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Abstract. We introduce a bio-inspired dynamic deformable (DET)
model based on the equation of dynamics and including temporal
smoothness constraints. The behaviour and characteristics of the dy-
namic DET model is studied in the context of the semi automatic spatio-
temporal segmentation of the left ventricle myocardium in cine-MR im-
ages. The segmentation accuracy for endo/epicardium contours at end-
diastole and end-systole, and as consequence the performance and limits
of the current implementation, is evaluated in the context of the MIC-
CAI LV Segmentation Challenge on a database of 15 multi-slice cine-MRI
examinations.

1 Introduction

The detailed analysis of cardiac images remains a challenging task. In partic-
ular, the automated analysis of cardiac anatomical and functional Magnetic
Resonance (MR) images could yield detailed anatomical and functional cardiac
parameters such as 3D shapes and volumes, motion, strains and stresses in the
myocardium.

In this paper, we present a new approach for the segmentation and motion
tracking of the myocardium in dynamic MRI sequences. Our method is based on
the Deformable Elastic Template (DET) method introduced by Pham [1], and
later improved by Rouchdy [2]. A Deformable Elastic Template is a combination
of :

— A topological and geometrical model of the object to be segmented (here,
the heart muscle).

— A constitutive equation (elasticity) defining its behavior under applied exter-
nal image forces that push the model’s interfaces towards the image edges.

Here, we extend this approach to the temporal dimension, in order to fully
take into account the dynamics of the heart over the cardiac cycle. The proposed
approach, named DynamicDET, imposes temporal smoothness and periodicity
constraints to the model, thus improving the robustness. It also analyzes all time
frames concurrently, contrarily to most other approaches which analyze only one
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instant at a time. The performance of DynamicDET is assessed in the context
of the MICCAT 2009 LV Segmentation Challenge :
http://smial.sri.utoronto.ca/LV_Challenge/Home.html

2 Dynamic DET model description

2.1 Static DET model

The dynamic DET model is an extension of the previously introduced static
DET model [1].

The DET model is a deformable volumetric model submitted to external
constraints imposed by the image. The equilibrium of the model is obtained
through the minimization of the following global energy functional :

E= Eelastic + Edata

where Fjqstic Tepresents the elastic deformation energy of the model and Eg,¢q
is the energy due to the external image forces f, which are respectively given
by:

Eelastic == 1 / tI‘(O’GT) thy Edata (u) = - f(u) d’Y
2Jq 00
where o and € are the 3D strain and deformation tensors and {2 is the model
domain at rest. The material is considered to be isotropic, homogenous and
completely defined by its Young modulus and its Poisson coefficient. 942 is the
border of the object domain 2.

These energy terms can be approximated by discretizing the displacement u
and the force f, using the finite element method (FEM). The displacement is
approximated by linear functions on these elements, while the forces are sampled
at nodal points. Under this approximation, the minimum of the energy must
satisfy the following equation:

KU = F(U) (1)

where K is the stiffness matrix, corresponding to the response of the elastic
material, and U and F are respectively the displacement and the force vectors
on mesh nodes. To solve this equation, we construct an evolution equation that
allows to solve the nonlinear problem by solving a series of linear systems:

s + KU =F(U)
dr
where 7 is the evolution parameter.
The model resulting from equation[I is purely static. In the next section, we
extend the method to the analysis of dynamic image sequences by considering
the equation of dynamics in place of equation (1.
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2.2 Dynamical DET model

Image data We assume the data is available as sequences of N 2D or 3D
images, sampling the cardiac cycle. To simplify the mathematical treatment of
the problem, we assume that the cardiac cycle is parameterized by ¢ € [0, 1].

Simplified equation of dynamics In this work, the heart dynamic is con-
trolled by the simplified dynamics equation (where acceleration is neglected):

DU + KU = F(U,t) (2)

We consider the matrix D to be a multiple of identity. It can thus be replaced
by a single scalar «.

Function basis Our goal is to match a geometrical heart template to a moving
sequence of images, while satisfying periodicity and smoothness of the motion.
In order to enforce these constraints, we look for solutions in a finite-dimension
subspace F generated by a set of Fourier harmonics [3].

The frames represent a collection of uniformly-spaced noisy samples of a
smooth and periodic phenomenon. Thus, we can assume the force fields F"
derived from the images to be samples of an element of . One and only one ele-
ment of F satisfies F(5) = F" , Vn,0 < n < N. The discrete Fourier Transform
of the F™ samples is defined as:

1 phly —27il
dftll] = > Frem

n=0

and

dft]l], vi,0<i< ¥

ff = dft[l+ N, v, -8 <1<0

1afe[y], Vi, 1=+%

then
N/2
F(t) _ Z fl€27rilt
I=—N/2

Note that the previous expressions are only valid if [V is even. Similar expressions
can be easily derived for the odd case.

In order to reduce the noise impact and to enforce smoothness of the motion,
either data or the computed solution are filtered out. In the Fourier basis, filtering
the high frequencies can be as easy as removing the high frequency harmonics,
more precisely, setting f = f ! =0for I > a, where a is the highest admissible
frequency. Note that filtering F before solving the equation is equivalent as
filtering U a posteriori, as can be clearly seen from the previous mathematical
developments.
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2.3 Algorithm implementation

Solution to equation (2) is achieved through a pseudo-instationnary process [4].
Roughly speaking, it consists in introducing a parameter 7, and to consider a
pseudo-instationnary problem with respect to 7 derived from the original prob-
lem. Define AU = U 4+ KU and consider,

U _ pU)- AU
{ff(o) ~0. ®)

if U converges when 7 — +00, then it tends towards a limit which is a solu-
tion of the nonlinear time dependent problem. Discretizing the previous equation
with finite differences to solve the temporal equation leads to:

1 1
o A UT —F UT—l 7UT—1
(AT +A) ( )+ AT
1 a T _ T—1 i 7—1 & T

which is a linear system and is thus straightforward to solve.

3 Method parameters and User Interaction

The parameters of the algorithms can be divided into the following categories :

— Initial Template: In 2D spatial dimension, the initial template consists
in a ring representing both endocardium and epicardium. It is defined with
three geometrical parameters: the center of the annulus, the radius and the
thickness. These parameters are manually defined by the user on the ED
frame, in order to ensure a good positioning of the template at the beginning
of the algorithm. The template is meshed by dividing the ring into triangles
from a regular partition of the LV into sectors and concentric rings (see
Figure[l). The number of rings and sectors are two other parameters defining
the mesh.

— Mechanical parameters: The Young modulus represents the rigidity of the
model, while the Poisson coefficient characterizes the ability of the material
to be compressed.

— Algorithm parameters: The stopping criteria defines when the algorithm
has converged. We can also choose the number of resolution levels with which
the sequence images are processed.

We mainly act on two parameters which are the Young modulus and the
resolution level number. If the Young modulus is set too high, the model will not
deform at all. If set too low, the model will deform to match all image features,
real structures and artifacts alike. Concerning the resolution level number, using
a single level works correctly if the magnitude of the deformation is not too
important. However, if there is a large movement or thickening throughout the
dynamic sequence, it may be necessary to use several resolution levels to allow
larger deformations.
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We present the results obtained on the validation set used for the MICCAT Chal-
lenge. The validation set consists of 15 examinations with 4 patient categories
(heart failure, with (HF-I) or without (HF-NI) ischemia, hypertrophy (HYP)
and normal (N)). Examinations are made of 8 to 14 slice levels. Evaluation is
performed only for endocardium and pericardium contours at ED and ES frames.
We observe that the segmentation results depend on the actual motion of the
heart, ie. the pathology affecting the patient’s heart.

Figure [I shows the results of a LV segmentation on a patient affected
by heart failure with ischemia (Slices 41 to 60 of the HF-1-05 dataset), with
Mean=2.1986mm and Std=1.0643mm for systole and Mean=2.3859mm and
Std=1.9907mm for diastole, both for inner contours. Figure [2] shows the result
of a segmentation on a normal patient (Slices 88 and 99 of the N-06 dataset),
with large thickening, with Mean=6.179mm and Std=4.4329mm for systole and
Mean=2.576mm and Std=1.531mm for diastole, both for inner contours.

Fig.1. DET Model superimposed onto the images of HF-NI-05 sequence at a
median slice of the heart over the cardiac cycle. The sequence should be read
like a book, with end-diastole on the top-left corner (only one over two frames
are shown). The pink mesh is the model. It is set to be translucent so that
correspondence between model and image contours can be appreciated.

Table [1] presents the left ventricle mass (LVM) for a selection of patients,
for both automatic and manual segmentations. Volume Ratio (VR), defined as
the ratio of expert and estimated LVM, was calculated to estimate the quality
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(a) (b)

Fig. 2. Segmentation problems with thickening : (a) Correct segmentation at
end-diastole, (b) Difficulties when following the course of the endocardium up
to the end-systole. The green contour is the reference, the red contour is our
segmentation.

of the results. Table 2/ references average values and standard deviation for VR
over the left ventricle mass for the different pathology classes. Table[3] presents
the ejection fraction (EF) for different datasets, for both automatic and manual
segmentations. The relative error was calculated to estimate the quality of the
results.

Patient ID|Auto LVM|Manual LVM |Volume Ratio
HF-1-06 | 151.4182 153.5477 0.9861
HF-NI-07 | 133.7539 130.5429 1.0246
HYP-07 | 112.7256 143.4020 0.7861
N-07 68.5166 113.5720 0.6033

Table 1. Left Ventricule Mass (LVM) and therefore Volume Ratio (VR) result
depends on the pathology the patient is affected by. HF-I: heart failure with
ischemia, HF-NI: heart failure without ischemia, HYP: hypertrophy, N: normal.
Ideal volume ratio should tend towards 1.

5 Discussion and Conclusion

The main advantage of our method is that it allows the segmentation of both
endo/epicardium of a whole dynamic sequence of images, once the template
initialization is done. However, the present evaluation only considers the ED and
ES frames. It can accurately follow the deformations of the LV when thickening
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Patient ID| VR o
HF-I-* ]1.0197/0.0052
HF-NI-* |0.7933|0.1106
HYP-* ]0.5717/0.0505
N-* 0.7502{0.0620
Table 2. Average Volume Ratio V R and Standard Deviation o for each patient
data class.

Patient ID|Auto EF|Manual EF |Relative Error
HF-1-05 | 16.9460 | 30.3025 0.4408
HF-NI-07 | 3.3729 12.9111 0.7388
HF-NI-33 | 42.2330 | 55.2309 0.2353
N-05 35.9429 | 60.6372 0.4072

Table 3. Ejection Fraction (EF) for several datasets, results with our automated
method and with the manual expert one.

is moderate. The interactive initialization of the template is usually fast, but
can be delicate in some cases. The computational time of the LV segmentation
in the whole sequence was around 0.5 minute on average.

Whatever the image set, the algorithm gets accurate results for outer con-
tours. Each of the segmentations for outer contours is under the average distance
threshold of 5mm, ensuring a “good” result in the sense of the contest, with an
average distance of 2.7269mm and a Dice metric of 0.9272 over the 15 datasets.

However, the method has difficulties getting accurate results when the course
of the endocardium is very fast and when thickening is important. The inherent
rigidity of our model prevents too large thickening. Setting Young’s modulus to a
low value allows thickening, but the model will then deform to match image de-
tails, which is not suited either. As the template is initialized at the end-diastole
phase, segmentation for the diastole is generally correct, but due to thickening,
current implementation of the method cannot always follow the course of the
endocardium during the systolic phase.

As a result, the LVM is accurate for datasets where thickening is moderate,
but is underestimated when larger thickening occurs. Therefore, we observed
that the accuracy of the results varies upon the pathology class as shown in
Table [11 LVM ratio is always over 0.85 for patients affected by heart failure
with ischemia, due to a reduced thickening during a cardiac cycle. Concerning
the other cases, which all involve thickening, the computed volume ratio greatly
fluctuates (from 0.2027 in the worst case to 1.1960) and can take values far from
the ground truth (Table[2).

As a consequence, this lack of thickening capacity sometimes leads to inac-
curate results concerning the calculation of the ejection fraction (EF). While the
expert segmentation has EF going from 12.9111% to 68.7816%, our results only
go up to 42.2330%, and are generally underestimated. Some results are com-
piled in Table[3. This is problematic in the sense that the EF is one of the most
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important functional parameters with clinical value. To tackle this problem, we
currently investigate various approaches. One consists in attributing to the LV
endocardium a specific rigidity with a Young modulus higher than the inside
LV. Another solution is to refine the edge map which attracts the DET model
based on a prior segmentation (e.g. a 2D+t morphological segmentation) and
selective application of forces.

As a conclusion, we presented our dynamic DET model for heart segmenta-
tion and tracking in cine-MRI. Its great advantage is that it performs simultane-
ously the segmentation of both endo/epicardium over the whole image sequence
and is able to provide strain maps as well. User input is reduced: placement of
the initial template in the ED frame and settings of the Young modulus and res-
olution level number. The evaluation through the MICCAI Challenge database
allowed us to assess more largely the performance of dynamic DET for the LV
segmentation and its main advantages and limits. We are currently working on
the 4D version of dynamic DET, which would require 4D evaluation as well.
This is actually the objective our French initiative IMPEIC of GDR STIC-Santé
(http://stic-sante.org/) for segmentation and evaluation in cardiac imaging.
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