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Abstract

We describe an active appearance model (AAM) approach tuteenatic segmentation of the mandible
and brainstem. It involves four stages: Initialisationhwét parts-and-geometry model, search with a
global AAM followed by search with local AAMs, then post-essing using linear regressors.

Application of the method to the test images resulted in amnfezcluding subject 13) Dice overlap
value of 76.1+ 5.1% for the mandible, and 729 24.6% for the brainstem. The method failed to
segment both the mandible and brainstem in subject 13, andhilist giving a successful segmentation
of the mandible in subject 15, gave poor results on the beimsit takes about 17 minutes to run on a
64 bit Linux workstation with 2GB RAM, and a 2GHz pentium pessor. We were encouraged by its
performance on this dataset, and believe that its accui@tye improved with some modifications to
the segmentation pipeline.
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1 Introduction

Appearance models capture the variation in shape and texture over agiehassumed to be representative
of the class of object being modelled. Active appearance models (AANsyunced by Cooteet al.[2] are

a method of using appearance models to locate instances of the object in.im#&dds have been used
in a wide variety of applications from segmentation of medical images in 2D arel@®DP], [10] to face
location in computer vision applications e.§).[

The approach taken in this paper is based on the framework of Baletlgl] which involves construct-
ing a global AAM of all the objects of interest, local AAMs of each indivitlobject and linear regressors
for detailed segmentation of each object. AAM search is a local optimisation theta therefore re-
quires good initialisation. However, whilst][initialise their search by registration, we introduce of a novel
initialisation method using a parts-and-geometry model. Figgiges a schematic of our approach.
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Figure 1: Outline of the stages involved in the segmentation

In the following we describe the construction of the parts-and-geometrginiad they are the novel aspect

of this work and give brief details of the construction of the AAMs and tlggegsors as they have been
described elsewherd][[2]. We then show how the segmentation pipeline is applied and present results
obtained on the test images provided in the challenge. We end with a discas#enperformance of our
method.
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Figure 2:The figure on the left shows a subset of the control points embedded in the volume of the mean image. The
larger points are those used in the parts-and-geometry model. The configuration of the pairwise relationships between
the nodes is shown on the right as well profiles through one of the node centres.

2 Method

2.1 Establishing correspondence

Establishing correspondence is an important aspect of our apprdiaisha prerequisite to constructing
AAMs and the local regressors. We also use the resulting deformatios fiettle automatic construction
of the parts-and-geometry model.

We use the groupwise method of Coottsal.[4] to perform non-rigid registration giving a dense set of
control points which are located in corresponding locations within each inmatle set being registered
(see Figure). As in [1] we use the supplied labelled data to create two plane images in which the first pla
is the binary label, and the second is a locally normalised gray level image.

The next section describes how a subset of these control pointseddruthe construction of the parts-
and-geometry model, and sectidh8 and2.5describe how they are are used in the construction of AAMs
and local regressors. An important feature of our method is that usiisg tentrol points to construct
both the AAM and the parts-and-geometry model facilitates the use of thegrattgeometry model in the
initialisation of the AAM. This is described in secti@¥ .

2.2 Parts-and-geometry model

Parts-and-geometry models are commonly used in computer visior6g.@hg parts are feature detectors
centred on a particular voxel and the geometry is defined by pairwise redhips between the positions of
the features (see FiguB. In this section we describe the selection of feature points, construdtite o
parts-and-geometry model, and how to match it to an image.
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2.2 Parts-and-geometry model 4

Feature point selection

The correspondences obtained from the registration allow us to defeferance space (the mean of the
control points of the training images). A reference image is constructedlping each training image into
the reference space and computing the average. The dense deforfieddiolefine a mapping from the
reference to each training image. This allows us to compute the point in eathdrienage corresponding
to a given point in the reference image.

The AAM includes a shape model and in our implementation this is obtained frompotigons of the
control points. If we can locate a sufficiently large subset of the modi#gsi¢control points) well, we can
fit the shape model to them to initialize the AAM search. Thus we aim to seleectessiebset automatically.
The choice of subset will depend on the method used to locate individdasn®hough more sophisticated
local feature models could be used, in the following we use simple normalizeglat@mn with a suitably
sized template.

To select the best nodes and template sizes we consider a range of temiptiffiesemt sizes taken from
each node in the reference image. We use each to search the training amdgesect those which are
more reliable at locating the equivalent point in each training image.

For a particular node we can construct a feature detector based gioa of size(2Lx + 1) x (2Ly+ 1)

X (2L;+ 1) centred on the node. For each training im&géehere exists a deformation fie®; allowing
a mapping of space between it and the reference. We apply the feataotod¢ol; to obtain a response
imageR.. The local peaks of the response image are located and rankediagdorthe strength of their
response. Lepy specify the position of a node in the reference. Its positiol andR; is ©;(pk). We can
then define a functio® that computes the distance between a local peak locatgdrathe space oR and
the expected position of a node in this image:

Di(pk, pr) = [|©i(pk) — pil| 1)

For a good detector the best response will be close to the true pdSjtipk) in every image in the training
set.

Local feature detectors are built centred on every node of the shagel mesh at a range of sizes and at
different resolutions of the reference image. Each is then evaluatedetoéimages. The success rate in
locating the nodes and the average valuBobver the set are computed and used to evaluate the reliability
of each node. Th& most reliably located nodes can be selected to be used in AAM initialisation. An
algorithmic description of the process followed is given below:

For each node, at each region size and image resolution:

1. Build a feature detector for the given node
2. For each image:

(a) Build an image pyramid and select appropriate level

(b) Apply the feature detector to obtain a response image

(c) Locate local peaks and rank by their response

(d) Compute the distance of peaks to the ideal position using equiation
(e) Record the rank of the peak with smallBst

The feature detectors are then ranked by the average rank of thendest (computed in step ‘e’ above),
then by the average value of tbg (from step ‘d’). On application to the training data a number of detectors
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2.3 Active appearance models 5

were found to always have their best response closest to the true positteese were then ranked by
the average positional error when selecting a subset of good detet¥erslso desire that the detectors
are spread around and not clustered around a region. We addseby #electing the best detector then
iteratively selecting the next best detector not withing a radiofsthe current set of chosen detectors.

Construction

We automatically construct the parts+geometry model from a set of lodakéemodels as follows. Using
the reference image and the selected feature points in the referenceneamgomatically define a set of
connecting arcs based on the distances between the nodes. We usaofd?rim’s algorithm to obtain

the minimum spanning tree, where each node has two parent nodesthathene. This involves creating
the first arc from the two nodes which are closest together. We theatrégasfollowing steps until all nodes
are linked:

e compute the sum of the distances of each unlinked node to the closest te@indde current linked
set

e select the node which has the minimum such distance, and link it to the two alosiestin the linked
set

This leads to a topology which allows a variant of the dynamic programmingitilgoto efficiently find
the global maxima of the cost function in Equati@j. (

Matching to an image

Let p; = (x,Y,2) be the proposed position of a patch. Lgtl|p;) be the probability that patchmatches
to imagel at the given location. Lepij(pi,p;j) be the probability that two patchésind j have the given
positions. Assume that we have modelled this pairwise relationship for each,pac A, whereAis a set
defining the arcs in a graph representing the model.

To match such a model to an image, we search the image for candidate positieasti patch, then select
one for each patch so as to optimise

K
C=gllogpi(”pi)+(i%€A|09pij(pi7pj) 2)

A range of discrete graph based solvers are available to find the optinsudbra cost function, their
efficiency depending on the complexity of the topology of the connectionseirgtaph,A. For simple
topologies there are fast, guaranteed optimal solutions. For instancehipa# is connected to one parent
(but may have many child connections), we have a tree structure, armthatwaf dynamic programming
can be used to quickly find the optima in time of or@¥iNM?) (for M candidates for each of nodes).

In the following we use a more complex variant, similar to that usedrhyii which a network is created
where each node can be thought of as having at most two parents. plimalosolution for this can be
obtained with a variant of dynamic programming@NM3) time. If M is modest, this is still fast.

2.3 Active appearance models

An Active Appearance Model is a statistical model of both the shape ofuatste and its appearance,
together with an algorithm for matching it to an image. The model is capable tifesising an image of
the object of interest, and the residual differences between the sigaiti@siage and the target image are
used to drive the search.
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2.4 |Initialising the AAM 6

We construct the shape model by aligning the sets of control points onireage and applying Principal
Component Analysis (PCAR]. A statistical model of texture is constructed by warping each grey-level
image into the reference space and appling PCA to the resulting texturespp&arance modePl] is a
combination of the shape and texture models, with the form

g = g+QqgC ®)

WherexX, g are vectors of the mean shape and mean textrgare the shape and texture vectors in the
reference frameQs, Qg are matrices describing the modes of variation derived from the trainingrsi,
is a vector of parameters controlling both shape and texture.

Appearance models can be matched to new images rapidly using the Actieardppe Model algorithm
[2]. This seeks to minimise a sum-of-squares problem of the form

F(p)=Ir(p)P=r"r (4)

wherep contains the model parameters and= r(p) is a function returning they residual differences
between model and data for parametersBy making assumptions about the Jacobian, a fast updating
algorithm can be derived which can match the model to a new image in a few iteratio

2.4 Initialising the AAM

The positions of the nodes (image patches) of the parts-and-geometryanededubset of the points defin-
ing the shape part of the AAM. Therefore, given a set of positionedoh node on the parts-and-geometry
model, the control points of the AAM can be fitted to them by finding the poseshage parameters which
minimise the distance between the equivalent points of the shape model arzdttian-geometry model.
Once initialised, the usual AAM algorithm can be applied to best match the whalelnwthe image data.

We found that the location of points by the parts-and-geometry model waagoed — 98.5% success rate in
leave-one-out experiments using the training data (as opposed to 82.98aiith geometric constraints).
However, we built in added robustness by obtaining the Euclidean distetaeen the points of the parts-
and-geometry model and the equivalent points of the shape model aftiér thke point with the largest
error is discarded and the model re-fitted to the remaining points. This iatezgpantil the mean error is
below a given threshold or a particular number of points have been detar

2.5 Local linear regressors

The result of the AAM search is an approximation of the query image. Fopaticular case we are
interested in the shape part which gives a correspondence betweefetieaice space and the query image.
It allows a probability image of the object of interest computed in the referspace to be warped into the
qguery image. Thresholding this aBlgives a binary segmentation.

However, for a variety of reasons such as poor initialisation, un-modetede structures or a limited
number of examples in the training set the AAM result can be suboptimal and¢hef local regressorg][
is an attempt to address this.

Local regressors allow the generation of a mean probability image baggdsbmtensities warped into the
reference frame. The intensities of the training images are normalised apednato the reference frame
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2.6 The full segmentation pipeline 7

using the correspondences obtained from the groupwise registratoniF given voxel in this frame we
then have a set of probabilitiep;, i = 1..nimages, that it is inside the object (by warping the binary label
images) together with corresponding vectors of intensity vajeampled in the region around the voxel.

We then perform linear regression to learn a function to estimate the probagfbikty the intensity pattern
p=f(g)=a'g+d 5)

This is repeated for every voxel near the boundary. Voxels away fhee boundary are assumed to have
either p=0 (outside) or p=1 (inside).

2.6 The full segmentation pipeline
Given a query image, we perform the following:

¢ |dentify the patch locations using the parts-and-geometry model

e Initialise a global AAM encompassing both mandible and brainstem

e Match the global AAM to the query image to estimate correspondence betweendge and model
e For each local model:

— Use the global estimate of correspondence to initialise the local model in theimage

— Match the local model to refine the estimate of correspondence

— Use the refined estimate to warp a normalised version of the query image into die¢ fraone

— Use the voxel probability estimators (B)jto compute a probability image in the model frame
— Use the correspondences to warp this probability image back into the quarg fnaane

— Obtain a labelled image by thresholding the result &.5

3 Experiments

Firstly, in an attempt to improve statistical power we reflected the 10 suppliedhgamages about the
y—axis to double the training set to 20. All images were registered as desaniBedtion2.1 Three sets
of registrations were carried out. In the first the mandible and brainsteaislalere combined and the
image region encompassed by them (as well as a 10 voxel border regioa)registered. This process
was repeated independently for the mandible then the brainstem. The glabhiv&s constructed using
the correspondence obtained from the registration of the two structoumdsireed and the local models and
regressors from the registrations of the individual structures.

The patches for the parts-and-geometry model were obtained from t@axyes containing both the
mandible and brainstem, and 18 patches were found to be located with hidfilitgliacross the train-
ing set. We performed segmentation on the test data using the above cotspameescribed in section
2.6
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| Dataset No.| Mean HD | Median HD | No. of slices (HD>3mm) ||

11 16.16 8.56 39 (39)
12 21.58 10.20 40 (39)
13 86.09 91.60 35 (35)
14 22.01 13.16 34 (34)
15 19.18 8.96 37 (37)
16 13.30 5.94 35 (35)
17 10.08 4.88 43 (39)
18 21.52 13.82 37 (36)

Table 1: Hausdorff distance (HD) statistics for mandible segmentation in tiegtelatasets.

| Dataset No.| Average slice OV| Median slice OV | Total volume OV |

11 63.5% 68.6 % 68.1 %
12 67.2% 69.1% 74.3%
13 21.2% 15.1% 22.0%
14 65.0% 66.6 % 78.3%
15 65.6 % 70.3% 72.9%
16 73.4% 79.8% 81.2%
17 79.8% 82.9% 82.9%
18 68.9% 75.4% 75.1%
Mean excluding Subject 13 76.1%+ 5.1

Table 2: Overlap (OV) statistics for mandible segmentation in testing datasets.

4 Results

The results below were obtained after submitting our results to the organisersnly amendments are that
mean and standard deviations have been added to the last columns ofZTabtets Tablesl and2 show
the Hausdorff distance and Dice overlap values obtained when thesésultmethod for the mandible was
compared with a manually defined gold standard. Tabkesd4 are equivalent values for the brainstem.
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| Dataset No.| Mean HD | Median HD | No. of slices (HD>3mm) ||

11 5.12 4.88 28 (27)
12 5.10 4.88 29 (27)
13 - - -

14 9.54 9.11 30 (29)
15 29.72 32.79 18 (18)
16 3.78 3.52 27 (16)
17 4.73 3.91 27 (18)
18 4.26 4.17 29 (22)

Table 3: Hausdorff distance (HD) statistics for brainstem segmentation tegtieg datasets.

| Dataset No.| Average slice OV| Median slice OV | Total volume OV |

11 78.2% 80.1% 79.4%
12 84.7% 84.6 % 86.2%
13 - - -

14 70.1% 75.4% 70.6 %
15 21.1% 25.6 % 18.6%
16 84.8% 86.5% 87.6 %
17 87.1% 88.2% 86.7 %
18 82.4% 81.9% 80.9 %

Mean excluding Subject 13 72.9%+ 24.6

Table 4: Overlap (OV) statistics for brainstem segmentation in testing datasets.

5 Discussion

This method based on a framework shown to give good performancebgorsigal structures in the brain

[1]. However, the results obtained here are not as good as those fatib@rscal structures. As the results
obtained by other participants in the challenge were not available at the tinrdiafywwe cannot determine

the role the quality of the dataset played in the level of performance. Howieva recent publication Han

et al.[8] report median Dice overlaps of about 90% for the mandible and 80% édorthinstem.

Our method failed to segment both structures in Subject 13 and the brainstgumbjatt 15. This was
because it assumed that both these structures would always be jmakerimages to be segmented, which
was not the case. The small number of supplied images is a significant atmtrib the performance as
it violated the assumption that the training set is representative of the classictures being modelled.
Other reasons for suboptimal performance include artefacts in the imagés @llings and missing teeth
in some subjects. The average running time is 17 minutes on a 2GHZ pentiurtethayih 2GB RAM.
The main contributor to this is the size of the images (about5322x 190 voxels)

The advantages of this method are that it is general and portable in thaaimiedgrdata is encoded in
the model so images of specific patients are not needed once the model isifmri#asing the amount
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Figure 3: Official results showing the result of our algorithm (red) and that of the manually segmented gold standard
for Subject 12.
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of training data will improve the models, but will not result in significant insesain running time. The
statistical model of shape incorporates prior knowledge and reducsitigéy to image artifacts and missing
teeth. Furthermore, user interaction can be easily incorporated usinigape gart of the AAM. If speed is
an issue, cropping the image to the region containing the mandible and braefs¢erglobal search, and
performing the local searches and regression in parallel can redeicgthing time substantially.

However, the current implementation suffers from the fact that we astharentirety of the mandible and
brainstem are present in all images to be segmented. To account for imigtymst the full field of view the
nodes used to build the parts-and-geometry model can be restricted taegisuntihat will be present in all
images or the formulation of the solver can be changed to allow for missing ldateever, building such
robustness into the shape models is not straightforward. A possibleagipsoto use the model to predict
the missing data.

In conclusion, our method gives encouraging results on this data seteabdlieve that with minor modifi-
cations and a larger training set the method could be made to work substardidiy b
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