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Abstract

We present a nearly automatic tool for the accurate segtiemtaf vascular structures in volumetric
CTA images. Its inputs are a start and an end seed pointitisgdvessel. The two-step graph-based
energy minimization method starts by computing the weidlgieortest path between the vessel seed
endpoints based on local image and seed intensities andl gl geometric characteristics. It then
automatically defines a Vessel Region Of Interest (VROIxftbe shortest path and the estimated vessel
radius, and extracts the vessels boundaries by minimizerteryy on a corresponding graph cut.

We evaluate our method within the 2009 MICCAI 3D Segmenta@hallenge for Clinical Appli-
cations Workshop. Experimental results on the 46 carofigrtations from clinical CTAs, compared to
ground-truth genrated by averaging three manual annattigeld an average symmetric surface dis-
tance of 0.83mm and a Dice similarity of 81.8%, with only #hieput seeds. These results indicates that
our method is easy to use, produces accurate segmentatiegssels lumen, and is robust to intensity
variations inside the vessels, radius changes, bifuntgtind nearby anatomical structures with similar
intensity values.
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1 Introduction

Vascular structures segmentation and modeling from valuen€omputed Tomography Angiography
(CTA) images play an increasingly important role in diagiwoand interventional radiology. The mod-
els are used to diagnose a variety of conditions, such asoattierosis, vascular trauma, and aneurysms,
and to plan and execute endovascular surgeries, such aislcaooonary, and cerebral angiographic proce-
dures. The tasks include 3D visualization, quantitativesaeements, pathologies characterization, access
and implant preoperative planning, image-guided surgaTgt, patient-specific simulation, among others.

Vascular structures segmentation has turned out to be achafienging task, even when a radio-opaque

dye is injected to improve the image contrast. The key difiiesiinclude the vessels intensity range overlap

with other nearby anatomical structures, the intensityinbgeneity within the vessels, the intra-patient

vessels geometry and intensity variability, and the presefipathologies such as aneurysms, calcifications,
and tumors, and of various implants, such as stents and sgmadlanual segmentation is tedious, time-

consuming, error-prone, and user-dependent, and is thursaatical for routine clinical practice.

Interactive vessels segmentation methods should be sigeteric, robust, accurate, and intuitive to use, so
that the treating physician can produce and correct a \aseal segmentation in a few minutes. Recently
developed methods can be classified into three main cagsgat) region growingl], 2) fast marching
and level-sets1?], and; 3) tracking method®]. For a review of vascular segmentation methods Sge [
Most of these methods require extensive user interactidrtteadjustment of non-intuitive parameters to
produce the desired results, which difficult their clinioak.

A promising approach is the graph min-cut interactive segat®n methodZ, 4]. The image is represented

as a graph whose nodes are the image voxels and whose edgfes \agrels immediate neighbors. Two ad-
ditional terminal nodes, 'source’ and 'target’ represémtvessels and background classes and are connected
to the voxel nodes. Edge weights between voxel nodes camdsjo the gradient strengths between them.
Edge weights between voxel and terminal nodes correspotit forobability that the voxel belongs to the
vessels or to the background class. The graph min-cut fitss#ihe voxel nodes that separate the vessels
from the background. The advantages of this method arettisajeneric and that it is nearly parameter-free.
Its drawbacks are that it requires significant user intéacthat it requires fine-tuning the vessels intensity
priors which are very variable for small vessels, that itdoet incorporate vessels geometric information,
and that it is computationally intensive and has extensigenory requirements.

Recent improvements to the graph min-cut interactive seggtien method address some of these draw-
backs. Slabaugh and Undll] add an elliptical shape prior term to the edges cost functiSinop and
Grady [L0] use a Laplacian pyramid to accelerate the segmentatiomestute the memory usage. Ning et
al. [7] use graph-cut active contours based on prior object saidatimation to improve the segmentation.
Rother et al 8] propose user-selected enclosing rectangular regionsdrihe objects of interest to reduce
the user interaction. While this is useful for extractinmpie objects in 2D images of natural scenes, it is
laborious for 3D images of complex vascular structures. Admwback of all these methods is that their
generic segmentation framework is often ill-suited for 33sels segmentation.

We have developed a nearly automatic tool for the effectdggrgentation of vascular structures from CTA
images. It only requires a start and an end seed point insaleessel. The two-step graph-based method is
robust to intensity variations inside the vessels, radh#ges, pathologies such as aneurysms or calcifica-
tions, and the presence of nearby anatomical structuréssitilar intensity values.

This algorithm was developed as part a set of automatic aachictive tools for fast and accurate of patient
specific models of vascular structures for patient spedifiwigtions of minimally invasive endovascular
surgeries. Patient-specific simulations have the potetatiaignificantly reduce the physicians’ learning



(a) original image (b) weighted shortest path (c) vessel region of interest{d) vessel boundary segmen-
tation

Figure 1: lllustration of the segmentation process on daadircoronal CTA slice of the carotid artery: (a)
detail of the original image showing the start and end vessedl points (cross); (b) weighted shortest path
between the two seeds; (c) vessel region of interest, ahepédel boundary segmentation.

curve, reduce the outcome variability, and improve theifggenance. EXxisting training simulators such
the ANGIO MentofM (Simbionix Ltd, Israel) rely on hand-tailored anatomicabaels generated by a
technician from CTA scans, which are impractical to prodpagent-specific simulations in a clinical en-
vironment. Our segmentation tools produce accurate patjgacific models in a short time, thus making
patient-specific simulations practical.

2 Method

Our interactive vessel boundary segmentation algorithpnesents the image as a graph. It inputs a start
and an end point of the vessel segment for which the bounegrmeantation is required. The algorithm then
proceeds in two steps: 1) weighted shortest path compnotatial; 2) optimal vessel boundary segmentation.
In the first step, it computes a path inside the vessel as tightee shortest path between the graph nodes
that contain the vessel endpoints. The edge weights condpogal image and seed intensity information
and vessel path geometric characteristics. In the secepgdistonstructs a Vessel Region of Interest (VROI)
from the vessel path and the estimated vessel radius andutesipe min-cut of the subgraph inside it. The
min-cut identifies the graph nodes (voxels) at the boundarhe object (vessel) and background, thus
producing the desired vessel boundary segmentation1Higstrates the method.

We describe each step in detail next. Get (V,E) be the image graph, wheve= {vy,...v,} are the graph
nodes (ones; per voxel) with their associated voxel intensity valuég) andE = {(v;,v;)} are the graph
nodes, where; andv; are neighboring voxels. Each node has 4 or 8 neighbors fongiyes, or 6 or 26
neighbors for 3D images. Each edge has a weight associaigdve;, vj). Graph nodess andv; are the
user-defined start and end vessel seed points; e estimated vessel radius.

2.1 Weighted shortest path computation

The vessel path is computed by finding the weighted shortahtletween the vessel seed pointandv;
that is inside the vessel. The shortest path is the sequdranlges connectings to v¢ for which the sum
of its edge weights is minimum. We use Dijkstra’s shortegtipalgorithm whose worst-case complexity is
O(r?), wheren is the number of voxels in the region of interest — initiallythe image, but much smaller
when the vessel seed points are nearby.
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To robustly and accurately find the vessel path, we use addage weighting function with intensity
and geometric information. The edge weight is the sum ofp@all intensity difference; 2) seed deviation
intensity difference; 3) path smoothness; and 4) path kepghalty.

The local intensity difference term is the squared diffeeeaf the edge voxel intensity values:

(1) = 1(v))? (1)
Since its value is large at boundary crossings, it prevérpath from leaving the vessel region.

The seed deviation intensity difference term is the sum efrétative squared differences of the seeds and
edge end voxel intensity values:

(1(v5) = 1(vs))? + (1 (v§) = 1 (w))? )

This term prevents the edges in the path from diverging toochnftom the intensity values of the user-
selected seed points. Its effect is to prevent the path tceratong locally smooth tissues with low edge
weights rather than moving inside the noisy vessel.

The path smoothness term is the angle between the edge goadlent directions:
|cos Y(Ov; - Ov;)| (3)

wherel] is the normalized voxel gradient. This term prevents edgés large gradient differences to be
added to the path.

The path length term is the Manhattan distance contributiotihe edge. This term penalizes long paths,
although when the path should not leave the vessel as it snesehappens for highly curved vessels.

2.2 Optimal vessel boundary segmentation

The vessel boundary segmentation step starts by definingsseMRegion of Interest (VROI) from the
vessel path and the estimated vessel radius. It then uptith&tegsaph edge weights according to the VROI
and computes the graph min-cut to identify vessel boundaxgls [7].

The VROI is computed as follows. First, two VROI boundaries eomputed from each seed point by
taking the perpendicular of the path at the seed point anarstrically extending it by twice the estimated
vessel radius. Within the band defined by the two line segsnalitnodes that are at a distance of twice the
estimated vessel radius from the vessel path are includéx MROI.

Next, the vessel boundary segmentation is formulated asiecatiproblem over the corresponding graph.
We used the same graph representation as in the previoyswstepadditional two terminal nodeg;, v
correspond to object and background classes, respectinedyldition to the edges between voxélgv;),

we add two edges for each voxel noge (vi,Vs), (Vi,Vt). The edgesgvi,Vs) are from voxels to the object
terminal node and the edgés, v;) are from voxels to the background terminal node.

Edge weightsv(v;, vs) represent the probability that voxelis related to the vessels or to the background:

w(Vi, Vs) :exp<—w>2-k (4)

Op

wherel, is the intensity mean value along the computed paghis the standard deviation akds a scalar
multiplier that depends on the distance between the cuve v; and the computed path. It represents the
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(9) (h) @)

Figure 2: Carotid lumen segmentation results on severatseptative datasets: (a)-(c) original CTA images
(d)-(f) 2D view of the segmentation results, overlied ondhiginal CTA slices. (g)-(i) 3D surface rendering
of the results. 3D movies are available atip://www.cs.huji.ac.il/ ~ freiman/vessels-cut

probability that the voxel belongs to the object class basedoxel’s intensity; and object’s mean intensity
value combined with spatail information that prefer voxélst are closer to the path computed before.

Edge weightsv(v;, \t) represent the probability of each voxel to belong to backgdo

W(Vi, ) = 1—w(Vi,Vs) (5)
We use the inverse of the object weighvi, vs), instead of explicit modeling of the background intensity,
Edges weightv(v;,vj) represent the magnitude of the local gradient between flaeemt voxels:

|(Vi)—|(Vj)>2

Op

W(Vi,Vj) = exp<— (6)

The optimal surface that separates the image into a vesfaitand background is the min-cut at the
resulting graph. The coupling of both intensity, gradiesutsl path information yields an accurate vessel


http://www.cs.huji.ac.il/~freiman/vessels-cut

Table 1: Summary lumen

Measure % / mm rank
min. | max. | avg min. | max. | avg.
L_dice 38.8% 94.3% 81.8% 3 4 3.97
L_msd 0.20mm 3.43mm 0.83mm 3 4 3.97
L_rmssd 0.35mm 5.82mm 1.54mm 4 4 4.00
L_max 1.02mm  16.67mm  5.98mm 3 4 3.97
Total (lumen) 3 4 3.98

Table 2: Averages lumen

Team Total dice msd rmssd max Total
name success | % | rank | mm | rank | mm | rank | mm | rank | rank
HUJI-CASMIP 31 81.8 4.0 0.83 4.0 1.54 4.0 5.98 4.0 4.0
Observer B 31 94.8 2.4 0.11 2.4 0.15 2.3 0.59 1.8 2.2
Observer C 31 94.7 2.2 0.11 2.2 0.15 2.1 0.71 2.4 2.2
Observer A 31 95.4 1.5 | 0.10 1.5 | 0.13 1.6 | 0.56 1.9 1.6

segmentation that accurately isolates even difficult regiguch as bifurcations and pathologies including
calcifications and aneurysms. FRjllustrates the method performance on pathological cdsete that the
resulting segmentation accurately separates the lumentfre calcifications, and segments the bifurcation.

3 Experimental results

We evaluated the performance of our method using the 3rd §aetation challenge for clinical appli-
cations: carotid bifurcation algorithm evaluation franoelv[3], a MICCAI 2009 workshop. The datasets
consists of 46 CTA images of the carotid arteries. For eacyanthree seed points were provided as input
to the algorithm: one point on the Common Carotid Artery (Q@8m below the carotid bifurcation. The
second point is on the Internal Carotid Artery (ICA) 4cm éahto the carotid bifurcation. The third point
is on the External Carotid Artery (ECA) 2cm cranial to theatat bifurcation. A detailed description of the
datasets acquisition protocols and ground truth generatian be found on3]. From the 46 datasets, 14
were used for training, and the other 32 were used for theiatiah.

We compared our segmentation results to the ground-tritiy dise metrics: 1) Dice similarity measure;
2) Mean Symmetric absolute surface Distance (MSD); 3) RoeaSquare symmetric Surface Distance
(RMSSD), and; 4) Maximum symmetric absolute surface degtan

Table1l summarizes the results. The minimum, maximum, and averalgesfor each metric are reported.
Our method succeed in all cases to all the vasculatures deifinthe ground-truth segmentation. The
average Dice measure was 81.8% — in only in three cases tleesiDidlarity measure between our results
and ground-truth was less than 70 (93.5% success rate) amdyil7 cases the Dice measure was less than
80 (85%). This success rate is much better than the preyioegbrted success rate of 70%).[

Table 2 shows the average grades of our method (HUJI-CASMIP) andeothree observers. The main
reason that our method performance is worse than that ofatbereers is that our algorithm included small
vascular structures that are not part of the ground trutlicltwtonsists of the CCA, the ICA and the ECA.
The additional secondary branches and vessels segmentad ljgorithm lowers the comparative grade
(Fig. 3). The mean (std) computation time for each bifurcation w&® Z0:41) minutes using standard
3GHz PC with 4GB of memory.



@) (b) (c)

Figure 3: A small vessel branch from the ECA, encircled bylbyeellipse, that segmented by our method,
while do not consider as a vessel according to the grounil. trut

4 Conclusions

We have presented an interactive tool for the accurate sggtian of vascular structures in volumetric CTA
images. Itinputs a start and an end seed points inside teehaasd an estimated vessel radius. The two-step
graph-based method incorporates local image and seedgitigsrand vessel path geometric characteristics
and automatically defines a Vessel Region Of Interest (VROMhich a vessel path is computed.

The tool can be used to improve the results of other autorsagmentation methods, or on its own for the
entire vessels segmentation. Our experimental results gt the tool is accurate, easy to use, robust to
different initialization seeds, and can be applied forati#ht vessels and imaging modalities.
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