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Abstract

We present a nearly automatic tool for the accurate segmentation of vascular structures in volumetric
CTA images. Its inputs are a start and an end seed points inside the vessel. The two-step graph-based
energy minimization method starts by computing the weighted shortest path between the vessel seed
endpoints based on local image and seed intensities and vessel path geometric characteristics. It then
automatically defines a Vessel Region Of Interest (VROI) from the shortest path and the estimated vessel
radius, and extracts the vessels boundaries by minimize theenergy on a corresponding graph cut.

We evaluate our method within the 2009 MICCAI 3D Segmentation Challenge for Clinical Appli-
cations Workshop. Experimental results on the 46 carotid bifurcations from clinical CTAs, compared to
ground-truth genrated by averaging three manual annotations, yield an average symmetric surface dis-
tance of 0.83mm and a Dice similarity of 81.8%, with only three input seeds. These results indicates that
our method is easy to use, produces accurate segmentations of vessels lumen, and is robust to intensity
variations inside the vessels, radius changes, bifurcations, and nearby anatomical structures with similar
intensity values.
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1 Introduction

Vascular structures segmentation and modeling from volumetric Computed Tomography Angiography
(CTA) images play an increasingly important role in diagnostic and interventional radiology. The mod-
els are used to diagnose a variety of conditions, such as atherosclerosis, vascular trauma, and aneurysms,
and to plan and execute endovascular surgeries, such as carotid, coronary, and cerebral angiographic proce-
dures. The tasks include 3D visualization, quantitative measurements, pathologies characterization, access
and implant preoperative planning, image-guided surgery,and patient-specific simulation, among others.

Vascular structures segmentation has turned out to be a verychallenging task, even when a radio-opaque
dye is injected to improve the image contrast. The key difficulties include the vessels intensity range overlap
with other nearby anatomical structures, the intensity inhomogeneity within the vessels, the intra-patient
vessels geometry and intensity variability, and the presence of pathologies such as aneurysms, calcifications,
and tumors, and of various implants, such as stents and bypasses. Manual segmentation is tedious, time-
consuming, error-prone, and user-dependent, and is thus impractical for routine clinical practice.

Interactive vessels segmentation methods should be simple, generic, robust, accurate, and intuitive to use, so
that the treating physician can produce and correct a vasculature segmentation in a few minutes. Recently
developed methods can be classified into three main categories: 1) region growing [1], 2) fast marching
and level-sets [12], and; 3) tracking methods [9]. For a review of vascular segmentation methods see [5].
Most of these methods require extensive user interaction and the adjustment of non-intuitive parameters to
produce the desired results, which difficult their clinicaluse.

A promising approach is the graph min-cut interactive segmentation method [2, 4]. The image is represented
as a graph whose nodes are the image voxels and whose edges arethe voxels immediate neighbors. Two ad-
ditional terminal nodes, ’source’ and ’target’ represent the vessels and background classes and are connected
to the voxel nodes. Edge weights between voxel nodes correspond to the gradient strengths between them.
Edge weights between voxel and terminal nodes correspond tothe probability that the voxel belongs to the
vessels or to the background class. The graph min-cut classifies the voxel nodes that separate the vessels
from the background. The advantages of this method are that it is generic and that it is nearly parameter-free.
Its drawbacks are that it requires significant user interaction, that it requires fine-tuning the vessels intensity
priors which are very variable for small vessels, that it does not incorporate vessels geometric information,
and that it is computationally intensive and has extensive memory requirements.

Recent improvements to the graph min-cut interactive segmentation method address some of these draw-
backs. Slabaugh and Unal [11] add an elliptical shape prior term to the edges cost function. Sinop and
Grady [10] use a Laplacian pyramid to accelerate the segmentation andreduce the memory usage. Ning et
al. [7] use graph-cut active contours based on prior object surface estimation to improve the segmentation.
Rother et al [8] propose user-selected enclosing rectangular regions around the objects of interest to reduce
the user interaction. While this is useful for extracting simple objects in 2D images of natural scenes, it is
laborious for 3D images of complex vascular structures. A key drawback of all these methods is that their
generic segmentation framework is often ill-suited for 3D vessels segmentation.

We have developed a nearly automatic tool for the effective segmentation of vascular structures from CTA
images. It only requires a start and an end seed point inside the vessel. The two-step graph-based method is
robust to intensity variations inside the vessels, radius changes, pathologies such as aneurysms or calcifica-
tions, and the presence of nearby anatomical structures with similar intensity values.

This algorithm was developed as part a set of automatic and interactive tools for fast and accurate of patient
specific models of vascular structures for patient specific simulations of minimally invasive endovascular
surgeries. Patient-specific simulations have the potential to significantly reduce the physicians’ learning
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(a) original image (b) weighted shortest path (c) vessel region of interest(d) vessel boundary segmen-
tation

Figure 1: Illustration of the segmentation process on a clinical coronal CTA slice of the carotid artery: (a)
detail of the original image showing the start and end vesselseed points (cross); (b) weighted shortest path
between the two seeds; (c) vessel region of interest, and; (d) vessel boundary segmentation.

curve, reduce the outcome variability, and improve their performance. Existing training simulators such
the ANGIO MentorTM (Simbionix Ltd, Israel) rely on hand-tailored anatomical models generated by a
technician from CTA scans, which are impractical to producepatient-specific simulations in a clinical en-
vironment. Our segmentation tools produce accurate patient-specific models in a short time, thus making
patient-specific simulations practical.

2 Method

Our interactive vessel boundary segmentation algorithm represents the image as a graph. It inputs a start
and an end point of the vessel segment for which the boundary segmentation is required. The algorithm then
proceeds in two steps: 1) weighted shortest path computation, and; 2) optimal vessel boundary segmentation.
In the first step, it computes a path inside the vessel as the weighted shortest path between the graph nodes
that contain the vessel endpoints. The edge weights compound local image and seed intensity information
and vessel path geometric characteristics. In the second step, it constructs a Vessel Region of Interest (VROI)
from the vessel path and the estimated vessel radius and computes the min-cut of the subgraph inside it. The
min-cut identifies the graph nodes (voxels) at the boundary of the object (vessel) and background, thus
producing the desired vessel boundary segmentation. Fig.1 illustrates the method.

We describe each step in detail next. LetG= (V,E) be the image graph, whereV = {v1, ...vn} are the graph
nodes (onevi per voxel) with their associated voxel intensity valuesI(vi) andE = {(vi ,v j)} are the graph
nodes, wherevi andv j are neighboring voxels. Each node has 4 or 8 neighbors for 2D images, or 6 or 26
neighbors for 3D images. Each edge has a weight associated toit, w(vi ,v j). Graph nodesvs andvf are the
user-defined start and end vessel seed points, andr is the estimated vessel radius.

2.1 Weighted shortest path computation

The vessel path is computed by finding the weighted shortest path between the vessel seed pointsvs andvf

that is inside the vessel. The shortest path is the sequence of edges connectingvs to vf for which the sum
of its edge weights is minimum. We use Dijkstra’s shortest-path algorithm whose worst-case complexity is
O(n2), wheren is the number of voxels in the region of interest – initially all the image, but much smaller
when the vessel seed points are nearby.
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To robustly and accurately find the vessel path, we use a hybrid edge weighting function with intensity
and geometric information. The edge weight is the sum of: 1) local intensity difference; 2) seed deviation
intensity difference; 3) path smoothness; and 4) path length penalty.

The local intensity difference term is the squared difference of the edge voxel intensity values:

(I(vi)− I(v j))
2 (1)

Since its value is large at boundary crossings, it prevents the path from leaving the vessel region.

The seed deviation intensity difference term is the sum of the relative squared differences of the seeds and
edge end voxel intensity values:

(I(v j)− I(vs))
2 +(I(v j)− I(vt))

2 (2)

This term prevents the edges in the path from diverging too much from the intensity values of the user-
selected seed points. Its effect is to prevent the path to move along locally smooth tissues with low edge
weights rather than moving inside the noisy vessel.

The path smoothness term is the angle between the edge voxelsgradient directions:

|cos−1(∇vi ·∇v j)| (3)

where∇ is the normalized voxel gradient. This term prevents edges with large gradient differences to be
added to the path.

The path length term is the Manhattan distance contributionof the edge. This term penalizes long paths,
although when the path should not leave the vessel as it sometimes happens for highly curved vessels.

2.2 Optimal vessel boundary segmentation

The vessel boundary segmentation step starts by defining a Vessel Region of Interest (VROI) from the
vessel path and the estimated vessel radius. It then updatesthe graph edge weights according to the VROI
and computes the graph min-cut to identify vessel boundary voxels [7].

The VROI is computed as follows. First, two VROI boundaries are computed from each seed point by
taking the perpendicular of the path at the seed point and symmetrically extending it by twice the estimated
vessel radius. Within the band defined by the two line segments, all nodes that are at a distance of twice the
estimated vessel radius from the vessel path are included inthe VROI.

Next, the vessel boundary segmentation is formulated as a min-cut problem over the corresponding graph.
We used the same graph representation as in the previous step, with additional two terminal nodesvs,vt

correspond to object and background classes, respectively. In addition to the edges between voxels(vi ,v j),
we add two edges for each voxel nodevi : (vi ,vs),(vi ,vt). The edges(vi ,vs) are from voxels to the object
terminal node and the edges(vi ,vt) are from voxels to the background terminal node.

Edge weightsw(vi ,vs) represent the probability that voxelvi is related to the vessels or to the background:

w(vi ,vs) = exp

(

−
I(vi)−µp)

σp

)2

·k (4)

whereµp is the intensity mean value along the computed path,σp is the standard deviation andk is a scalar
multiplier that depends on the distance between the currentvoxelvi and the computed path. It represents the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Carotid lumen segmentation results on several representative datasets: (a)-(c) original CTA images
(d)-(f) 2D view of the segmentation results, overlied on theoriginal CTA slices. (g)-(i) 3D surface rendering
of the results. 3D movies are available on:http://www.cs.huji.ac.il/ ˜ freiman/vessels-cut

probability that the voxel belongs to the object class basedon voxel’s intensityvi and object’s mean intensity
value combined with spatail information that prefer voxelsthat are closer to the path computed before.

Edge weightsw(vi ,vt) represent the probability of each voxel to belong to background:

w(vi ,vt) = 1−w(vi,vs) (5)

We use the inverse of the object weightw(vi ,vs), instead of explicit modeling of the background intensity,.

Edges weightw(vi ,v j) represent the magnitude of the local gradient between the adjacent voxels:

w(vi ,v j) = exp

(

−
I(vi)− I(v j)

σp

)2

(6)

The optimal surface that separates the image into a vessel object and background is the min-cut at the
resulting graph. The coupling of both intensity, gradientsand path information yields an accurate vessel

http://www.cs.huji.ac.il/~freiman/vessels-cut
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Table 1: Summary lumen
Measure % / mm rank

min. max. avg. min. max. avg.
L dice 38.8% 94.3% 81.8% 3 4 3.97
L msd 0.20mm 3.43mm 0.83mm 3 4 3.97

L rmssd 0.35mm 5.82mm 1.54mm 4 4 4.00
L max 1.02mm 16.67mm 5.98mm 3 4 3.97

Total (lumen) 3 4 3.98

Table 2: Averages lumen
Team Total dice msd rmssd max Total
name success % rank mm rank mm rank mm rank rank

HUJI-CASMIP 31 81.8 4.0 0.83 4.0 1.54 4.0 5.98 4.0 4.0
Observer B 31 94.8 2.4 0.11 2.4 0.15 2.3 0.59 1.8 2.2
Observer C 31 94.7 2.2 0.11 2.2 0.15 2.1 0.71 2.4 2.2
Observer A 31 95.4 1.5 0.10 1.5 0.13 1.6 0.56 1.9 1.6

segmentation that accurately isolates even difficult regions such as bifurcations and pathologies including
calcifications and aneurysms. Fig.2 illustrates the method performance on pathological cases.Note that the
resulting segmentation accurately separates the lumen from the calcifications, and segments the bifurcation.

3 Experimental results

We evaluated the performance of our method using the 3rd 3D segmentation challenge for clinical appli-
cations: carotid bifurcation algorithm evaluation framework [3], a MICCAI 2009 workshop. The datasets
consists of 46 CTA images of the carotid arteries. For each image, three seed points were provided as input
to the algorithm: one point on the Common Carotid Artery (CCA) 2cm below the carotid bifurcation. The
second point is on the Internal Carotid Artery (ICA) 4cm cranial to the carotid bifurcation. The third point
is on the External Carotid Artery (ECA) 2cm cranial to the carotid bifurcation. A detailed description of the
datasets acquisition protocols and ground truth generation, can be found on [3]. From the 46 datasets, 14
were used for training, and the other 32 were used for the evaluation.

We compared our segmentation results to the ground-truth using five metrics: 1) Dice similarity measure;
2) Mean Symmetric absolute surface Distance (MSD); 3) Root Mean Square symmetric Surface Distance
(RMSSD), and; 4) Maximum symmetric absolute surface distance.

Table1 summarizes the results. The minimum, maximum, and average values for each metric are reported.
Our method succeed in all cases to all the vasculatures defined in the ground-truth segmentation. The
average Dice measure was 81.8% – in only in three cases the Dice similarity measure between our results
and ground-truth was less than 70 (93.5% success rate) and inonly 7 cases the Dice measure was less than
80 (85%). This success rate is much better than the previously reported success rate of 70% [6].

Table2 shows the average grades of our method (HUJI-CASMIP) and of the three observers. The main
reason that our method performance is worse than that of the observers is that our algorithm included small
vascular structures that are not part of the ground truth, which consists of the CCA, the ICA and the ECA.
The additional secondary branches and vessels segmented byour algorithm lowers the comparative grade
(Fig. 3). The mean (std) computation time for each bifurcation was 2:02 (0:41) minutes using standard
3GHz PC with 4GB of memory.
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(a) (b) (c)

Figure 3: A small vessel branch from the ECA, encircled by a yellow ellipse, that segmented by our method,
while do not consider as a vessel according to the ground truth.

4 Conclusions

We have presented an interactive tool for the accurate segmentation of vascular structures in volumetric CTA
images. It inputs a start and an end seed points inside the vessel and an estimated vessel radius. The two-step
graph-based method incorporates local image and seed intensities and vessel path geometric characteristics
and automatically defines a Vessel Region Of Interest (VROI)in which a vessel path is computed.

The tool can be used to improve the results of other automaticsegmentation methods, or on its own for the
entire vessels segmentation. Our experimental results show that the tool is accurate, easy to use, robust to
different initialization seeds, and can be applied for different vessels and imaging modalities.
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