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Abstract. We propose a new clustering algorithm. This algorithm performs clus-
tering and manifold learning simultaneously by using a graph-theoretical ap-
proach to manifold learning. We apply this algorithm in order to cluster white
matter fiber tracts obtained from Diffusion Tensor MRI (DT-MRI) through stream-
line tractography. Our algorithm is able perform clustering of these fiber tracts
incorporating information about the shape of the fiber and a priori knowledge
as the probability of the fiber belonging to known anatomical structures. This
anatomical knowledge is incorporated as a volumetric white matter atlas, in this
case LONI’s ICBM DTI-81.

1 Introduction

Diffusion MRI recovers the in vivo and non invasively effective diffusion of water
molecules in histological tissues, thus providing unique biologically and clinically rel-
evant information not available from other imaging modalities. This information can
help characterize tissue micro-structure and its architectural organization [1] by model-
ing the local anisotropy of the diffusion process of water molecules. Once the diffusion
information has been recovered within each voxel, it can be assembled through the vol-
ume in order to assess brain connectivity in vivo, one of the two main techniques in
order to do this is streamline tractography [2], which recovers white matter fiber tracts
from a seed voxel by following the principal direction of the diffusion tensor. Multiple
seeds can be scattered in the brain resulting in a full brain reconstruction of the fiber
tracts as depicted in fig. 1. However, analysis or visualization of the whole fiber en-
semble in order to get insight of the brain structure is difficult by the cluttering of the
fibers. Thus, there is a need for automatic fiber clustering algorithms in order to perform
visualization, anatomical structure identification and group analysis.

There are two main issues to deal with in fiber tract clustering. The first one is how
to assess geometric similarity between fibers and the second is how to incorporate a
priori knowledge of anatomical structures. Several approaches have been proposed to
automatically produce fiber tract clusters. The works by [3,4] apply regular clustering
algorithms over shape metrics obtaining moderate results due to the complex structure
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of fiber tract clusters. To overcome this problem the works [5,6,7] use spectral man-
ifold learning techniques in order to produce a mapping of the fiber tracts to a high-
dimensional Euclidean space. In that space regular clustering algorithms are applied
incorporating the complex structure of the cluster. At the heart of these algorithms, lies
the construction of a huge matrix of fiber-to-fiber similarities and the resolution of a
highly memory intensive eigenproblem for which only approximate solutions can be
generated. In order to incorporate a priori knowledge to this approach [6] takes the
computed clusters and performs expert validation and manual reclustering generating
an atlas. Then, the identification of new fibers is done by projection to this atlas. The
creation of this high-dimensional atlas needs fine-tunning of several parameters which,
in spite that their behaviour is well studied in [6], it is a difficult task with great in-
fluence in the final results. Recently, in order to better deal with outliers and artifacts
due to tractography and perform quantitative analysis, two works employed expectation
maximization techniques: in [8] the EM clustering is performed incorporating the atlas
developed by [6] and inheriting its difficulties and in [9] the EM approach requires the
number of clusters and focuses totally on the shape of the fibers lacking the incorpo-
ration of a priori knowledge. A priori information was also incorporated to the same
problem in [10] simultaneously with our work.

In this work we present a new algorithm which performs manifold learning and
clustering simultaneously by using elements at the heart of two techniques, IsoMap
manifold learning [11] and medoidshift clustering [12]. The present approach has sev-
eral advantages; in the first place, this algorithm does not need the computation of huge
matrices nor the resolution of eigenproblems; secondly it automatically finds the num-
ber of clusters, thus being able to handle outliers by producing small sized clusters.
Moreover, our algorithm uses the shape of each fiber and a priori knowledge in using a
volumetric atlas as shown in fig. 1 thus providing anatomically coherent classifications
of the fiber tracts.

Fig. 1. Whole brain streamline tractography example. The fibers are colored according
to the anisotropy of the water diffusion in each segment. The cluttering of the fibers
makes difficult to get insight of the data [5]. On the right a volumetric atlas, LONI ICBM
DTI-81, representing anatomical knowledge has been superimposed to the tractography.
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2 Methods

In this section we describe the two principal parts of our manifold learning and cluster-
ing approach: the mode seeking clustering methodology, the incorporation of simulta-
neous manifold learning and finally the application to DT fiber tracts.

2.1 Mode seeking by mean shifts

Mode seeking is the general name for a family of clustering algorithms which assumes
that the data to be clustered can be regarded as an empirical probability distribution
function (PDF) where these dense regions correspond to the maxima of the PDF or
its modes. Once these modes are located, clusters associated with each mode can be
delineated. Mean shift based mode seeking techniques where introduced in the fields
of computer vision and pattern recognition by [13], amongst others. These techniques
consist of shifting each element to be clustered towards its corresponding mode until
the mode has been reached. Then the number of clusters is determined by the number
of modes, that is the points in each cluster to which the shifting procedure converged to.

The mean shift procedure can be formulated as follows [13]. Let D be a set of
elements {x1 . . . xN} sampled from a manifoldM associated with a distance function
dist(·, ·), and let Φ(·) be a kernel function. Then, the PDF characterizing D at x can be
estimated by the kernel density,

f〈D,d〉(x) =
c

N

∑
i

Φ

(
dist2(xi, x)

h2

)
(1)

where h is an application-oriented bandwidth parameter and c is a normalizing constant
ensuring that f〈D,d〉(·), or f(·), integrates to 1. In order to shift an element towards its
corresponding mode, or local maxima, of f(·): let φ be the negated derivative of Φ,
φ = −Φ′. A shifting operation is applied to each element in D until it reaches a mode.
In order to avoid the need of an interpolation operation amongst the elements in D and
due to the robustness of the medoid operator, the modes are estimated using the recent
medoid shift approach [12]: the operation shifting yt to the sample medoid at yt, yt+1

is

ymedoidt+1 = arg min
y∈D

∑
i

dist2(xi, y)
h2

φ

(
dist2(xi, yt)

h2

)
. (2)

As a final remark to this section, the importance of working in the right manifold,
i.e. using the right metric between the points, can be emphasised by the following
simulated example. Let T = {t1 . . . t|T |}, where ti is drawn with equal probability
from one of the following three gaussian distributions, G(0, 1

5 ), G(2, 1
2 ) or G(5, 1),

thus producing one cluster from each distribution. Then our dataset is produced as a
mapping of T , D = {xi = x(ti) : x(t) = −t(sin(t); cos(t))}. In this sample, the
manifold M is the curve s(t) = −t(sin(t); cos(t)), t ∈ [0, inf), and the mapping
results in three different clusters along a spiral as shown in fig. 2. Taking the kernel
Φ(ζ) = e−ζ we perform two kernel density estimations with different distance func-
tions. The first one, uses the natural distance on the euclidean space R2, or extrinsic



4

distance, distR2(xi, xj) = ‖xi − xj‖2, followed by kernel density estimation being
performed by following equation (1). The value of the kernel density estimation over
R2, f〈D,distR2 〉, is plotted under D as contour isolines in fig. 2(a), where red indicates
higher and blue lower values, respectively; it can be seen that the modes of f〈D,distR2 〉,
the red areas, are not aligned with the clusters ofD. The second distance, is chosen to be
a distance on the parameter space T , or intrinsic distance, distT (xi, xj) = ‖ti − tj‖2.
Then performing kernel density estimation using the function f〈D,distT 〉 is equivalent
to doing it over the one dimensional curve manifold 〈M,distM〉 shown in fig. 2(b),
where the different modes of the distribution are aligned with the clusters as expected.
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Fig. 2. Importance of working in the right manifold for kernel density estimation. Given
3 clusters with different gaussian distribution embedded in a curve, on the left kernel
density estimation on the bidimensional space enclosing the curve are shown as contour
plots. Concentration areas do not coincide with clusters. On the right kernel density
estimation along the curve: peaks coincide with the clusters.

2.2 Medoidshift with simultaneous Manifold Learning

In this section we describe an algorithm which incorporates manifold learning and
medoidshift clustering in order to perform the clustering in the intrinsic space of the
dataset. The importance of working in the right manifold has been stressed in sec-
tion 2.1.

The main tool of this section is the following theorem3,[14, Main Theorem A]

Theorem 1 (Geodesics are approximated by shortest paths on an induced graph).
Let D = {x1, . . . , x|D|} be a set of finite discrete points properly sampled from the
compact manifoldM⊂ R, and an extrinsic distance function inR, distR : R×R →
R≥0. A graph G(V, k) = 〈V,E(k)〉 can be built where the vertexes are V = D, the
edges are defined as E(k) = {(xi, xj) : distR(xi, xj) ≤ neighk(xi)} and neighk(xi)
is the distance distR(·, ·) to the kth closest neighbor of xi.

3 In this work the theorem is stated in a simplified form.
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Then, as |D| → ∞, the length of the shortest path between two points in the graph
distG(D,k)(xi, xj) asymptotically converges to the geodesic distance on the manifold
M, or intrinsic distance, distM(xi, xj).

In order to produce a clustering algorithm capable of working in the learned man-
ifold without solving an eigenproblem as done in [11,5,15] , we present an algorithm
which does not rely on interpolation and differential operators generalizing the idea of
using the IsoMap distance matrix as starting point for medoidshift [12]. The formula-
tion for kernel density estimation equation (1), over the learned manifold can be formu-
lated by using the graph distance, distG(·, ·), defined in theorem 1 as f〈D,distG〉(x) =
c
N

∑
i Φ
(

dist2G(x,xi)
h2

)
. Due to theorem 1, this algorithm asymptotically approaches an

algorithm working on the geodesics ofD. The modes, and its associated clusters, on this
density estimation can be approximated by modifying the medoidshift formula equa-
tion (2),

ygraphmedoidt+1 = arg min
y∈D

∑
i

dist2G(xi, y)
h2

φ

(
dist2G(xi, yt)

h2

)
. (3)

2.3 Application to DT white matter fiber tracts

In this section we explain the use of our algorithm which performs clustering over
learned manifolds to cluster a set for dMRI-extracted fiber tracts F = {F1, . . . , F|F|}
taking in account the shape of the fibers and a priori knowledge about white matter
anatomy.

Shape Distances between fiber tracts Once the streamline fiber tracts have been ex-
tracted from dMRI we want to be able to measure similarity in order to cluster them.
Curve matching is an extensive research field in computer vision and medical imaging.
In the particular case of DT-MRI tractography, several metrics have been proposed in
order to quantify similarity among fiber tracts [16,17,18,9]. Nevertheless this is still
and open problem, specially in the case of large deformations [19]. In this work, we
assume that fiber tracts within the same bundle can be characterized by a sequence of
small deformations, spanning a manifold on the curve space. Hence, using theorem 1,
we are only concerned with quantifying similarity between very similar fibers and then
propagating this similarity. In order to quantify these small similarities we resort to the
symmetrized Chamfer distance : Given two fiber tracts represented as point sequences
like F = {p1, . . . ,p|F | ∈ R3}, the distance metric between Fi and Fj is calculated as,

distChamfer(Fi, Fj) :=

(√P
p∈Fi

minp′∈Fj
(‖p−p′‖2)

|Fi| +

√P
p′∈Fj

minp∈Fi
(‖p−p′‖2)

|Fj |

)
2

(4)

Finally, in order to obtain the intrinsic distance between fibers, we apply theorem 1: a
directed weighted graph is induced from the distance distChamfer in order to represent
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the fiber shape feature: GS := G(F , kF ) as stated in theorem 1. Finally the geodesic
distance on the fiber manifold is approximated by distGS(Fi, Fj), the shortest path
from Fi to Fj in the graph GS.

Anatomical knowledge prior information In order to model a priori anatomical
knowledge we define the probability of a fiber F crossing a label l of an atlas A,

Prob(F ∈ l |A) = 1
|F |
∑|F |
i=1 β(A(pi) = l) where β(·) is the indicator function.

Thus each fiber is identified by a discrete probability distribution and the Kullback-
Leibler divergence, DKL(Fi||Fj) =

∑
l∈L Prob(Fi ∈ l |A) log

(
Prob(Fi∈l|A)
Prob(Fj∈l|A)

)
, sym-

metrized becomes a natural choice of distance function between fibers

distKL(Fi, Fj) = DKL(Fi||Fj) +DKL(Fj ||Fi). (5)

Finally in order to approximate the intrinsic distance function of the manifold where
each fiber is represented by a discrete probability distribution, we resort to theorem 1:
Let the graphGA = G(F , kA). Thus, the intrinsice distance is approximated by distGA(Fi, Fj),
the shortest path from Fi to Fj in the graph GA.

DT Tractography clustering Let F = {F1, . . . , FN} be the set of fiber tracts in a
tractography, by using the distances distGS(·, ·) and distGA(·, ·). A multi-feature ker-
nel density estimation function is derived from equation (1), f〈F,distGS ,distGA〉(F ) =
c
N

∑
i Φ
(

dist2GS(Fi,F )

h2
S

+ dist2KL(Fi,F )

h2
A

)
where, for each fiber y0 ∈ F , the correspond-

ing modal fiber is found by reaching the fixed point of the following equation derived
from equation (3)

yt+1 = argminy∈F∑
i

(
dist2GS(Fi, y)

h2
S

+
dist2GA(Fi, y)

h2
A

)
φ

(
dist2GS(Fi, yt)

h2
S

+
dist2GA(Fi, yt)

h2
A

)
.

(6)

Clustering algorithm The full algorithm for white matter fiber tracts is as follows:
Algorithm 1 Given a set of fiber tracts F = {F1, . . . , F|F|} and the atlas ICBM DTI-
81, noted as A, registered to the coordinated space of the fiber set:
1. Generate the graph GS = G(F , kS) using the distance shown in equation (4) and

taking kS as the smallest number s.t. GS is connected.
2. Generate the graph GA = G(F , kA) using the distance shown in equation (5) and

the atlasA. The parameter is taken kA as the smallest number s.t.GA is connected.
3. For each fiber f ∈ F , set y0 = f and iterate equation (6) until convergence.
4. Delineate each cluster as all the fibers f ∈ F that converged to the same mode

3 Results

DTI data was acquired by the Magnetic Resonance Imaging Center at the Pitié-Salpêtrière
hospital, Paris, France with a 3T Siemens Trio TIM 32 channel system. Diffusion
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weighted images were acquired with 50 gradient directions and 60 slices with a FOV of
256mm, a b-value of 1000 s

mm2 and 2mm3 isotropic voxels. Diffusion tensor estima-
tion and streamline tractography were performed by using riemmanian estimation with
the Odyssee Brain Visa toolbox, finally affine registration was performed using the FSL
software toolkit (http://www.fmrib.ox.ac.uk). The number of neighbors for the graphs
GS and GA for each image were chosen as the smallest number such that the graph
is connected. Clusters under a specific size were considered outliers and eliminated.
Results are shown in fig. 3 where only selected fiber bundles are shown for clarity. In
this figure, it can be seen the correct clustering of the left cortical spinal tract(yellow),
both cingulum bundles(dark purple and blue), the arcuate fasciculus(light purple) and
the inferior logitudinal fasciculus(red), has been performed.

Fig. 3. Clustering results for two sample cases where only selected fiber bundles are
shown for clarity. In this figure it can be seen that correct clustering of the left cortical
spinal tract(yellow), both cingulum bundles(cyan and blue), the arcuate fasciculus(light
purple) and the inferior longitudinal fasciculus(red), has been performed

4 Conclusions

In this paper we present a simultaneous manifold learning and clustering algorithm in
order to cluster white matter fiber tracts using the shape of the fibers and the spatial
location combined with a volumetric atlas. After the tracts are calculated, the algo-
rithm only requires the tunning of 4 parameters, the two parameters in order to build
the graphs which can be obtained automatically and the bandwidth parameters for the
clustering process which should be tuned by the user. Finally we have shown that this
algorithm succesfully identifies major fiber bundles. Further work should study auto-
matic determination of the bandwidth parameters and the use of the clustered results in
order to perform group analysis.
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