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Abstract

In this work a minimum cost path approach is adopted to ext@nary artery centerlines from CTA
data. The algorithm depends on the manual definition of thg ahd end point of the vessel. The
cost image used in the minimal cost path approach is basedvesselness measure and a smooth
window function on intensity. In the majority of the cases thethod was able to extract the centerlines
successfully (overlap > 90%). Accuracy of the method is adowo times the voxelsize of the datasets.
To conclude, minimum cost path approaches have potentiabfonary artery centerline extraction, but
improvements, especially regarding the accuracy of théoktstill need investigations.
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1 Introduction

For the evaluation of coronary arteries in computed tonauyaangiography (CTA) data, visualization
techniques, such as maximum intensity projection (MIP)ltinplanar reformatting (MPR), curved planar
reformatting (CPR) and volume rendering techniques (VRE&)wsed in clinical practice [1]. MPRs and



CPRs are mainly determined from manually annotated coyomidery centerlines. The manual definition
of these centerlines is generally performed on differeatlgnted projections of the CTA data and is a la-
borious task. Reliable (semi-)automatic coronary arternjterline extraction is therefore relevant in clinical
practice. Furthermore, vessel centerlines can serve agtagtpoint for automatic quantitative vascular
image analysis such as stenosis grading and measuringroatolume.

Several authors proposed the use of minimum cost path agedo solve the problem of vessel centerline
extraction [4, 6,8-11]. These approaches need at leastateand end point of the vessel, but additional
user-interaction can easily be integrated to guide thesckam extraction in difficult case&.§. the presence
of severe pathology or decreased image quality).

Wink et al. [10] explored different methods to determine thimimum cost path through a pre-defined
cost image, for the extraction of vessel centerlines frondiozeé image data. Among them are Dijkstra’s
algorithm [2], the A* algorithm [7], which makes use of addital heuristics to steer the search process,
and wave front propagation analysis [9]. In [8], Wink et gdpked Dijkstra’s algorithm for the extraction
of coronary vessel centerlines from 3D MRA data. Olabagiat)al. [6] applied a minimum cost path
technique for the extraction of coronary artery centedifrem CTA data, but in this work the method was
only evaluated on small vessel segments. Furthermore,dli pt] and Wink et al. [11] proposed minimum
cost path techniques in which scale is included as an additidimension in the cost image. In these
approaches scale selection is implemented in an implicit waich is more robust compared to a more
traditional explicit selection procedure. This can esgiécbe an advantage in 2D images with overlapping
vessel structures.

This work is carried out in the context of the workshop '3D megtation in the clinic: A grand challenge
I at MICCAI 2008 [5]. It follows the approach of Wink et al8] and Olabarriage et al. [6], but a modified
cost function based on intensity and a vesselness meaauwseds Furthermore, the scale parameter for the
vesselness computation is optimized using the training ofathe challenge.

In the next section the outline of the method is presentedselrtion3 the optimization procedure and
evaluation experiments and their results are outlined.|d$tesection of this paper contains a discussion on
the results and the conclusion of this work.

2 Method

The problem of finding the coronary arteries in CTA data cardefined as finding the correct three-
dimensional path through the data that follows the vessdéhtefest between its start and end point. In
this work, a minimum cost path approach using Dijkstra’sodtgm [2] is adopted to find this path be-
tween a manually defined start and end point. Resulting @etlacenterlines are spatially smoothed using a
Gaussian kernebE1l mm), to decrease the effect of the discrete nature of themmim cost path approach.

The cost image that is used in the minimum cost path appraatiased on a priori information about
coronary shape and intensity in CTA images. Vessels in CTAges are expected to appear as bright
tubular structures in a darker environment and a vessemessure is used to derive a measure for this
tubularity [3]. This vesselness measure is defined as:

0 if A,>00rA3>0
V(%.0) = [(1_ exp(_%ﬁ)} exp(—5%) {1— exp(—%)] otherwise @
with
Y _ M _ 2 2 2
Ra= e Re=—te Rs= /(2 00+ 0)
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Figure 1: Example of intensity transformation function as given by equation (2) for a; = —24HU, a, = 576HU and
b=0.1

(a) Input image (b) ROI (c) Vesselness (d) Intensity (e) Costimage

Figure 2:Example showing the results of the vesselness and intensity measure and the cost image derived from these
two measures.

and|A1] < |Az] < |As| the eigenvalues of the Hessian matrix computed at szakrangi et al. [3] include
this Hessian analysis in a multi-scale framework, but ia thork only one scale is used.

Although the norm of the Hessian matrix in the third term ofi&ipn (1) gives a measure for local contrast,
it does not differentiate between the occurrence of thigrashin high or low intensity regions. To ensure
that bronchi and calcified regions will have high cost valule®nsity is included as a second feature in the
computation of the cost image. This is achieved by using thdyzt of two Gauss error functions acting as
a smooth window function (see also Figule

T(8) = 5(erfib(1 () —a)] + 1)(1— S(erflo(l (X) — )] + 1) @

with | (X) the intensity of the input image at voxel positi@randa;, a; andb parameters to control the
steepness and center of the two error functions.

Combining the vesselness and intensity measure, the fintlmage is defined as:

1
C0) =R TR o) +e

wheree is a small positive value introduced to avoid singularitytioé function whernV (X) T(X,0) ap-
proaches zero.

®3)

3 Experiments and results

3.1 Parameters

The parameters for the intensity transformation functiequ@tion 2)) were experimentally determined
using the eight training datasets. Resulting settingsaare —24HU, a, = 576 HU andb = 0.1. These
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Figure 3:AD values for different scales used to optimize the vesselness measure.

settings include the range of intensity values correspanth the contrast enhanced lumen, but exclude the
bronchi and calcium intensity values. The scale parametethk vesselness computation was optimized
using the eight training datasets. The optimization wasezhiout in two steps. In the first steps scales

between 0.8 mm and 1.5 mm (with stepsize 0.1 mm) were testeih dime second step, fine steps of 0.02 mm

were taken around the optimal values of the first step. Op#tian was performed using the AD measure

and results of the second step can be found in Fiur€he optimum was found at 0.92 mm, which was

subsequently used in the experiments on the testing dakeer @arameters for the vesselness computation
were chosen as proposed by Frangi et al. [3].

3.2 Evaluation

Evaluation of the method was performed on the 16 testingsdegausing the evaluation framework as de-
scribed in [5]. Centerline extraction was performed betwd® start point (point S) and end point (point
E) of the vessels. Results can be found in Tdh2and3. Examples of correctly extracted coronary artery
centerlines can be found in Figu#e
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Table 1: Average overlap per dataset

Dataset oV OF oT Avg.
nr. % score rank| % score rank| % score rank| rank
8 845 46.3 - | 49.0 359 - | 85.7 43.0 -
9 71.4 54.2 - 53.4 41.1 - 73.1 49.1 -
10 97.3 64.8 - | 579 416 - | 974 61.2 -
11 81.1 42.0 - 25.1 25.5 - 81.1 42.7 -
12 942 522 - | 256.8 144 - | 96.4 485 -
13 98.6 78.1 - 76.6 63.3 - 99.7 87.4 -
14 93.1 47.1 — 37.2 21.7 - 93.0 46.5 -
15 946 77.0 - | 85.8 68.8 - | 95.3 727 -
16 90.0 57.8 - 49.3 37.4 - 92.1 58.6 -
17 87.2 67.2 — | 496 53.8 - | 87.2 57.8 -
18 96.9 86.3 - 81.1 78.2 - 96.9 85.9 -
19 979 814 - | 70.2 619 - | 979 740 -
20 87.8 54.2 - 32.9 17.9 - 87.7 44.0 -
21 959 85.6 - | 96.2 954 - | 989 87.0 -
22 98.5 74.3 - 54.7 52.4 - 98.4 74.2 -
23 96.0 79.0 - 68.4 59.4 - 96.0 73.0 -
Avg. 91.6 655 - | 57.1 48.1 - | 923 628 -
Table 2: Average accuracy per dataset
Dataset AD Al AT Avg.
nr. mm  score rank| mm score rank| mm score rank| rank
8 0.70 334 - 0.41 35.9 - 0.68 34.1 -
9 9.45 210 - | 043 294 - 1939 215 -
10 0.47 24.0 - 0.45 24.6 - 0.48 23.3 -
11 2.67 229 - | 0.58 26.8 - | 2.67 228 -
12 0.47 23.8 - 0.43 24.6 - 0.47 24.1 -
13 0.34 351 - | 032 355 - | 032 353 -
14 0.65 29.8 - 0.55 31.3 - 0.66 29.3 -
15 0.65 25.9 - 0.45 27.2 - 0.66 26.2 -
16 0.58 245 - | 043 26.7 - | 059 241 -
17 0.99 39.5 - 0.48 38.7 - 0.99 39.5 -
18 050 251 - | 043 257 - | 050 251 -
19 0.61 28.8 - 0.58 29.2 - 0.61 28.8 -
20 0.712  30.0 - | 044 338 - | 071 30.0 -
21 0.55 21.8 - 0.43 22.7 - 0.46 22.6 -
22 0.87 191 - | 0.85 193 - | 0.89 185 -
23 054 272 - | 045 28.0 - | 054 27.2 -
Avg. 1.30 27.0 - 0.48 28.7 - 1.29 27.0 -
Table 3: Summary
Measure % / mm score rank
min. max. avg. min.  max. avg.| min. max. avg.
ov 3.1% 100.0% 91.6% | 1.6 100.0 655 - - -
OF 0.0% 100.0% 57.1% | 0.0 100.0 48.1| - - -
oT 3.1% 100.0% 923% | 15 100.0 628 - - -
AD 0.29mm 36.17mm 1.30mm 1.2 52.1 27.01 - - -
Al 0.28 mm 1.09 mm 0.48 mm 10.7 48.7 28.7| - — -
AT 0.29mm 36.18mm 1.29mm 1.2 52.1 27.0| - - -
Total - — -
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(a) Dataset 08 (b) Dataset 13 (c) Dataset 20

Figure 4:Examples of correctly extracted coronary artery centerlines.

3.3 Running time

Time needed to compute the cost image and perform centerkimaction for all four coronary arteries is
approximately three minutes per dataset.

4 Discussion and conclusion

In this work a minimum cost path approach is adopted to ekt@onary artery centerlines from CTA data.
In the majority of the cases the method was able to extraateheerlines successfully. In only two cases
the method failed and followed the incorrect vessel. Baélyjng:d costs due to the presence of pathology or
imaging artifacts for a part of the vessel of interest andstantial difference in vessel lengths caused the
integrated costs along the path through the incorrect /&sbe smaller than the integrated costs along the
vessel centerline of interest. This problem may be solvedlloying additional user interaction by means
of clicking an extra point in the correct vessel or by a betigfinition of the cost image. In all other cases
the method was able to extract over 90% of the vessel cargartirrectly. Accuracy of the method is around
two times the voxelsize of the datasets. The method may beoireg by using a multiscale approach for
the computation of the vesselness measure, which is expecteetter align the centerlines in parts of the
vessels where the diameter is relatively large. The acgufithe method might also be improved by a post-
processing step that incorporates local image informatidoetter align the extracted path with the center
of the lumen. To conclude, minimum cost path approaches patential for coronary artery centerline
extraction, but improvements, especially regarding tleeigxcy of the method, still need investigations.
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