Unified framework for development,
deployment and testing of image analysis
algorithms

Release 0.00

Alark Joshi!, Dustin Scheinost!, Hirohito Okuda®, Isabella Murphy!,
Lawrence H. Staib!'?3 and Xenophon Papademetris!:

July 10, 2009

'Department of Diagnostic Radiology, Yale University
’Department of Biomedical Engineering, Yale University
3Department of Electrical Engineering, Yale University
*GE Healthcare, Japan

Abstract

Developing both graphical and command-line user interfaces for image analysis algorithms requires
considerable effort. Generally developers provide limited to very rudimentary user interface controls.
These image analysis algorithms can only meet their potential if they can be used easily and frequently
by their intended users. Deployment of a large suite of such algorithms on multiple platforms requires
that the software be stable and appropriately tested.

We present a novel framework that allows for rapid development of image analysis algorithms along
with graphical user interface controls. Additionally, our framework allows for simplified nightly testing
of the algorithms to ensure stability and cross platform interoperability. It allows for development of
complex algorithms by creating a custom pipeline where the output of an algorithm can serve as an input
for another algorithm. All of the functionality is encapsulation into the object requiring no separate
source code for user interfaces, testing or deployment. This makes our framework ideal for developing
novel, stable and easy-to-use algorithms for computer assisted interventions (CAI). The framework has
been deployed at the Magnetic Resonance Research Center at Yale University and has been released for
public use.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3078]
Distributed under Creative Commons Attribution License

Contents
1 Introduction 2

2 Related Work 3

http://www.insight-journal.org
http://hdl.handle.net/10380/3078
http://creativecommons.org/licenses/by/3.0/us/

3 System Overview 3
3.1 Core CIasses: . . . v v v v i it e e e e e e e 4
4 Current Status 5
4.1 Algorithm interfaces e 5
4.2 Nightly Testing L e e 6
4.3 Customized workflow - Diff-SPECT processing forepilepsy 7
5 Conclusion 7

1 Introduction

Image analysis algorithms are typically developed to address a particular problem within a specific domain
(functional MRI, cardiac, image-guided intervention planning and monitoring, etc.). Many of these algo-
rithms are rapidly prototyped and developed without considerations for a interface (GUI), robust testing, and
integration into a large software package. Sometime these features are added later, but require considerable
amount of effort on the part of the developer of the original algorithm. This makes it increasingly difficult
for deployment and widespread adoption of the newly developed algorithms especially for CAI algorithms
where robust testing and easy-to-use interfaces are critical.

Biolmage Suite [8] is a comprehensive, multi-platform image analysis suite comprised of many different
image analysis algorithms with a focus on epilepsy neurosurgery. In previous versions of Biolmage Suite (up
to version 2.6 released in November 2008), all algorithms were implemented in C++ and invoked from either
command line scripts or GUI modules both written in the Tcl scripting language. However, the command
line scripts and GUI modules were two separate implementations of essentially the same algorithm and
would invariably diverge without extensive coordination. This required developers to create both command
line scripts as well as complex GUIs. Testing became problematic as two new applications need to be tested
for each new algorithm. Finally as new algorithms became more complex, basic components (e.g., image
smoothing) were often reimplemented instead of using existing implementations of these components.

To address the issues discussed above, we developed a framework that unifies the algorithm that is being
invoked from the command line as well as from the user interface. We have chosen a component-based
software approach which has been widely used and researched in the field of software engineering [6].
In our framework, a component performs an operation (smoothing, surface extraction and so on) on the
specified input data (images, surfaces, transformations). The main algorithm is developed in C++ while its
functionality is encapsulated into an [Incr Tcl] object. This allow the user to instantiate the object in a tcl
script and handle the input/output as well as the GUI via inherited methods.

With this framework, the developer can focus on the creation of the algorithm and not worry about soft-
ware engineering aspects needed for CAI algorithms such as testing, integration, and creating customized
workflows. The GUI is automatically generated by the algorithm object when the object is invoked. Testing
is handled by the algorithm object by specifying the inputs, expected outputs, and the test flag. Since new
algorithms are created in the same framework, it is possible to create data workflows where the output of
a simple algorithm can then be used as the input of another algorithm. Thus, developers can reuse existing
algorithms saving time and reducing programing complexities.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3078]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3078
http://creativecommons.org/licenses/by/3.0/us/

2 Related Work

Software development work in the field of medical image analysis has focused on describing the archi-
tecture for a specialized setting. Coronato et al. [1] discussed an open-source architecture for immersive
medical imaging that used 3D graphics and virtual reality libraries. Additionally, they also include ubiqui-
tous computing principles for context aware interaction with mobile devices. Shen et al. [4] discuss their
system which works with stereoscopic displays and uses projectors to provide an immersive experience in
environments such as the CAVE.

In the field of medical image analysis, medium to large imaging software such as Slicer3D [5] have a
component based approach to developing software that allows for the easy development of user interfaces
for developers. Here each algorithm generates an XML file specifying instructions for creating a GUI, which
is then read by the main application at run time to create a GUIL. One of the limitations of this approach is
that an external application creates the GUI which increases the complexity of the external application and
implies that the algorithm implementation cannot function as a stand alone application. Medical Imaging
Interaction Toolkit (MITK) [3] is a medical imaging toolkit for image analysis, which has some features
similar to those in our framework. However, it is intended to be used as a toolkit and “is not intended as an
application framework” [3] that can be used for image analysis by users.

The functionality included in all the abovementioned image analysis software systems and others is very
similar. Our contribution is in the ability to provide researchers in image analysis an open-source platform-
independent framework that allows them to focus on developing new algorithms. The software engineering
aspects of interface design, testing protocols, and code reusability are automatically provided to the re-
searcher assisting deployment and widespread adoption of the newly developed CAI algorithms.

3 System Overview

Our unified framework allows for easy development, deployment, and overall packaging of image analysis
algorithms. Using this framework, developers can effortless create user interfaces and seamlessly test their
algorithm on multiple platforms. Novel algorithms can easily be added and custom workflow pipelines can
be constructed where each piece of the pipeline is an algorithm that takes an input and performs an operation.
Figure 1 shows a flowchart for an image analysis algorithm. Each new algorithm takes a combination of
images, surfaces, transformations, and input parameters and produces a combination of images, surfaces,
and transformations as outputs.

Biolmage Suite algorithms are packaged into a single set of [Incr Tcl] classes. These classes are character-
ized by two key methods, Initialize and Execute. Inthe Initialize method, each algorithm explicitly
defines three sets: (i) inputs, which are objects such as images, surfaces, landmarks etc., (ii) parameters,
which are single values such as integers, strings, filenames, and (iii) outputs, which are also objects. Figure
2 shows a detailed example of an Initialize method. The Execute method invokes and passes object
to/from the underlying C++ source code.

Based on the definition of the input and output sets, the base abstract classes have functionality (which need
not be touched by more concrete implementations) to (i) parse command line arguments if the algorithm
class is invoked as an application; (ii) automatically create a GUI using the CreateGUI method (this method
can be overridden by some algorithms to generate a more customized interface); and (iii) perform testing by
parsing a test file. These classes can then be used (i) to invoke the algorithm (using an Execute method),
(ii) to become a components of other algorithms (e.g. the image smoothing algorithm is invoked by the edge

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3078]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3078
http://creativecommons.org/licenses/by/3.0/us/

3.1 Core Classes: 4

Input Output

Images, Surfaces, Algorithm Images, Surfaces,
Transformations Transformations
Input Parameters
boolean, real, integer, string, listofvalues, filename

Figure 1: This diagram provides an overview of the new unified framework for image analysis algorithm development. Any
image analysis algorithm has a combination of images, surfaces, and transformations (from registrations) that serve as input to the
algorithm. The algorithm most probably has some input parameters (which can be specified on the command line or can easily
become GUI components). In our framework, the input parameters can be one of boolean, real, integer, string, listofvalues (for
drop down options when using a GUI) or a filename. The output too can be of any one of image, surface or transformations.

detection algorithm), (iii) to create a standalone applications with an image viewer and a GUI, and (iv) to
integrate individual components into a larger application. Figure 3 shows how the same code is invoked
using (i) the command line, (ii) the GUI, (iii) a larger application, and (iv) for nightly testing.

itcl::class bis_smoothimage {
inherit bis_imagetoimagealgorithm
constructor { ¥ { $this Initialize }
public method Initialize { }
public method Execute { }

itcl::body bis_smoothimage::Initialize { } {
#name, description,type,ob ject,filename(if applicable).priority (optional)
set inputs { { input_image "Input Image" pxitclimage " 3}
set outputs { { output_image "Output Image” pxitclimage " }}

#commandsuitch.description,shortdescription.optiontype.defaultvalue.valuerange.priority
set options {
{ blursigma "kernel size [mm/voxell of FHHM filter size” “"Filter Size" { real triplescale 100 } 2.0 10.020.0F 013}

{ unit "kernel size unit mm or voxels " “"Units” { listofvalues radiobuttons } mm { mm voxels } 1}
{ radius "radius factor of the gaussian in voxel units " "Filter Radius" real 1.5 {0.05.0} -11}
{ dimension "2 or 3 to to do smoothing in 2D or 3D" “Dimensionality” { listefvalues radiobuttons } 3{L{2 3% -999
{ testlog "0: no test log . 1: output test log " “"testlog” boolean 0 {0173} 1000 3
}
[|
#document.
set description "Smoothes an image with a specific gaussian kernel.”
set description? "Smoothing kernel size blursigma (in mm by default) represents the FHHM filter size.”
$this InitializeImageTolmageAlgorithm
T

This checks if executable is called (in this case bis_smoothimage.tcl) if it is execute

L4

if { [file rootnsme $argv0 1 == [file rootname [info script 11} {
this is essentially the main function
set alg [bis_smoothimage [pxvtable::vnewobjll
$alg MainFunction
————

Figure 2: Sample implementation for a image smoothing algorithm. A new algorithm usually requires the implementation of two
methods. The first is Initialize (shown in detail in this figure) where the inputs, outputs and parameters are defined. The second is
Execute (not shown) which simply takes the specified inputs and parameters and runs the actual algorithm to generate the desired
output. Derived classes can have customized GUI by overriding the CreateGUI method.

3.1 Core Classes:

The new framework has at its core the following [Incr Tcl] classes:

1. bis_option encapsulates an option value (e.g. smoothness factor, etc.). An option can have a type
of: listofvalues, boolean, real, integer, string or filename. Within this class there is functionality for
creating an appropriate GUI for each option.

2. bis_object encapsulates the input and output objects of the algorithms. The core objects supported
are: image, transform (both linear and non-linear), polygonal surface, landmark set and electrode grid.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3078]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3078
http://creativecommons.org/licenses/by/3.0/us/

[Graphical User Interface]

Algorithm

[Command line

Container for a large
invocation

application

[Nightly testing]

Figure 3: This schematic shows the unified nature of our framework. The command line invocation of an algorithm as well as
the GUI use the same algorithm source code and can be controlled using a simple -dogui flag. For integration into a larger user
application, the same source code is used to give the user a toolkit of similar algorithms that can be used. Additionally, for nightly
testing the same algorithm code is invoked with different input parameters that test the algorithm on various platforms.

3. bis_basealgorithm is the core algorithm class from which all algorithms are derived. It has all the
functionality for manipulating options, inputs and outputs.

4. bis_algorithm is derived from base_algorithm and adds the functionality needed for taking an
algorithm and making it into a component or an executable. More specialized classes are derived
from bis_algorithm such as bis_imagetoimagealgorithm which serves as a base for algorithms
which take a single image as an input and produce a single image as an output.

5. bis_guicontainer is a derived class of bis_algorithm and serves as a parent class for creating
multi-algorithm containers (e.g. a tabbed-notebook style GUI where each tab is a separate algorithm).

4 Current Status

In this section, we discuss the current status of the new framework. We provide details about the invocation
of the algorithms, discuss our nightly testing setup and show an example of a customized data workflow that
is being used for processing SPECT data for epilepsy neurosurgery.

4.1 Algorithm interfaces

An algorithm can be invoked in three ways: (i) command line, (ii) GUI, and (iii) managed graphical inter-
face. The framework facilitates the invocation of the same code regardless of the manner in which the script
is invoked. In Figure 4, we can see an example of a non-linear registration script being invoked in three
different ways. Labels A, Al and A2 show a GUI with different components showing the input parameters.
Label B in the figure shows a command line invocation which also provides Unix-style help to the users.
Additionally, the same script can be contained in a managed container for a larger application (as shown by
label D).

Using this framework the user can use the “Show Command” button embedded in the GUI (shown in Figure
4 label C). The user can familiarize themselves with the algorithm at the GUI level. Then, the user can press
this button and get a detailed command line specification for performing exactly the same task by invoking
exactly the same code at the command line. This feature makes it easier for end-users to develop customized
batch jobs/pipelines.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3078]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3078
http://creativecommons.org/licenses/by/3.0/us/

4.2 Nightly Testing 6

. m— e e
[e P ma ey

e wltarc kSibisimooesitotbis. shori thbis panlinerint k=
File 1 “E ey Fie fun Help
T enle2ssre sui e/ b debug/vthanConmons e R
Aol o2/sr_vIka/bioinagesui Lo/ | birelsose/viipatons| [T im semns
bl e2rire oot /1 b/ vikonCmmoniCL 31
{clnags Suite Commind Lina Tocts (v oputs . Ootons "\ outputs
INRME |
biz_nonlinesrintensityregister el computes a monlimear intens| N
Stondard . Advanced
(S‘lm[sl
llm\rlMeMHvals!cr fel [=inp 1 (-imp2 | [=irgd | [
| 1 1 [-rumbar: I) [-wetric | (-0 1 [-r ?
;1:-.‘ T Tpast 10 et cutoutoeth | {-ipotsren 1 {-ooi| tlosl LL MJ
escarerion [ou— Nomeghtnages: 0 = 7|
ronlimear intorsity based regisiration
] | 3 Mubet of Besaliorec 15 u
g [— Opsons ™, ouipy =
f.m;m e (comond Tin cpticn ~re) | Bafornce Taoo | | L] N\ fecsnine 1
tronsforn_image (commond line sption -ing2 ronsform Imape| fuer |l Sl
initaal Transloen {coamond Tine ontion Toed] - ritial frovs) <=5 Lo St BuoMemntics @)
1_Tnnge, comnand Tine oplian -ingk] : Refersnce Weight T Advanced —
mome? fconaand 1ime optoon “ingS) : Iranstarn besgnt Optthod e B
ioutputs) Ikl Mods atee — | 7|
wutpul_trassfors (cosmand line eptisn —cut) : Dulput Transfor MNumbeet of Bins: (=] ?)
NimberofLpvesie: |3 2 Cort Spocig Rate: [20 El
= A
Smockrest foor EatiaLeve o ?
- ju
Caetol P Spacing [150 e | —
Rischaien [t Native) [15 Al o : T B
Step Sioe 10
| —
COMNAND LINE PROCEDURE 5|
o paetoamy this peocedune on e command i type:
FulVenizn
bt 2 3 n 64 derstior 19 aecokion | 5 -meimc M1 rumbesobstes | unewesghtrsage O spacrigate 20 suonoemsice | -moothne:
—
"‘lx‘\-alu-lrw!s‘mﬁuuam ﬁ—""“’s"—' prtraion Jeity o3 Ibi-slge)
riecaiytepite o ogtiizpion et = St N
h! a
0] [lea [SN e o || g
o compars Mt 7|
B 6evin Register T imagoResice ot o001 ?
Viewers Tramster [Registration | Fumctionsl Multi-subject Hy Cresteimage Overtey CerUHPu Spaeng [150 [|
Tranaformations. T otk bnaoas Hesohuon [x Nawve]l |15 L
Wegrimape ==
Irmage Compare [——l| | Comeute Overiap.
4DImage Compaee |
Image Reslice M N
ooy » Color Biend Image
Mﬂﬂ! Checkersoara
t'm'“w'“"m Ma Operations |
T
Marual Registration me .
Point-Based Registration |
I
|
=l
Pasnseiers Lood| Save| Quny| Sices| Rese|
ey G
Cote

Figure 4: This figure shows all the different ways in which a script can be invoked. Label (A), (A1) and (A2) shows the graphical
user interface (A) with the parameters in the standard tab (A1) and the advanced tab (A2). Additionally, the user can click on the
“Show Command” button highlighted with a red rectangle that shows how the script can be invoked on the command line (C). The
script can also be invoked on the command line (B) and in the situation where incorrect input parameters are provided, a Unix-style
help is shown that shows the format for the input and input parameters. Additionally, the script can be contained in a managed
framework (D) where it becomes a menu item that invokes the same graphical user interface options as in (A).

4.2 Nightly Testing

The implementation of our testing framework allows for easy addition of test cases. For testing, we maintain
a list of all the test cases which have a format as follows:

algorithm name : input parameters and their values: input files : expected output file
bis_smoothimage: -blursigma 2.0: MNI_T1_lmm.nii.gz : MNI_T1_ Ilmm_sm2.nii.gz

When the nightly testing process starts, it goes through and tests each algorithm. For each algorithm, it
looks up its name in the first column of the list, and if the name matches then it reads in the remaining
arguments and performs the test. As shown above, to test the image smoothing algorithm we specify the
name of the script, the input parameters and their values (blursigma=2.0 in this case), the input file name
and the expected output file name to compare the output with. The obtained output is compared with the
expected output and based on the comparison a “test passed” or “test failed” result is obtained. Therefore,
adding more test cases is as simple as adding another line to the list of nightly tests for that algorithm.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3078]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3078
http://creativecommons.org/licenses/by/3.0/us/

4.3 Customized workflow - Diff-SPECT processing for epilepsy 7

Figure 5 shows a composite figure of the nightly dashboard which shows the platforms that the scripts are
tested on. As of now, the nightly tests run on Linux (CentOS), Windows (Vista and XP), Power Mac and
Mac OS X . On the right is a screenshot of a list of some of the scripts as can be seen on the dashboard. This
allows us to readily know whenever a script fails on a particular platform.

« C M % bitps//boreas.med.yale.ec

bis_cylindricalcropimagetcl
bis_decimate tcl

bis. delaunaysD tcl
EDT
_08T01:00:00

-07 I [o] imag
Q\ - changed 2 of 2009-0 bis_edgedetectimage tcl
\

bis_fdr.tcl

Bulll i frtimage tcl

bis_flipimage tel
qre-40 BE

Danin-g++== bis_imagemedian tcl
\

\W Haza x bis_intrinsicconnectivity tcl
Linux-q#++32
tosaavm mrcluster bis_matrixcorrelation.tcl
centosAIVIMLIETEE :
) s
Linucgee3d bis_mediantemporalsmoothimage tcl

rcluster
nodel MICIUS== bis_relabelimage tcl

m&gﬁl“

bis_removeslicemean.tcl

centos564VIM. mrcluster

quuumer

s+ B
Linux-gEes= bis_removetemporaldrift tcl

M@ & bis_resampleimage tcl

bis_roimean tcl
Win32-vs8 B

centos5dDd

Figure 5: In this figure, we can see the various platforms that the scripts are tested on. This happens on a nightly basis and allows
for multi-platform testing. The right image shows a sample list of scripts being tested and their status on a particular platform.

4.3 Customized workflow - Diff-SPECT processing for epilepsy

Using this framework, customized workflows can be created to enable the development of complex and
streamlined algorithms. In these customized workflows, the output of one algorithm can be used as the input
to another algorithm. Here we present an example of a customized workflow for ISASHN algorithm [2]
used to assist image-guided surgery research. First, two SPECT images are linearly registered to each other
and then nonlinearly registered into MNI space. The registered images are then masked, smoothed, and
intensity normalized. A t-test is preformed comparing these images to a healthy normal population. The
resultant tmap is thresholded and clustered to produce the final output. This workflow can be implemented
as a single algorithm object with it own GUI and testing protocol that sequentially calls other algorithm
objects as presented in Figure 6. The algorithm object can be instantiated from our Biolmage Suite VVLink
gadget to connect to the BrainLAB Vector Vision Cranial system for integration into neurosurgical research

[7].

5 Conclusion

Using our novel framework, we have developed unified tools for our users that allows for easy to use inter-
faces and robustly tested algorithms. Additionally, customized workflow pipelines have been created by de-
velopers to allow for creation of complex algorithms. With this framework, we envision a more widespread
adoption amongst our research group for rapid development of easy-to-use image analysis algorithms and
look forward to other CAI contributions to Biolmage Suite.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3078]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3078
http://creativecommons.org/licenses/by/3.0/us/

References 8

MNI Template
SPECT

Ictal SPECT Inter Ictal SPECT

Linear Registration Non-Linear Registration
bis_linearintensityregistration.tcl bis_nonlinearintensityregistration.cl

Mask Smooth Image Intensity Normalize
bis_mathoperations.tcl bis_smoothimage.tcl bis_proportionalscale.tcl

Population Statistics T-test
(mean, std dev) bis_ttest.tcl

Threshold & Cluster

bis_clusterthresholdimage.tcl

Qutputlmage

Figure 6: Customized workflow using the unified Biolmage Suite framework. Here the algorithm modules are depicted in blue
(with the actual script name below it). In this workflow, the interictal and ictal SPECT are first linearly registered and output is then
non-linearly registered with the MNI Template SPECT. The result of the registration is then processed using various algorithms
(mask, smooth and intensity normalized). Then a t-test is performed with the mean and standard deviation from a control population.
The output tmap is then thresholded and clustered to get the final output image.

References

(1]

(2]

(3]

(4]

(5]
(6]

(7]

(8]

Coronato A, De Pietro G, and Marra I. An open-source software architecture for immersive medical imaging. In In Proceedings
of the IEEE International Conference on Virtual Environments, HCI and Measurement Systems, 2006. 2

Scheinost D, Blumenfeld H, and Papademetris X. An improved unbiased method for diffspect quantification in epilepsy. [EEE
International Symposium on Biomedical Imaging ISBI 2009, June 2009. 4.3

Wolf I, Vetter M, Wegner I, Bottger T, Nolden M, Schobinger M, Hastenteufel M, Kunert T, and Meinzer HP. The medical
imaging interaction toolkit. In Medical Image Analysis, pages 594-604, Dec 2005. 2

Shen R, Boulanger P, and Noga M. Medvis: A real-time immersive visualization environment for the exploration of medical
volumetric data. In Proceedings of the Fifth International Conference on BioMedical Visualization, pages 63-68, 2008. 2

Pieper S, Halle M, and Kikinis R. 3D slicer. /IEEE International Symposium on Biomedical Imaging ISBI 2004, 2004. 2

Clemens Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-Wesley Professional, 2nd edition,
2002. 1

Papademetris X, DeLorenzo C, Flossmann S, Neff M, Vives K, Spencer D, Staib L, and Duncan J. From medical image
computing to computer-aided intervention: development of a research interface for image-guided navigation. In Int J Med
Robot, volume 5, pages 147-157, 2009. 4.3

Papademetris X, Jackowski M, Rajeevan N, DiStasio M, Okuda H, and Constable RT. Bioimage suite: an integrated medical
image analysis suite: an update. In SC/NA-MIC Workshop on Open Science at 9th MICCAI Conference, 2006. 1

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3078]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3078
http://creativecommons.org/licenses/by/3.0/us/

	Introduction
	Related Work
	System Overview
	Core Classes:

	Current Status
	Algorithm interfaces
	Nightly Testing
	Customized workflow - Diff-SPECT processing for epilepsy

	Conclusion

