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Abstract

We describe an active appearance model (AAM) approach to theautomatic segmentation of the mandible
and brainstem. It involves four stages: Initialisation with a parts-and-geometry model, search with a
global AAM followed by search with local AAMs, then post-processing using linear regressors.

Application of the method to the test images resulted in a mean (excluding subject 13) Dice overlap
value of 76.1± 5.1% for the mandible, and 72.9± 24.6% for the brainstem. The method failed to
segment both the mandible and brainstem in subject 13, and the whilst giving a successful segmentation
of the mandible in subject 15, gave poor results on the brainstem. It takes about 17 minutes to run on a
64 bit Linux workstation with 2GB RAM, and a 2GHz pentium processor. We were encouraged by its
performance on this dataset, and believe that its accuracy can be improved with some modifications to
the segmentation pipeline.
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1 Introduction

Appearance models capture the variation in shape and texture over a training set assumed to be representative
of the class of object being modelled. Active appearance models (AAMs) introduced by Cooteset al.[2] are
a method of using appearance models to locate instances of the object in images. AAMs have been used
in a wide variety of applications from segmentation of medical images in 2D and 3De.g. [9], [10] to face
location in computer vision applications e.g. [5].

The approach taken in this paper is based on the framework of Babalolaet al.[1] which involves construct-
ing a global AAM of all the objects of interest, local AAMs of each individual object and linear regressors
for detailed segmentation of each object. AAM search is a local optimisation method and therefore re-
quires good initialisation. However, whilst [1] initialise their search by registration, we introduce of a novel
initialisation method using a parts-and-geometry model. Figure1 gives a schematic of our approach.

Figure 1: Outline of the stages involved in the segmentation

In the following we describe the construction of the parts-and-geometry models as they are the novel aspect
of this work and give brief details of the construction of the AAMs and the regressors as they have been
described elsewhere [1],[2]. We then show how the segmentation pipeline is applied and present results
obtained on the test images provided in the challenge. We end with a discussionof the performance of our
method.
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Figure 2:The figure on the left shows a subset of the control points embedded in the volume of the mean image. The

larger points are those used in the parts-and-geometry model. The configuration of the pairwise relationships between

the nodes is shown on the right as well profiles through one of the node centres.

2 Method

2.1 Establishing correspondence

Establishing correspondence is an important aspect of our approach.It is a prerequisite to constructing
AAMs and the local regressors. We also use the resulting deformation fields in the automatic construction
of the parts-and-geometry model.

We use the groupwise method of Cooteset al.[4] to perform non-rigid registration giving a dense set of
control points which are located in corresponding locations within each imagein the set being registered
(see Figure2). As in [1] we use the supplied labelled data to create two plane images in which the first plane
is the binary label, and the second is a locally normalised gray level image.

The next section describes how a subset of these control points are used in the construction of the parts-
and-geometry model, and sections2.3and2.5describe how they are are used in the construction of AAMs
and local regressors. An important feature of our method is that using these control points to construct
both the AAM and the parts-and-geometry model facilitates the use of the parts-and-geometry model in the
initialisation of the AAM. This is described in section2.4.

2.2 Parts-and-geometry model

Parts-and-geometry models are commonly used in computer vision e.g. [6]. The parts are feature detectors
centred on a particular voxel and the geometry is defined by pairwise relationships between the positions of
the features (see Figure2). In this section we describe the selection of feature points, construction of the
parts-and-geometry model, and how to match it to an image.
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2.2 Parts-and-geometry model 4

Feature point selection
The correspondences obtained from the registration allow us to define a reference space (the mean of the
control points of the training images). A reference image is constructed by warping each training image into
the reference space and computing the average. The dense deformationfields define a mapping from the
reference to each training image. This allows us to compute the point in each training image corresponding
to a given point in the reference image.

The AAM includes a shape model and in our implementation this is obtained from thepositions of the
control points. If we can locate a sufficiently large subset of the model nodes (control points) well, we can
fit the shape model to them to initialize the AAM search. Thus we aim to select such a subset automatically.
The choice of subset will depend on the method used to locate individual nodes. Though more sophisticated
local feature models could be used, in the following we use simple normalized correlation with a suitably
sized template.

To select the best nodes and template sizes we consider a range of templates of different sizes taken from
each node in the reference image. We use each to search the training imagesand select those which are
more reliable at locating the equivalent point in each training image.

For a particular node we can construct a feature detector based on a region of size(2Lx + 1) x (2Ly + 1)
x (2Lz + 1) centred on the node. For each training imageIi, there exists a deformation fieldΘi allowing
a mapping of space between it and the reference. We apply the feature detector toIi to obtain a response
imageRi. The local peaks of the response image are located and ranked according to the strength of their
response. Letpk specify the position of a node in the reference. Its position inIi andRi is Θi(pk). We can
then define a functionD that computes the distance between a local peak located atpl in the space ofRi and
the expected position of a node in this image:

Di(pk,pl) = ||Θi(pk)−pl|| (1)

For a good detector the best response will be close to the true positionΘi(pk) in every image in the training
set.

Local feature detectors are built centred on every node of the shape model mesh at a range of sizes and at
different resolutions of the reference image. Each is then evaluated on aset of images. The success rate in
locating the nodes and the average value ofDi over the set are computed and used to evaluate the reliability
of each node. TheN most reliably located nodes can be selected to be used in AAM initialisation. An
algorithmic description of the process followed is given below:

For each node, at each region size and image resolution:

1. Build a feature detector for the given node

2. For each image:

(a) Build an image pyramid and select appropriate level

(b) Apply the feature detector to obtain a response image

(c) Locate local peaks and rank by their response

(d) Compute the distance of peaks to the ideal position using equation1

(e) Record the rank of the peak with smallestDi.

The feature detectors are then ranked by the average rank of the bestmatch (computed in step ‘e’ above),
then by the average value of theDi (from step ‘d’). On application to the training data a number of detectors
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2.3 Active appearance models 5

were found to always have their best response closest to the true position. These were then ranked by
the average positional error when selecting a subset of good detectors. We also desire that the detectors
are spread around and not clustered around a region. We address this by selecting the best detector then
iteratively selecting the next best detector not withing a radiusr of the current set of chosen detectors.

Construction
We automatically construct the parts+geometry model from a set of local feature models as follows. Using
the reference image and the selected feature points in the reference framewe automatically define a set of
connecting arcs based on the distances between the nodes. We use a variant of Prim’s algorithm to obtain
the minimum spanning tree, where each node has two parent nodes, ratherthan one. This involves creating
the first arc from the two nodes which are closest together. We then repeat the following steps until all nodes
are linked:

• compute the sum of the distances of each unlinked node to the closest two nodes in the current linked
set

• select the node which has the minimum such distance, and link it to the two closestnodes in the linked
set

This leads to a topology which allows a variant of the dynamic programming algorithm to efficiently find
the global maxima of the cost function in Equation (2).

Matching to an image
Let pi = (x,y,z) be the proposed position of a patch. Letpi(I|pi) be the probability that patchi matches
to imageI at the given location. Letpi j(pi,p j) be the probability that two patchesi and j have the given
positions. Assume that we have modelled this pairwise relationship for each pair (i, j) ∈ A, whereA is a set
defining the arcs in a graph representing the model.

To match such a model to an image, we search the image for candidate positions for each patch, then select
one for each patch so as to optimise

C =
k

∑
i=1

logpi(I|pi)+ ∑
(i, j)∈A

logpi j(pi,p j) (2)

A range of discrete graph based solvers are available to find the optima forsuch a cost function, their
efficiency depending on the complexity of the topology of the connections in the graph,A. For simple
topologies there are fast, guaranteed optimal solutions. For instance, if each part is connected to one parent
(but may have many child connections), we have a tree structure, and a variant of dynamic programming
can be used to quickly find the optima in time of orderO(NM2) (for M candidates for each ofN nodes).

In the following we use a more complex variant, similar to that used by [7], in which a network is created
where each node can be thought of as having at most two parents. The optimal solution for this can be
obtained with a variant of dynamic programming, inO(NM3) time. If M is modest, this is still fast.

2.3 Active appearance models

An Active Appearance Model is a statistical model of both the shape of a structure and its appearance,
together with an algorithm for matching it to an image. The model is capable of synthesising an image of
the object of interest, and the residual differences between the synthesised image and the target image are
used to drive the search.
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2.4 Initialising the AAM 6

We construct the shape model by aligning the sets of control points on eachimage and applying Principal
Component Analysis (PCA) [3]. A statistical model of texture is constructed by warping each grey-level
image into the reference space and appling PCA to the resulting textures. An appearance model [2] is a
combination of the shape and texture models, with the form

x = x̄+Qsc
g = ḡ+Qgc

(3)

Wherex̄, ḡ are vectors of the mean shape and mean texture,x, g are the shape and texture vectors in the
reference frame,Qs, Qg are matrices describing the modes of variation derived from the training set,andc
is a vector of parameters controlling both shape and texture.

Appearance models can be matched to new images rapidly using the Active Appearance Model algorithm
[2]. This seeks to minimise a sum-of-squares problem of the form

F(p) = |r(p)|2 = rT r (4)

wherep contains thet model parameters andr = r(p) is a function returning theng residual differences
between model and data for parametersp. By making assumptions about the Jacobian, a fast updating
algorithm can be derived which can match the model to a new image in a few iterations.

2.4 Initialising the AAM

The positions of the nodes (image patches) of the parts-and-geometry modelare a subset of the points defin-
ing the shape part of the AAM. Therefore, given a set of positions foreach node on the parts-and-geometry
model, the control points of the AAM can be fitted to them by finding the pose andshape parameters which
minimise the distance between the equivalent points of the shape model and the parts-and-geometry model.
Once initialised, the usual AAM algorithm can be applied to best match the whole model to the image data.

We found that the location of points by the parts-and-geometry model was very good – 98.5% success rate in
leave-one-out experiments using the training data (as opposed to 82.9% without the geometric constraints).
However, we built in added robustness by obtaining the Euclidean distancebetween the points of the parts-
and-geometry model and the equivalent points of the shape model after thefit. The point with the largest
error is discarded and the model re-fitted to the remaining points. This is repeated until the mean error is
below a given threshold or a particular number of points have been discarded.

2.5 Local linear regressors

The result of the AAM search is an approximation of the query image. For our particular case we are
interested in the shape part which gives a correspondence between thereference space and the query image.
It allows a probability image of the object of interest computed in the reference space to be warped into the
query image. Thresholding this at 0.5 gives a binary segmentation.

However, for a variety of reasons such as poor initialisation, un-modelledimage structures or a limited
number of examples in the training set the AAM result can be suboptimal and theuse of local regressors [1]
is an attempt to address this.

Local regressors allow the generation of a mean probability image based onpixel intensities warped into the
reference frame. The intensities of the training images are normalised and warped into the reference frame

Latest version available at theInsight Journal[ http://hdl.handle.net/10380/3097]
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2.6 The full segmentation pipeline 7

using the correspondences obtained from the groupwise registration. For any given voxel in this frame we
then have a set of probabilities,pi, i = 1..nimages, that it is inside the object (by warping the binary label
images) together with corresponding vectors of intensity valuesgi sampled in the region around the voxel.

We then perform linear regression to learn a function to estimate the probabilitygiven the intensity pattern

p = f (g) = aT g+d (5)

This is repeated for every voxel near the boundary. Voxels away from the boundary are assumed to have
either p=0 (outside) or p=1 (inside).

2.6 The full segmentation pipeline

Given a query image, we perform the following:

• Identify the patch locations using the parts-and-geometry model

• Initialise a global AAM encompassing both mandible and brainstem

• Match the global AAM to the query image to estimate correspondence between the image and model

• For each local model:

– Use the global estimate of correspondence to initialise the local model in the query image

– Match the local model to refine the estimate of correspondence

– Use the refined estimate to warp a normalised version of the query image into the model frame

– Use the voxel probability estimators (Eq.5) to compute a probability image in the model frame

– Use the correspondences to warp this probability image back into the query image frame

– Obtain a labelled image by thresholding the result at≥ 0.5

3 Experiments

Firstly, in an attempt to improve statistical power we reflected the 10 supplied training images about the
y−axis to double the training set to 20. All images were registered as describedin section2.1. Three sets
of registrations were carried out. In the first the mandible and brainstem labels were combined and the
image region encompassed by them (as well as a 10 voxel border region)were registered. This process
was repeated independently for the mandible then the brainstem. The global AAM was constructed using
the correspondence obtained from the registration of the two structures combined and the local models and
regressors from the registrations of the individual structures.

The patches for the parts-and-geometry model were obtained from the subimages containing both the
mandible and brainstem, and 18 patches were found to be located with high reliability across the train-
ing set. We performed segmentation on the test data using the above components as described in section
2.6.

Latest version available at theInsight Journal[ http://hdl.handle.net/10380/3097]
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Dataset No. Mean HD Median HD No. of slices ( HD> 3 mm )

11 16.16 8.56 39 (39)
12 21.58 10.20 40 (39)
13 86.09 91.60 35 (35)
14 22.01 13.16 34 (34)
15 19.18 8.96 37 (37)
16 13.30 5.94 35 (35)
17 10.08 4.88 43 (39)
18 21.52 13.82 37 (36)

Table 1: Hausdorff distance (HD) statistics for mandible segmentation in the testing datasets.

Dataset No. Average slice OV Median slice OV Total volume OV

11 63.5 % 68.6 % 68.1 %
12 67.2 % 69.1 % 74.3 %
13 21.2 % 15.1 % 22.0 %
14 65.0 % 66.6 % 78.3 %
15 65.6 % 70.3 % 72.9 %
16 73.4 % 79.8 % 81.2 %
17 79.8 % 82.9 % 82.9 %
18 68.9 % 75.4 % 75.1 %

Mean excluding Subject 13 76.1%± 5.1

Table 2: Overlap (OV) statistics for mandible segmentation in testing datasets.

4 Results

The results below were obtained after submitting our results to the organisers. The only amendments are that
mean and standard deviations have been added to the last columns of Tables2 and4. Tables1 and2 show
the Hausdorff distance and Dice overlap values obtained when the resultof our method for the mandible was
compared with a manually defined gold standard. Tables3 and4 are equivalent values for the brainstem.
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Dataset No. Mean HD Median HD No. of slices ( HD> 3 mm )

11 5.12 4.88 28 (27)
12 5.10 4.88 29 (27)
13 - - -
14 9.54 9.11 30 (29)
15 29.72 32.79 18 (18)
16 3.78 3.52 27 (16)
17 4.73 3.91 27 (18)
18 4.26 4.17 29 (22)

Table 3: Hausdorff distance (HD) statistics for brainstem segmentation in thetesting datasets.

Dataset No. Average slice OV Median slice OV Total volume OV

11 78.2 % 80.1 % 79.4 %
12 84.7 % 84.6 % 86.2 %
13 - - -
14 70.1 % 75.4 % 70.6 %
15 21.1 % 25.6 % 18.6 %
16 84.8 % 86.5 % 87.6 %
17 87.1 % 88.2 % 86.7 %
18 82.4 % 81.9 % 80.9 %

Mean excluding Subject 13 72.9%± 24.6

Table 4: Overlap (OV) statistics for brainstem segmentation in testing datasets.

5 Discussion

This method based on a framework shown to give good performance on subcortical structures in the brain
[1]. However, the results obtained here are not as good as those for the subcortical structures. As the results
obtained by other participants in the challenge were not available at the time of writing, we cannot determine
the role the quality of the dataset played in the level of performance. However, in a recent publication Han
et al.[8] report median Dice overlaps of about 90% for the mandible and 80% for the brainstem.

Our method failed to segment both structures in Subject 13 and the brainstem insubject 15. This was
because it assumed that both these structures would always be presentin the images to be segmented, which
was not the case. The small number of supplied images is a significant contributor to the performance as
it violated the assumption that the training set is representative of the class ofstructures being modelled.
Other reasons for suboptimal performance include artefacts in the images due to fillings and missing teeth
in some subjects. The average running time is 17 minutes on a 2GHZ pentium 4 system with 2GB RAM.
The main contributor to this is the size of the images (about 512×512×190 voxels)

The advantages of this method are that it is general and portable in that the training data is encoded in
the model so images of specific patients are not needed once the model is built.Increasing the amount
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Figure 3:Official results showing the result of our algorithm (red) and that of the manually segmented gold standard

for Subject 12.
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of training data will improve the models, but will not result in significant increases in running time. The
statistical model of shape incorporates prior knowledge and reduces sensitivity to image artifacts and missing
teeth. Furthermore, user interaction can be easily incorporated using the shape part of the AAM. If speed is
an issue, cropping the image to the region containing the mandible and brainstemafter global search, and
performing the local searches and regression in parallel can reduce the running time substantially.

However, the current implementation suffers from the fact that we assumethe entirety of the mandible and
brainstem are present in all images to be segmented. To account for imageswithout the full field of view the
nodes used to build the parts-and-geometry model can be restricted to a subregion that will be present in all
images or the formulation of the solver can be changed to allow for missing data.However, building such
robustness into the shape models is not straightforward. A possible approach is to use the model to predict
the missing data.

In conclusion, our method gives encouraging results on this data set andwe believe that with minor modifi-
cations and a larger training set the method could be made to work substantially better.
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