area and the control layer, particularly when there is
a large difference in depth between these focal regions.

In order to ameliorate this problem, we have developed an algorithm to dynamically change the apparent
depth of the control layer as the user manipulates the work area (the control layer is correspondingly re-
scaled such that the size and location of 2D widgets remain static within the view, regardless of their depth).
For example, when the user maneuvers a 3D cursor, the depth of the control layer tracks the depth of the
cursor, such that the user can easily focus on both objects simultaneously, thus significantly reducing visual
stress and fatigue.

3D Interactions

Behaviors may create and manipulate 3D objects on the video overlay through the built-in helper functions
of the SAW user interface. Once a 3D object is created, the behavior may subscribe to its user interface
events. The framework takes care of interfacing with the pointer hardware (surgical console) and translates
pointer actions into object manipulation events. The framework provides default handlers for every user
interface event (such as grabbing or scaling objects in the 3D space); however, the behavior also has the
option to override the default actions with custom logic.

3D Pointers

Although visual ergonomics is an extremely important factor in interventional imaging, we need to pay
equal attention to control ergonomics. For example, in the 2D user interface world the computer mouse
was specifically designed for easy navigation, while in the operating room environment surgeons will end
up using devices not originally designed for manipulating 3D user interfaces. Some of the simplest user
interface actions, such as clicking, holding down a button, or dragging objects are intuitive when using
a computer mouse, due to the ergonomic placement of mouse buttons on the device, as well as careful
decoupling of mouse motion and button actions. However, teleoperated surgical systems, such as the da
Vinci robot, usually do not have buttons on their master arms because they were not designed to perform
clicking actions. When applied to the da Vinci, the SAW framework maps the master grip activations to
pointer actions, as described earlier in the paper.

During user experiments we observed that simply mapping the grip state (i.e., open or closed) to pointer
actions (e.g., clicking) introduces a high error rate in widget interaction accuracy. The root cause of the
problem is that users find it difficult to hold the master arms stationary while closing and opening their grip,
i.e., there is too much motion coupling between pointer positioning and click actuation. As a result, the
cursor position may change significantly by the time the user has completed a click action, thereby causing
the pointer events generated by the input interpreter to deviate from the user’s original intentions. The SAW
interaction logic includes a novel algorithm for inferring the user’s intended click actions with high accuracy.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1466]
Distributed under Creative Commons Attribution License

8

The algorithm maintains a history of motion for both the arm and the grip, and after detecting a grip event
(such as click or push down), it searches back in the motion history to find the moment when the user started
performing the action.

4 Conclusion

The SAW framework will be made available as an open source project in the near future. We invite in-
terested groups and individuals within the research community to make use of, and to further develop, the
SAW concept and its code base. We hope that this work will be used as a platform for research and devel-
opment in telesurgical systems, and that it will provide a convenient means of sharing and integrating new
technologies and methods that will ultimately benefit patients. For further information, please monitor our
project website, located at http://www.cisst.org/cisst/saw/.

Acknowledgements
This work is supported in part by National Science Foundation and National Institutes of Health grants
EEC-9731748 and R42-RR019159.

References

[1] A. Deguet, R. Kumar, R. Taylor, and P. Kazanzides. The cisst libraries for computer assisted intervention
systems. Insight Journal, 2008. http://hdl.handle.net/1926/1465. 3

[2] S. DiMaio and C. Hasser. The da Vinci research interface. Insight Journal, 2008.
http://hdl.handle.net/1926/1464. 3

[3] K. Gary, L. Ibáñez, S. Aylward, D. Gobbi, M. Blake, and K. Cleary. IGSTK: An Open Source Software
Toolkit for Image-Guided Surgery. IEEE Computer, pages 46–53, 2006. 1

[4] B. Gerkey, R. Vaughan, and A. Howard. The Player/Stage project: Tools for multi-robot and distributed
sensor systems. In Intl. Conf, on Advanced Robotics (ICAR), pages 317–323, Jun 2003. 1

[5] G. Guthart and J. Salisbury. The IntuitiveT M telesurgery system: Overview and application. Proc. IEEE
International Conference on Robots and Automation, 1:618–621, 2000. 2

[6] A. Kapoor, N. Simaan, and R. H. Taylor. Telemanipulation of Snake-Like Robots for Minimally Invasive
Surgery of the Upper Airway. In MICCAI Medical Robotics Workshop, Copenhagen, pages 17–25,
2006. 2.4

[7] A. J. F. Kok and R. van Liere. A multimodal virtual reality interface for 3D interaction with VTK.
Knowledge and Information Systems, 13(2):197–219, 2007. 3.3

[8] J. Leven, D. Burschka, R. Kumar, G. Zhang, S. Blumenkranz, X. Dai, M. Awad, G. Hager, M. Marohn,
M. Choti, C. Hasser, and R. Taylor. Davinci canvas: A telerobotic surgical system with integrated,
robot-assisted, laparoscopic ultrasound capability. MICCAI, pages 811–818, 2005. 2.1

[9] M. Li, A. Kapoor, and R. Taylor. Telerobot Control by Virtual Fixtures for Surgical Applications. In
Advances in Telerobotics Human Interfaces, Bilateral Control and Applications, pages 381–401, 2007.
2.3

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1466]
Distributed under Creative Commons Attribution License

