
N4ITK: Nick’s N3 ITK Implementation For MRI
Bias Field Correction

Nicholas J. Tustison and James C. Gee

April 30, 2009

Penn Image Computing and Science Laboratory
University of Pennsylvania

Abstract

Several algorithms exist for correcting the nonuniform intensity in magnetic resonance images
caused by field inhomogeneities.1 These algorithms constitute important preprocessing steps for
subsequent image analysis tasks. One such algorithm, known as parametric bias field correction
(PABIC) [2], has already been implemented in ITK. Another popular algorithm is the non-uniform
intensity normalization (N3) approach [1]. A particularly advantageous aspect of this algorithm is
that it does not require a prior tissue model for its application. In addition, the source code for N3
is publicly available at the McConnell Brain Imaging Centre (Montreal Nuerological Institute, McGill
University) which includes source code and the coordinating set of perl scripts.2 This submission
describes an implementation of the N3 algorithm for the Insight Toolkit which is implemented as
a single class, viz. itk::N3MRIBiasFieldCorrectionImageFilter. We tried to maintain
minimal difference between the publicly available MNI N3 implementation and our ITK implemen-
tation. The only intentional variation is the substitution of an earlier contribution, i.e. the class
itk::BSplineScatteredDataPointSetToImageFilter, for the originally proposed least-squares
approach for B-spline fitting used to model the bias field. This avoids the potential for ill-conditioned fitting
matrices for higher B-spline mesh resolutions.

1 Introduction

We forego theoretical discussions of MRI bias field correction and defer to those references already given.
Instead, we discuss our implementation and how it relates to both Sled’s paper [1] and the original N3 public
offering. For notational purposes in this article only, we denote the MNI N3 implementation as N3MNI and
the ITK implementation we offer as N4ITK.

1 A listing of several relevant algorithms compiled by Finn A. Nielsen at the Technical University of Denmark is provided at
http://neuro.imm.dtu.dk/staff/fnielsen/bib/Nielsen2001BibSegmentation/Nielsen2001BibSegmentation.html.

2 http://www.bic.mni.mcgill.ca/software/N3/

2

2 Implementation

As mentioned in the abstract, the N4ITK implementation is given as a single class
itk::N3MRIBiasFieldCorrectionImageFilter. It is derived from the itk::ImageToImageFilter
class (as is the related class itk::MRIBiasFieldCorrectionFilter) since its operation takes as input
the MR image (with an associated mask) corrupted by a bias field and outputs the corrected image. For the
user that wants to reconstruct the bias field once the algorithm terminates, we demonstrate how that can
be accomplished with the additional class itk::BSplineControlPointImageFilter which we included
with this submission. Note that it is only needed if the bias field is to be reconstructed after the N3 algorithm
terminates.

2.1 Algorithmic Overview

The steps for the N3 algorithm are illustrated in Fig. 4 of [1]. Initially, the intensities of the input image are
transformed into the log space and an initial log bias field of all zeros is instantiated. In N3MNI, an option is
given whereby the user can provide an initial bias field estimate but, to keep the options to a minimum, we
decided to omit that possibility. However, given the open-source nature of the code, the ITK user can modify
the code according to preference.

63 /**
64 * Calculate the log of the input image.
65 */
66 typename RealImageType::Pointer logInputImage = RealImageType::New();
67
68 typedef LogImageFilter <InputImageType , RealImageType > LogFilterType;
69 typename LogFilterType::Pointer logFilter = LogFilterType::New();
70 logFilter ->SetInput(this->GetInput());
71 logFilter ->Update();
72 logInputImage = logFilter ->GetOutput();

97 /**
98 * Provide an initial log bias field of zeros
99 */

100 typename RealImageType::Pointer logBiasField = RealImageType::New();
101 logBiasField ->SetOrigin(this->GetInput()->GetOrigin());
102 logBiasField ->SetRegions(this->GetInput()->GetRequestedRegion());
103 logBiasField ->SetSpacing(this->GetInput()->GetSpacing());
104 logBiasField ->SetDirection(this->GetInput()->GetDirection());
105 logBiasField ->Allocate();
106 logBiasField ->FillBuffer(0.0);

After initialization, we then iterate by alternating between estimating the unbiased log image and estimating
the log of the bias field.

108 /**
109 * Iterate until convergence or iterative exhaustion.
110 */
111 bool isConverged = false;
112 unsigned int iteration = 0;
113 while(!isConverged && iteration++ < this->m_MaximumNumberOfIterations)
114 {
115 typedef SubtractImageFilter <RealImageType , RealImageType , RealImageType >
116 SubtracterType;
117

2.2 Parameters 3

118 typename SubtracterType::Pointer subtracter1 = SubtracterType::New();
119 subtracter1 ->SetInput1(logInputImage);
120 subtracter1 ->SetInput2(logBiasField);
121 subtracter1 ->Update();
122
123 typename RealImageType::Pointer sharpenedImage
124 = this->SharpenImage(subtracter1 ->GetOutput());
125
126 typename SubtracterType::Pointer subtracter2 = SubtracterType::New();
127 subtracter2 ->SetInput1(logInputImage);
128 subtracter2 ->SetInput2(sharpenedImage);
129 subtracter2 ->Update();
130
131 typename RealImageType::Pointer newLogBiasField
132 = this->SmoothField(subtracter2 ->GetOutput());
133
134 RealType cv = this->CalculateConvergenceMeasurement(
135 logBiasField , newLogBiasField);
136 isConverged = (cv < this->m_ConvergenceThreshold);
137
138 itkDebugMacro("Iteration " << iteration << ": "
139 << " convergence criterion = " << cv);
140
141 logBiasField = newLogBiasField;
142 }

The two functions contained in the above iterative loop are SharpenImage() and SmoothField(). The
former function essentially implements the discussion in Section II C. Field Estimation on page 89 of [1].
We use the vnl fft routines. The latter function gives a smooth estimate of the bias field using the class
itk::BSplineScatteredDataPointSetToImageFilter. It should be noted the N3MNI gives the user the
option of performing the image sharpening in intensity space (not log intensity space). However, since we
achieved good results sharpening in log intensity space, to avoid additional calculations, and minimize user
options, we avoided implementing this option. However, it can be easily included by the appropriate calls to
a itk::ExpImageFilter and itk::LogImageFilter.

Following convergence or iterative exhaustion, the output image is produced by dividing the intensities of the
input image (not in log intensity space) by the smooth bias field estimate.

144 typedef ExpImageFilter <RealImageType , RealImageType > ExpImageFilterType;
145 typename ExpImageFilterType::Pointer expFilter = ExpImageFilterType::New();
146 expFilter ->SetInput(logBiasField);
147 expFilter ->Update();
148
149 /**
150 * Divide the input image by the bias field to get the final image.
151 */
152 typedef DivideImageFilter <InputImageType , RealImageType , OutputImageType >
153 DividerType;
154 typename DividerType::Pointer divider = DividerType::New();
155 divider ->SetInput1(this->GetInput());
156 divider ->SetInput2(expFilter ->GetOutput());
157 divider ->Update();
158
159 this->SetNthOutput(0, divider ->GetOutput());

2.2 Parameters

One of the attractive aspects of the N3 algorithm is the minimal number of parameters available to tune and
the relatively good performance achieved with the default parameters which we tried to maintain, where we

2.3 Bias Field Generation 4

could, for both N3MNI and [1]. The available parameters are:

• m_MaskLabel (default = 1): The algorithm requires a mask be supplied by the user with the corre-
sponding mask label. According to Sled, mask generation is not crucial and good results can be
achieved with a simple scheme like Otsu thresholding.

• m_NumberOfHistogramBins (default = 200): One of the steps of N3 requires histogram construction
from the intensities of the uncorrected input image. The default value is the same as in N3MNI.

• m_WeinerFilterNoise (default = 0.1): Field estimation is performed by deconvolution using a Wiener
filter which has an additive noise term to prevent division by zero (see Equation (12) of [1]). This is
identical to the noise variable in N3MNI and equal to Z2 in [1].

• m_BiasFieldFullWidthAtHalfMaximum (default = 0.15): A key contribution to N3 is the usage of a
simple Gaussian to model the bias field. This variable characterizes that Gaussian and is the same as
the FWHM variable in both N3MNI and [1].

• m_MaximumNumberOfIterations (default = 50): Optimization occurs iteratively until the number of
iterations exceeds the maximum specified by this variable.

• m_ConvergenceThreshold (default = 0.001): In [1], the authors propose the coefficient of variation
between the ratio of subsequent field estimates as the convergence criterion. However, in both N3MNI
and N4ITK, the standard deviation of the ratio between subsequent field estimates is used.

• m_SplineOrder (default = 3): A smooth field estimate is produced after each iterative correction using
B-splines. In both N3MNI and [1], cubic splines are used. Although any feasible order of spline is
available, the default in N4ITK is also cubic.

• m_NumberOfFittingLevels (default = 4): The B-spline fitting algorithm [4] is different from what is
used in N3MNI and proposed in [1]. The version we use was already available in ITK as one of our
earlier contributions [3] and is not susceptible to ill-conditioned fitting matrices. One of the parameters
for that fitting is the number of hierarchical levels to fit where each successive level doubles the B-spline
mesh resolution.

• m_NumberOfControlPoints (default = [4, . . .]︸ ︷︷ ︸
ImageDimension

): Since the field is usually low frequency, by

default we set the number of control points to the minimum m_SplineOrder+1.

2.3 Bias Field Generation

Oftentimes, the user would like to see the calculated bias field. One of the more obvious reasons for
this would be when the bias field is calculated on a downsampled image (suggested in [1] and given
as an option in N3MNI and included in the testing code). One would then like to reconstruct the bias
field to estimate the corrected image in full resolution. Since the B-spline bias field is a continuous ob-
ject defined by the control point values and spline order, we can reconstruct the bias field at the im-
age full resolution without loss of accuracy. We demonstrate how this is to be done in the test code
itkN3MRIBiasFieldCorrectionImageFilterTest.cxx. Note that the control points describe a B-spline
scalar field in log space so the itk::ExpImageFilter has to be used after reconstruction.

2.4 Test Code 5

105 typedef itk::BSplineControlPointImageFilter <typename
106 CorrecterType::BiasFieldControlPointLatticeType , typename
107 CorrecterType::ScalarImageType > BSplinerType;
108 typename BSplinerType::Pointer bspliner = BSplinerType::New();
109 bspliner ->SetInput(correcter ->GetBiasFieldControlPointLattice());
110 bspliner ->SetSplineOrder(correcter ->GetSplineOrder());
111 bspliner ->SetSize(
112 reader ->GetOutput()->GetLargestPossibleRegion ().GetSize());
113 bspliner ->SetOrigin(reader ->GetOutput()->GetOrigin());
114 bspliner ->SetDirection(reader ->GetOutput()->GetDirection());
115 bspliner ->SetSpacing(reader ->GetOutput()->GetSpacing());
116 bspliner ->Update();
117
118 typename ImageType::Pointer logField = ImageType::New();
119 logField ->SetOrigin(bspliner ->GetOutput()->GetOrigin());
120 logField ->SetSpacing(bspliner ->GetOutput()->GetSpacing());
121 logField ->SetRegions(
122 bspliner ->GetOutput()->GetLargestPossibleRegion ().GetSize());
123 logField ->SetDirection(bspliner ->GetOutput()->GetDirection());
124 logField ->Allocate();
125
126 itk::ImageRegionIterator <typename CorrecterType::ScalarImageType > ItB(
127 bspliner ->GetOutput(),
128 bspliner ->GetOutput()->GetLargestPossibleRegion());
129 itk::ImageRegionIterator <ImageType > ItF(logField ,
130 logField ->GetLargestPossibleRegion());
131 for(ItB.GoToBegin(), ItF.GoToBegin(); !ItB.IsAtEnd(); ++ItB, ++ItF)
132 {
133 ItF.Set(ItB.Get()[0]);
134 }
135
136 typedef itk::ExpImageFilter <ImageType , ImageType > ExpFilterType;
137 typename ExpFilterType::Pointer expFilter = ExpFilterType::New();
138 expFilter ->SetInput(logField);
139 expFilter ->Update();

2.4 Test Code

The test code included with this submission, itkN3MRIBiasFieldCorrectionImageFilterTest.cxx, is
designed to allow the user to immediately apply the N4ITK classes to their own images. Usage is given as
follows:

itkN3MRIBiasFieldCorrectionImageFilterTest imageDimension inputImage outputImage [shrinkFactor] [maskImage] [

numberOfIterations] [numberOfFittingLevels] [outputBiasField]

This class takes the input image, subsamples it according to the optional shrinkFactor option, and creates
the bias field corrected output image. Other optional parameters are the maskImage (if not available, one is
created using the itk::OtsuThresholdImageFilter), the number of iterations (default = 50), the number
of fitting levels (default = 4), and a file name for writing out the resulting bias field.

3 Sample Results

We demonstrate usage with two MR images—a 2-D brain slice and a volume from a hyperpolarized helium-3
image. We use a previous contribution [5] and ITK-SNAP to visualize the results.

3.1 2-D Brain Slice 6

3.1 2-D Brain Slice

Figure 1(a) is the uncorrected image used in our 2-D brain test. Close inspection seems to demonstrate a
darkening in the white matter towards the upper right of the image. This darkening seems to be corrected in
Figure 1(c).

>itkN3MRIBiasFieldCorrectionImageFilterTest 2 t81slice.nii.gz t81corrected.nii.gz 2 t81mask.nii.gz 50 4

t81biasfield.nii.gz

3.2 3-D Hyperpolarized Helium-3 Lung MRI

Figure 2(a) is the uncorrected image used in our 3-D helium-3 MR image volume. Close inspection seems to
demonstrate a darkening in the white matter towards the upper portion of the given axial slice. This darkening
seems to be corrected in Figure 2(c).

>itkN3MRIBiasFieldCorrectionImageFilterTest 3 he3volume.nii.gz he3corrected.nii.gz 2 he3mask.nii.gz 50 4

he3biasfield.nii.gz

References

[1] J. G. Sled, A. P. Zijdenbos, and A. C. Evans. A nonparametric method for automatic correction of intensity
nonuniformity in mri data. IEEE Trans Med Imaging, 17(1):87–97, Feb 1998. (document), 1, 2.1, 2.1, 2.2,
2.3

[2] M. Styner, C. Brechbhler, G. Szkely, and G. Gerig. Parametric estimate of intensity inhomogeneities
applied to mri. IEEE Trans Med Imaging, 19(3):153–165, Mar 2000. (document)

[3] N. J. Tustison and J. C. Gee. N-d Ck B-spline scattered data approximation. The Insight Journal, 2005.
2.2

[4] N. J. Tustison and J. C. Gee. Generalized n-D Ck B-spline scattered data approximation with confidence
values. In Proc. Third International Workshop Medical Imaging and Augmented Reality, pages 76–83,
2006. 2.2

[5] N. J. Tustison, H. Zhang, G. Lehmann, P. Yushkevich, and J. C. Gee. Meeting andy warhol somewhere
over the rainbow: Rgb colormapping and itk. Insight Journal, 2008. 3

References 7

(a) (b)

(c) (d)

Figure 1: (a) Uncorrected image. (b) Mask image. (c) Bias field corrected image. (d) Uncorrected image with
the calculated bias field superimposed.

References 8

(a) (b)

(c) (d)

Figure 2: (a) Uncorrected image. (b) Mask image. (c) Bias field corrected image. (d) Uncorrected image with
the calculated bias field superimposed.

