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Abstract

In this work a minimum cost path approach is adopted to extract coronary artery centerlines from CTA
data. The algorithm depends on the manual definition of the start and end point of the vessel. The
cost image used in the minimal cost path approach is based on avesselness measure and a smooth
window function on intensity. In the majority of the cases the method was able to extract the centerlines
successfully (overlap > 90%). Accuracy of the method is around two times the voxelsize of the datasets.
To conclude, minimum cost path approaches have potential for coronary artery centerline extraction, but
improvements, especially regarding the accuracy of the method, still need investigations.
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1 Introduction

For the evaluation of coronary arteries in computed tomography angiography (CTA) data, visualization
techniques, such as maximum intensity projection (MIP), multi-planar reformatting (MPR), curved planar
reformatting (CPR) and volume rendering techniques (VRT) are used in clinical practice [1]. MPRs and
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CPRs are mainly determined from manually annotated coronary artery centerlines. The manual definition
of these centerlines is generally performed on differentlyoriented projections of the CTA data and is a la-
borious task. Reliable (semi-)automatic coronary artery centerline extraction is therefore relevant in clinical
practice. Furthermore, vessel centerlines can serve as a starting point for automatic quantitative vascular
image analysis such as stenosis grading and measuring calcium volume.

Several authors proposed the use of minimum cost path approaches to solve the problem of vessel centerline
extraction [4, 6, 8–11]. These approaches need at least the start and end point of the vessel, but additional
user-interaction can easily be integrated to guide the centerline extraction in difficult cases (e.g. the presence
of severe pathology or decreased image quality).

Wink et al. [10] explored different methods to determine theminimum cost path through a pre-defined
cost image, for the extraction of vessel centerlines from medical image data. Among them are Dijkstra’s
algorithm [2], the A* algorithm [7], which makes use of additional heuristics to steer the search process,
and wave front propagation analysis [9]. In [8], Wink et al. applied Dijkstra’s algorithm for the extraction
of coronary vessel centerlines from 3D MRA data. Olabarriaga et al. [6] applied a minimum cost path
technique for the extraction of coronary artery centerlines from CTA data, but in this work the method was
only evaluated on small vessel segments. Furthermore, Li etal. [4] and Wink et al. [11] proposed minimum
cost path techniques in which scale is included as an additional dimension in the cost image. In these
approaches scale selection is implemented in an implicit way, which is more robust compared to a more
traditional explicit selection procedure. This can especially be an advantage in 2D images with overlapping
vessel structures.

This work is carried out in the context of the workshop ’3D segmentation in the clinic: A grand challenge
II’ at MICCAI 2008 [5]. It follows the approach of Wink et al. [8] and Olabarriage et al. [6], but a modified
cost function based on intensity and a vesselness measure isused. Furthermore, the scale parameter for the
vesselness computation is optimized using the training data of the challenge.

In the next section the outline of the method is presented. Insection3 the optimization procedure and
evaluation experiments and their results are outlined. Thelast section of this paper contains a discussion on
the results and the conclusion of this work.

2 Method

The problem of finding the coronary arteries in CTA data can bedefined as finding the correct three-
dimensional path through the data that follows the vessel ofinterest between its start and end point. In
this work, a minimum cost path approach using Dijkstra’s algorithm [2] is adopted to find this path be-
tween a manually defined start and end point. Resulting extracted centerlines are spatially smoothed using a
Gaussian kernel (σ=1 mm), to decrease the effect of the discrete nature of the minimum cost path approach.

The cost image that is used in the minimum cost path approach is based on a priori information about
coronary shape and intensity in CTA images. Vessels in CTA images are expected to appear as bright
tubular structures in a darker environment and a vesselnessmeasure is used to derive a measure for this
tubularity [3]. This vesselness measure is defined as:
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Figure 1: Example of intensity transformation function as given by equation (2) for a1 = −24HU, a2 = 576HU and

b = 0.1.

(a) Input image (b) ROI (c) Vesselness (d) Intensity (e) Cost image

Figure 2:Example showing the results of the vesselness and intensity measure and the cost image derived from these

two measures.

and|λ1| ≤ |λ2| ≤ |λ3| the eigenvalues of the Hessian matrix computed at scaleσ. Frangi et al. [3] include
this Hessian analysis in a multi-scale framework, but in this work only one scale is used.

Although the norm of the Hessian matrix in the third term of equation (1) gives a measure for local contrast,
it does not differentiate between the occurrence of this contrast in high or low intensity regions. To ensure
that bronchi and calcified regions will have high cost values, intensity is included as a second feature in the
computation of the cost image. This is achieved by using the product of two Gauss error functions acting as
a smooth window function (see also Figure1):

T (~x) =
1
2
(erf[b(I(~x)−a1)]+1)(1− 1

2
(erf[b(I(~x)−a2)]+1)) (2)

with I(~x) the intensity of the input image at voxel position~x and a1, a2 and b parameters to control the
steepness and center of the two error functions.

Combining the vesselness and intensity measure, the final cost image is defined as:

C(~x,σ) =
1

V (~x)T (~x,σ)+ ε
(3)

whereε is a small positive value introduced to avoid singularity ofthe function whenV (~x) T (~x,σ) ap-
proaches zero.

3 Experiments and results

3.1 Parameters

The parameters for the intensity transformation function (equation (2)) were experimentally determined
using the eight training datasets. Resulting settings area1 = −24HU, a2 = 576HU andb = 0.1. These
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Figure 3:AD values for different scales used to optimize the vesselness measure.

settings include the range of intensity values corresponding to the contrast enhanced lumen, but exclude the
bronchi and calcium intensity values. The scale parameter for the vesselness computation was optimized
using the eight training datasets. The optimization was carried out in two steps. In the first steps scales
between 0.8 mm and 1.5 mm (with stepsize 0.1 mm) were tested and in the second step, fine steps of 0.02 mm
were taken around the optimal values of the first step. Optimization was performed using the AD measure
and results of the second step can be found in Figure3. The optimum was found at 0.92 mm, which was
subsequently used in the experiments on the testing data. Other parameters for the vesselness computation
were chosen as proposed by Frangi et al. [3].

3.2 Evaluation

Evaluation of the method was performed on the 16 testing datasets using the evaluation framework as de-
scribed in [5]. Centerline extraction was performed between the start point (point S) and end point (point
E) of the vessels. Results can be found in Table1, 2 and3. Examples of correctly extracted coronary artery
centerlines can be found in Figure4.
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Table 1: Average overlap per dataset
Dataset OV OF OT Avg.

nr. % score rank % score rank % score rank rank
8 84.5 46.3 – 49.0 35.9 – 85.7 43.0 – –
9 71.4 54.2 – 53.4 41.1 – 73.1 49.1 – –
10 97.3 64.8 – 57.9 41.6 – 97.4 61.2 – –
11 81.1 42.0 – 25.1 25.5 – 81.1 42.7 – –
12 94.2 52.2 – 25.8 14.4 – 96.4 48.5 – –
13 98.6 78.1 – 76.6 63.3 – 99.7 87.4 – –
14 93.1 47.1 – 37.2 21.7 – 93.0 46.5 – –
15 94.6 77.0 – 85.8 68.8 – 95.3 72.7 – –
16 90.0 57.8 – 49.3 37.4 – 92.1 58.6 – –
17 87.2 67.2 – 49.6 53.8 – 87.2 57.8 – –
18 96.9 86.3 – 81.1 78.2 – 96.9 85.9 – –
19 97.9 81.4 – 70.2 61.9 – 97.9 74.0 – –
20 87.8 54.2 – 32.9 17.9 – 87.7 44.0 – –
21 95.9 85.6 – 96.2 95.4 – 98.9 87.0 – –
22 98.5 74.3 – 54.7 52.4 – 98.4 74.2 – –
23 96.0 79.0 – 68.4 59.4 – 96.0 73.0 – –

Avg. 91.6 65.5 – 57.1 48.1 – 92.3 62.8 – –

Table 2: Average accuracy per dataset
Dataset AD AI AT Avg.

nr. mm score rank mm score rank mm score rank rank
8 0.70 33.4 – 0.41 35.9 – 0.68 34.1 – –
9 9.45 21.0 – 0.43 29.4 – 9.39 21.5 – –
10 0.47 24.0 – 0.45 24.6 – 0.48 23.3 – –
11 2.67 22.9 – 0.58 26.8 – 2.67 22.8 – –
12 0.47 23.8 – 0.43 24.6 – 0.47 24.1 – –
13 0.34 35.1 – 0.32 35.5 – 0.32 35.3 – –
14 0.65 29.8 – 0.55 31.3 – 0.66 29.3 – –
15 0.65 25.9 – 0.45 27.2 – 0.66 26.2 – –
16 0.58 24.5 – 0.43 26.7 – 0.59 24.1 – –
17 0.99 39.5 – 0.48 38.7 – 0.99 39.5 – –
18 0.50 25.1 – 0.43 25.7 – 0.50 25.1 – –
19 0.61 28.8 – 0.58 29.2 – 0.61 28.8 – –
20 0.71 30.0 – 0.44 33.8 – 0.71 30.0 – –
21 0.55 21.8 – 0.43 22.7 – 0.46 22.6 – –
22 0.87 19.1 – 0.85 19.3 – 0.89 18.5 – –
23 0.54 27.2 – 0.45 28.0 – 0.54 27.2 – –

Avg. 1.30 27.0 – 0.48 28.7 – 1.29 27.0 – –

Table 3: Summary
Measure % / mm score rank

min. max. avg. min. max. avg. min. max. avg.
OV 3.1% 100.0% 91.6% 1.6 100.0 65.5 – – –
OF 0.0% 100.0% 57.1% 0.0 100.0 48.1 – – –
OT 3.1% 100.0% 92.3% 1.5 100.0 62.8 – – –
AD 0.29 mm 36.17 mm 1.30 mm 1.2 52.1 27.0 – – –
AI 0.28 mm 1.09 mm 0.48 mm 10.7 48.7 28.7 – – –
AT 0.29 mm 36.18 mm 1.29 mm 1.2 52.1 27.0 – – –

Total – – –
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(a) Dataset 08 (b) Dataset 13 (c) Dataset 20

Figure 4:Examples of correctly extracted coronary artery centerlines.

3.3 Running time

Time needed to compute the cost image and perform centerlineextraction for all four coronary arteries is
approximately three minutes per dataset.

4 Discussion and conclusion

In this work a minimum cost path approach is adopted to extract coronary artery centerlines from CTA data.
In the majority of the cases the method was able to extract thecenterlines successfully. In only two cases
the method failed and followed the incorrect vessel. Badly defined costs due to the presence of pathology or
imaging artifacts for a part of the vessel of interest and a substantial difference in vessel lengths caused the
integrated costs along the path through the incorrect vessel to be smaller than the integrated costs along the
vessel centerline of interest. This problem may be solved byallowing additional user interaction by means
of clicking an extra point in the correct vessel or by a betterdefinition of the cost image. In all other cases
the method was able to extract over 90% of the vessel centerline correctly. Accuracy of the method is around
two times the voxelsize of the datasets. The method may be improved by using a multiscale approach for
the computation of the vesselness measure, which is expected to better align the centerlines in parts of the
vessels where the diameter is relatively large. The accuracy of the method might also be improved by a post-
processing step that incorporates local image informationto better align the extracted path with the center
of the lumen. To conclude, minimum cost path approaches havepotential for coronary artery centerline
extraction, but improvements, especially regarding the accuracy of the method, still need investigations.
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