
matVTK - 3D Visualization for Matlab

Erich Birngruber1,4, René Donner1,2, and Georg Langs1,3

1 Computational Image Analysis and Radiology Lab, Department of Radiology,
Medical University of Vienna, Vienna, Austria,

erich.birngruber@meduniwien.ac.at,
2 Institute for Computer Graphics and Vision,
Graz University of Technology, Graz, Austria,

3 Computer Science and Artificial Intelligence Laboratory,
Massachussetts Institute of Technology, Cambridge, MA, USA

4 Pattern Recognition and Image Processing Group, Vienna University of
Technology, Vienna, Austria. ?

Abstract. ◦ ◦ ◦ • • • • • •
The rapid and flexible visualization of large amounts of complex data
has become a crucial part in medical image analysis. In recent years the
Visualization Toolkit (VTK) has evolved as the de-facto standard for
open-source medical data visualization. It features a clean design based
on a data flow paradigm, which the existing wrappers for VTK (Python,
Tcl/Tk, Simulink) closely follow. This allows to elegantly model many
types of algorithms, but presents a steep learning curve for beginners.
In contrast to existing approaches we propose a framework for access-
ing VTK’s capabilities from within Matlab, using a syntax which closely
follows Matlab’s graphics primitives. While providing users with the ad-
vanced, fast 3D visualization capabilities Matlab is still lacking, it is
easy to learn while being flexible enough to allow for complex plots,
large amounts of data and combinations of visualizations. The proposed
framework will be made available as open source with detailed documen-
tation and example data sets.

1 Introduction • • ◦ • • • • • •

Fueled by the increased interest in medical imaging research in recent years
the importance of powerful[del: high quality] frameworks covering feature computation,
registration and segmentation as well as visualization have risen considerably.
Researchers depend on efficient ways to formulate and evaluate their algorithms,
preferably in environments facilitating rapid application development.

The Visualization Toolkit (VTK) [1] has proven to deliver high quality, ef-
ficient visualization for a variety of fields including general purpose GUIs [2] as

? This work has been supported by the Austrian National Bank Fond project Com-
puter Based Quantification of Osteoporosis and Bone Alignment, MU Vienna, TU
Graz.



(a) (b)

Fig. 1. (a) Matlab 3D graphics primitives (b) Scene produced by the proposed frame-
work, showing additional support for volume rendering

well as medical imaging [3, 4]. Similarly, the Insight Toolkit (ITK) [5] has pro-
vided a framework for medical image registration and segmentation. It features
a data-flow driven design paradigm which models algorithms as filters which
are concatenated and transform source (input) data into results (output). It is
implemented in C++, providing high throughput, and provides wrappers for
selected scripting languages. Recently, the project VTK Edge [6] is actively in-
vestigating the use of GPU acceleration for complex visualization tasks which
cannot be modeled in OpenGL.

While VTK’s data-flow approach in combination with C++ is very flexible
its utilization imposes a steep learning curve on the user. Furthermore, in med-
ical imaging and computer vision Matlab is one of the major development plat-
forms, especially in the academic field. Matlab itself provides unique capabilities
for rapid application development, but severely lacks state of the art 3D visual-
ization features [7]. There are no volume rendering methods in Matlab, and basic
operations like isosurfaces are very slow. Thus, for visualizing medical data along



with meta-data like segmentation results, classification probabilities or the like
external toolboxes have to be used. Recently, a Simulink based approach was
proposed which automatically wraps VTK’s functionality in Simulink blocks.
While this allows to graphically structure a VTK plot in Matlab, it still requires
the user to get familiar with the internal concepts of VTK. The user’s knowledge
of Matlab’s built-in plot commands is not exploited. For ITK there exists a wrap-
per, matITK [8], which forgoes ITK’s complexity by providing simple Matlab
MEX commands for the most commonly used functionality. This gives Matlab
users an effective tool for performing most operations directly from within Mat-
lab without having to worry about data conversion, data-flow formulations and
result structures.

Contribution Because of VTK’s relevance to the computer vision commu-
nity using Matlab, we propose a framework to model VTK’s functionality in a
way which is similar to Matlab’s graphics concept, minimizing learning efforts by
the user while providing VTK functionality in a flexible manner. The proposed
solution is available as open source and we are working towards making it avail-
able as an additional wrapper distributed with future VTK versions. matVTK
provides a rapid integration of VTK functionality in Matlab. It is a necessity
for the analysis of large and complex data, and the visualization of algorithm
outputs, in the medical image analysis domain.

The paper is structured as follows: In Sec. 2.1 we outline the data-flow paradigm
employed by VTK along with its internal properties which are relevant for our
approach. Sec. 2.2 discusses how Matlab’s MEX interfacing concept can be used
to interact with external libraries. In Sec. 3 we detail our approach with the
presented in Sec. 4, followed by conclusion and outlook in Sec. 5.

2 Foundation & Methods • • ◦ • • • • • ◦

In the following the technical basis for our approach is outlined: VTK’s internal
design and the MEX interface provided by Matlab. Based on these components
we will explain the matVTK framework in detail in Sec. 3.

2.1 VTK • • ◦ • • • ◦ ◦ ◦

VTK is a visualization library written in C++. VTK can be used to draw ge-
ometric primitives such as lines and polygon surfaces as well as render volume
visualizations. Furthermore it allows fine grained control of the combination of
these primitives in a scene.

The first thing noticeable to the programming end user is the data-flow based
”Pipes and Filters” design pattern, used to concatenate various data processing
methods. To be able to combine different and multiple filters and preprocessing
steps all these algorithms share a common interface, providing their fundamental
functions SetInput(in) and GetOutput(). The SetInput method accepts the
input data, the GetOuput method provides the processed result. The return value
of GetOutput can then again be used as input to another algorithm. At the front



of such a filter chain there is always a reader or general source that provides the
initial data. The last link in the chain is a sink that either renders the output on
the screen or saves it into a file. However, this concept is more sophisticated than
simply handing over the whole dataset from filter to filter. On the contrary, the
filter pipe helps to compute multiple steps at once and time stamps in the pipe
allow to only recompute the parts of the pipeline affected by changes in source
code or paramters. This allows for an economical memory footprint and fast
visualization even if the underlying data changes during scene rendering.

Reference Counting In C++, to dynamically allocate an object, the new
operator is used to allocate memory and call the contructor.while the delete
operator calls the destructor and frees the memory. This approach should not
be used directly in VTK. A base class for VTK classes provides two important
methods: the static method New and the instance method Delete. The first
one returns a pointer to a new instance of a class while reference counting is
initialized simultaneously. If the instance is used in a setter method of another
VTK object, the reference count is automatically increased, which avoids the
duplication of the object in memory protects against premature deallocation
and memory leaks. When calling the Delete method on such an object, the
reference counter is decreased . When no more references to the object exist, the
C++ delete operator is called automatically

Factory Pattern Another important concept in the VTK library is the
ubiquitous use of the factory pattern, especially for the actual rendering classes.
It allows to instantiate an object of an unknown specific subclass. The typi-
cal example for VTK is the rendering implementation. Assuming the task is
to draw polygons, this can be done in two ways: either in software, or us-
ing graphics hardware and OpenGL. When calling PolygonRenderer::New(),
VTK automatically checks for the underlying hardware and returns an instance
of the appropriate subclass (in this case either SoftwarePolygonRenderer or
OpenGLPolygonRenderer). Although VTK provides a clean and well performing
code base, the first time or casual user may be overwhelmed with the software
design concept and the complexity of the large API.

2.2 Matlab MEX Interface • • ◦ • • ◦ ◦ ◦ ◦

Matlab can be extended using the Mex API, which is the name of the C/C++
and Fortran API for Matlab. The API can be used to manipulate workspace
data, the workspace itself or use the Matlab engine in external applications.

The following focuses on the properties relevant to implementing a frame-
work towhich integrates VTK into Matlab. When thinking about a Matlab
framework and plotting / rendering, two important properties come to mind:
First memory management should exhibit a small footprint – however the Mat-
lab principle of non-mutable input data must not be violated. Secondly, we need
to maintain an internal state over several function calls, which is accomplished
using a handle based approach.

Matlab comes with its own memory management component and therefore its
own implementations of alloc() and free() functions. This way the software



can ensure to release allocated memory even in the case of an error during a
function call, when the program flow does not reach calls to free(). This
means that any handle implementation must respect these cleanup calls in order
to destruct/deallocate correctly in case of such an event.

As the Mex API does not provide functions to implement handles returned to
the Matlab workspace [9] was used which provides a C++ template implementa-
tion for returning an object pointer back to the Matlab workspace. Furthermore
the code includes checks to verify that a correct handle was passed before using
the pointer.

A particular problem arises on Unix platforms using the X11 window system,
as Mex functions are intended to be used as single threaded and blocking calls.
Because the API does not allow for interaction with the window management,
this causes two problems: The Matlab GUI is blocked during the use of a user
interactive window. Even more important, secondly, closing the window via the
GUI shuts down the complete Matlab session. This does not occur on windows
platforms. We are uncertain whether a solution for this problem exists, as in
depth research showed this to be a problem deeply rooted in internal X11 design.

3 matVTK Framework ◦ ◦ ◦ • • ◦ • • •

In this section, based on the above overview of the underlying environment, the
proposed approach of providing a visualization API which closely follows Mat-
lab’s plotting concepts is detailed. The three main building blocks are 1. The
pipeline handle which establishes the rendering window, 2. the config interface
that manages the parameters of the individual plots, and 3. the graphics primi-
tives that provide for the actual plotting functionality analogously to standard
matlab commands.

The Pipeline Handle The VTK handle forms the core of the framework.
Its main purpose is to keep track of the data sets currently used in a scene. The
second most important task is the management of the render window that is used
to interactively display a scene. Additionally, it controls global components that
cannot be kept in a single function or that are relevant for multiple functions. The
handle is either generated automatically, or can be set by handle = vtkinit().
Itcan automatically delete itself and all its dependencies in case Matlab is closed
or all Mex memory is freed using clear mex. Handles can be used implicitly,
or explicitly to be able to work with multiple scenes. On each of the various
function calls, if no explicit handle is given, it is checked whether there exists a
default handle or not. In the latter case it is automatically created and reused
in subsequent calls. When using an explicit handle it must be created and
destroyed by the user. Furthermore it must be handed to each plot function as
the first argument.

The Config Interface VTK offers fine grained control of parameters for
basically three steps: filters, scene components (actors) and the global scene (i.e.
camera settings). For this reason a large amount of setters and getters exist in
various places of VTK’s class hierarchy. For the uninitiated VTK user this is



(a) (b)

Fig. 2. (a) Points showing different colors, sizes and opacities, connected with line plot
(b) Labels and annotations, volume rendering

complex and opaque. This is why we decided to implement a flexible config in-
terface that can model the complex VTK design. The first, and implementation
wise simple approach is using a Matlab struct. It is a data structure that con-
sists of named fields and values (e.g., config.opacity = 0.3). Constant config
parameters can be easily reused by the user. [del: However, changing parameters have to be reset before each

consecutive function call.] Alternatively the typical Matlab approach[del: way] for the configu-
ration of parameters - a list of string-value pairs - is also supported, as well as
a combination of the two. When using both, the Matlab style can be used to
override settings in the config struct.

Graphics Primitives Matlab uses the plot function for different kinds
of primitives - lines and points. For our framework this did not seam feasible,
which is why we decided to use the prefix vtkplot and a specific suffix for points,
lines etc. Currently the framework supports primitives for points (represented as
small spheres), lines, polygon meshes, vector fields, tensors, volumes, cutplanes
through volumes and isosurfaces.Also provided are functions gaining a better
overview of the scene, such as functions for labels, legends and plot titles. These
primitives can be easily combined to create complex scenes as we will show in
the following section.



(a) (b)

Fig. 3. (a) Mesh combined with volume (b) Same data, additionally showing color
mapping and planes cut through volume

Additional Functionality As the simple combination of graphical prim-
itives does not alway meet the users needs, there are special features avail-
able including scene export. Screenshots of a scene can be created and saved as
PNG images, including the support for high resolution images for printing. The
vtkshow function, used to display the scene window, returns the camera settings
at the moment of closing the window, which can then be reused as config param-
eters to restore or reproduce global scene settings over multiple plots. Another
valuable feature is the ability to cut away certain parts of the scene. For this
operation a box widget – i.e. six perpendicular planes – or a single plane widget
are available. The cropping operation can be applied to scene primitives of the
users choosing and therefore provide the best possible insight into the displayed
data.

4 Scenarios ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

In the following we demonstrate[del: show several ways of employing] the proposed framework and
the plot types available with 3 examples. All types of plots can be arbitrarily
combined within one volume rendering.

– Fig. 1 shows the visualizations produced by Matlab in comparison with our
approach for similar data. Matlab lacks volume rendering capabilities and



while being informative, the results lack publication quality. In contrast,
using VTK provides not only state of the art volume rendering but also
detailed control over the 3D rendering of the graphical primitives. Also note
that rotating the Matlab figure gets slow fast as the number of actors in the
scene increase, inhibiting efficient use except for simple cases.

– In Fig. 2 (a) the ability do easily render primitives with different properties
is shown. The level of detail for rendering spheres / tubes can be chosen to
allow for either exact representation or coarser approximation which lets the
user plot up to several thousand 3D points at interactive frame rates.

– Fig. 2 (b) resents the labeling available for individual points in space as well
as for the axes. Grids with arbitrary spacing as well as orientation widgets
(box, arrows) are available.

– The superposition of meshes onto the volume is shown in Fig. 3 (a). Render-
ing this view from the Matlab command line takes below one second and
the resulting view can be rotated and cropped interactively even on medium
class hardware.

– Finally, Fig. 3 (b) shows the possibility to map scalar values onto the surface
of a mesh and display additional views of the volume along cut planes, while
cropping the whole volume (with or without the other actors). The cut planes
/ the crop box can be set both programmatically as well as interactively.

v = vtkplotvolume(volume, ’builtin1’);

vtkplotmesh(vertices, faces, vertexLabel)

p = vtkplotcutplanes(volume, planePoints, planeVecs);

vtkcrop(v, ’plane’)

vtkcrop(p)

vtkshow(’backgroundColor’, [1 1 1])

vtkdestroy

Fig. 4. matVTK code example for Fig. 3 (b)

Fig. 4 shows the Matlab code to create a plot using an implicit handle. First the
user plots a 3D matrix as volume, using the builtin colormap ”builtin1”. Next a
polygon surface is plotted using its vertex coordinates, triangulation. The labels
in vertexLabel are used to colorize the surface. The function vtkplotcutplanes
creates several planes at the given points, using the normal vectors planeVecs.
vtkcrop uses the handles returned from the plotting functions, to decide whitch
parts of the scene can be clipped away with the user interactive widget. Af-
ter displaying the assembled scene with vtkshow the resources are freed with
vtkdestroy. The call to vtkshow also demonstrates the config interface, setting
’backgroundColor’ to the rgb value of white.



5 Conclusion and Outlook ◦ ◦ ◦ • • ◦ ◦ ◦ ◦

We have proposed an approach to wrap VTK’s main capabilities using an easy
to use, efficient framework for the Matlab programming environment. It provides
Matlab users with state of the art 3D volume rendering and visualization features
while retaining Matlab’s ease of use. Even complex medical visualizations can
be assembled in few lines of code, without knowledge about VTK internal data-
flow paradigm. The framework exposes VTK’s most relevant features while being
easily extendable.

Future work will focus on two areas, namely the inclusion of additional vi-
sualization and interaction features and to improve the internal structure of our
framework. While user interaction in the VTK window with the output being
forwarded to Matlab is definitely possible and is already being used in several
cases, it is not yet fully covered by the framework. Saving widget states to return
to a previous visualization will be added, as well as animations and movie export
functionality. Handles, which are currently used only internally, will be exposed
to the user to be able to selectively remove parts of the scene or control their
visibility. Streaming visualization output via state of the art codes is another
topic which is currently investigated.

References

1. (VTK), V.T.: http://www.vtk.org/
2. ParaView: http://www.paraview.org/
3. MedINRIA: http://www-sop.inria.fr/asclepios/software/medinria/
4. Osirix: http://www.osirix-viewer.com/
5. Segmentation, I., (ITK), R.T.: http://www.itk.org/
6. VTKedge: http://www.vtkedge.org/
7. Matlab 3D Visualization Capabilities:

http://www.mathworks.com/access/helpdesk/help/techdoc/visualize/bqliccy.html
8. MatITK: http://www.sfu.ca/ vwchu/matitk.html
9. Bailey, T.: http://www-personal.acfr.usyd.edu.au/tbailey/software/other.htm


