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Abstract

We present a semi-automatic algorithm for Carotid lumen segmentation on CTA images. Our method
is based on a variant of the minimal path method that models the vessel as a centerline and boundary.
This is done by adding one dimension for the local radius around the centerline. The crucial step of our
method is the definition of the local metrics to minimize. We have chosen to exploit the tubular structure
of the vessels one wants to extract to built an anisotropic metric giving higher speed on the center of the
vessels and also when the minimal path tangent is coherent with the vessels direction. Due to carotid
stenosis or occlusions on the provided data, segmentation is refined using a region-based level sets.
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A semi-automatic method for Carotid lumen segmentation on CTA images is presented. First, the image
intensity is enhanced using a gaussian look-up table, as described in section 1. Then the image is down-
sampled by a factor 2. Using this enhanced image and the provided points on the Carotid, we apply the
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tubular anisotropy segmentation method [1] on the enhanced image, in order to obtain a first segmentation,
as described in section 2. The tubular anisotropy method represents vessels with circular cross sections. This
may yield various inaccuracies in the provided datasets, which contain vessels exhibiting non circular lumen
and strong lumen occlusions. Therefore, we propose to refine the segmentation using a region based level
set model, as described in section 3. The method presented in this paper was developed for the MICCAI’09
workshop 3D Segmentation in the Clinic: A Grand Challenge - Carotid Bifurcation Lumen Segmentation
and Stenosis Grading [3]. Results are discussed in section 4.

1 Intensity enhancement

Due to the injection of contrast agent before imaging, the vessel lumen is brighter than neighboring struc-
tures like muscles and fat. It remains however darker than bone. As a preprocessing step before computing
the metric, we enhance intensities around a reference intensity Iref, making the reasonable assumption than
intensity within the lumen follows a gaussian distribution. Working with 256-grayscale images, the trans-
formation is implemented through a look-up table computed with

Ioutput = 255exp

(
(Iinput− Iref)2

2σ
2

)
For the reference intensity, we take advantage of the provided initial points. The intensity at the point in the
Common Carotid Artery turns out to be a relevant choice. The variance was fixed to σ = 20.
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Figure 1: Vessel intensity enhancement : initial image (left), enhanced image (center), gaussian look-up
table (right)

2 Tubular anisotropy

Tubular Anisotropy Segmentation [1] unable us to extract centerline and boundary of a vessel from an image
using source points and destinations. A vessel is modeled by a higher dimensional path [5]. This is done
by incorporating an extra non-spatial dimension into the search space, that is the radius of a moving sphere
along vessel’s centerline. Each point of the 4D path (after adding the extra dimension for the 3D image)
consists of three spatial coordinates plus a fourth coordinate which describes the vessel thickness at that
corresponding 3D point. Thus, each 4D point represents a sphere in 3D space, and the vessel is obtained
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by taking the envelope of these spheres as we move along the 4D curve. Then a minimal path approach is
employed to obtain the segmentation. A minimal path is the shortest path between two points according to
a given metric. A crucial step of this method is to build an adequate metric that drives the propagation. We
choose to design an anisotropic metric from the image that takes into account vessel orientation.

In section 2.1, we will give some details on the chosen minimal path model, then in section 2.2, we will
show how the metric is constructed and we will give details on the chosen parameters.

2.1 Short background on minimal path

A minimal path is a pathway, parametrized along its length (i.e ‖γ′‖= 1), minimizing the energy functional,

E(γ) =
Z

γ

P
(
γ(s),γ′(s)

)
ds. (1)

In this paper, we are interested only on the particular case of Riemannian manifold, that is the potential in
under the form P (γ(.),γ′(.)) =

√
γ′(.)T M (γ(.))γ′(.) describing an infinitesimal distance along a pathway γ

relative to a metric tensor M (symmetric definite positive). Thus, we are considering only the case of an
elliptic medium. A curve connecting p1 to p2 that globally minimizes the above energy (1) is a minimal
path between p1 and p2, noted Cp1,p2 and also called a geodesic.

The solution of this minimization problem is obtained through the computation of the minimal action map
U : Ω→R+ associated to p1 on the domain Ω which is a 4D domain in our case. The minimal action is the
minimal energy integrated along a path between p1 and any point x of the domain Ω :

∀ x ∈ Ω, U(x) = min
γ∈Ap1,x

{Z
γ

P
(
γ(s),γ′(s)

)
ds

}
, (2)

where Ap1,x is the set of paths linking x to p1. The values of U may be regarded as the arrival times of a front
propagating from the source p1 with oriented velocity related to the metric tensor M −1. The map U has only
one local minimum, the point p1, and its flow lines satisfy the Euler-Lagrange equation of functional (1).
Thus, the minimal path Cp1,p2 can be retrieved with a simple gradient descent on U from p2 to p1, solving
the following ordinary differential equation with standard numerical methods like Heun’s or Runge-Kutta’s
:

dCp1,p2

ds
(s) ∝ −M −1(Cp1,p2(s))∇U

(
Cp1,p2(s)

)
, with Cp1,p2(0) = p2. (3)

Details on the computation of the minimal action map U can be found in [1].

For vessel segmentation, it is not natural to consider orientations on the 4th dimension, i.e the radii dimen-
sion. Thus one propose to decompose by block the metric M as follows:

M (x,r) =
(

M̃ (x,r) 0
0 Pradius(x,r)

)
(4)

where M̃ (x,r) is a 3×3 symmetric definite positive matrix giving the spatial anisotropy and Pradius(x,r) is
the radius potential (also strictly positive).

2.2 How to construct the metric

The used metric is based on the Optimally Oriented Flux [4] (OOF). At the position x on an image I, the
amount of the image gradient projected along the axis v flowing out from a 3D sphere Sr is measured as in
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[4],

f (x,v;r) =
Z

∂Sr

((∇(G∗ I)(x+h) ·v)v) · h
|h|

da, (5)

where G is a Gaussian function with a scale factor of 1 voxel, r is the sphere radius, h is the position
vector along ∂Sr and da is the infinitesimal area on ∂Sr. To detect vessels having higher intensity than the
background region, one would be interested in finding the vessel direction which minimizes f (x,v;r), i.e.
we are looking for:

argmin
v

f (x,v;r). (6)

Using the divergence theorem, it can be shown that f (x,v;r) is a quadratic form on v and its associated
matrix, called oriented flux matrix, can be calculated using a simple convolution,

f (x,v;r) = vT {(∂i, jG)∗ I ∗1Sr

}
v = vT Q (x;r) v, (7)

where (∂i, jG) is the Hessian matrix of function G and 1Sr is the indicator function inside the sphere (or circle)
Sr. Q is called oriented flux matrix. By differentiating the above equation with respect to v, minimization
of function f is in turn acquired as solving a generalized eigenvalue decomposition problem. Solving the
aforementioned generalized eigen decomposition problem gives 3 eigenvalues, λ1(·) ≤ λ2(·) ≤ λ3(·) and
3 eigenvectors vi(·), i.e. λi(x;r) = f (x,vi(x;r);r) for i = 1, . . . ,3. To handle the vessels having various
radii, a multi-scale approach should be used along with the OOF method. Then, we normalize the OOF’s
eigenvalues by the sphere surface area when the OOF method is incorporated in a multi-scale approach for
3D image volumes. The eigenvalues are normalized by the sphere area 4πr2.

In practice we compute the oriented flux matrix Q on the downsampled image at different scales, using the
enhanced image Ioutput. Here, the minimal and maximal values of the radius, rmin and rmax, are fixed. We
took rmin equal to the smallest spacing of the downsampled image and rmax = 3.5mm. And the spacing for
the radius is equal to half the smallest spatial spacing.

In order to make the minimal path coincides with the vessel centerline, the metric is crucial. The spatial
metric M̃ has to be well oriented along the vessel centerline. And the radius potential Pradius has to be
small for the adequate scale for any point of the image.

√
Pradius corresponds to the inverse speed for

the radius dimension. Since M̃ is symmetric definite positive, one can decompose it as follows: M̃ (.) =
∑

3
i=1 mi(.)ui(.)ui(.)T , where 0 < m1 ≤ m2 ≤ m3 are the eigenvalues and ui are the associated eigenvectors.

The velocity of the propagating front along direction ui is equal to 1/
√

mi. Therefore, we used the OOF
descriptor and the enhanced image Ioutput to construct the metric as follows:

M̃ (.) = (Ioutput + ε)−1
3

∑
i=1

exp
(

α
∑ j 6=i λ j(.)

2

)
vi(.)vi(.)T (8)

Pradius(.) = (Ioutput + ε)−1
βexp

(
α

∑
3
i=1 λi(.)

3

)
. (9)

The chosen metric for the challenge is slightly different than the original one in [1]. We added a contrast
enhancer, (Ioutput + ε)−1, based on the image itself, where ε = 0.1. The constant α is controlled by an
intuitive parameter, which is the maximal spatial anisotropy ratio, noted µ. It corresponds to the maximal
spatial speed ratio one wants to impose:

µ = max
x,r

√√√√√exp
(

α
λ2(x,r)+λ3(x,r)

2

)
exp
(

α
λ1(x,r)+λ2(x,r)

2

) = exp
(

1
4

α{max(λ3(·)−λ1(·))}
)

.
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By choosing the maximal spatial anisotropy ratio µ, the constant α is fixed. And by doing so, the anisotropy
descriptor M becomes affine contrast invariant because the OOF is linear on the image. The parameter β

controls the radius speed. For our experiments, parameters α and β where fixed such that µ = 6 and such
that the propagation along the radius dimension, 1/

√
Pradius is at least four times the best spatial propagation

speed. This yields to

α =
4log(µ)

max(λ3(.)−λ1(.))
and β =

1
16

exp
(

αmin
(

λ1(.)+λ2(.)−2λ3(.)
6

))
. (10)

The tubular anisotropy method yields continuous representations of paths, since point coordinates and cor-
responding radii are stored as real numbers. As a post-processing step, in order to make output data suitable
for evaluation, generated paths are embedded into the discrete integer space of images. At each point located
on the path, an ellipsoid is voxelized at the nearest integer point. Radii of the ellipsoid are determined thanks
to the real radii of the continuous path and voxel spacings provided in the header data.

3 Refining segmentation with region-based level sets

The minimal path is computed on a downsampled image and is voxelized into the full image afterwards.
In addition, it can only represent vessels with circular cross sections. This may yield various inaccuracies
in the provided datasets, which contain vessels exhibiting high curvature and non circular lumen cross
sections. Hence, we perform a final refinement step using level-set based segmentation, where the previously
discretized path is used as the initial surface. We consider the level set function φ : D ⊂R3 →R. The surface
is the zero level set of ψ. We define the region enclosed by the surface by Rin = {x|ψ(x)≤ 0}. Function ψ

deforms according to the evolution equation:

∂ψ

∂t
= F(x)‖∇ψ(x)‖ ∀x ∈ Rd (11)

where speed function F is a weighted sum of smoothness and data terms:

F(x) = ωFsmooth(x)+(1−ω)Fdata(x)

where coefficient ω controls the significance of the smoothness term and was fixed to 0.5. In the level set
framework, regularization is usually performed with a curvature-dependent term. With this technique, the
effect is limited to the direct neighborhood of pixels. In order to achieve a more diffuse regularization, we
replace the usual curvature term with a gaussian convolution, as in [6][7]:

Fsmooth(x) =

(
1

σ
√

2π
∑

x′∈W3σ(x)

exp

(
−
∥∥x′−x

∥∥2

2σ
2

)
ψ(x′)

)
−ψ(x)

where W is a circular window of a given radius around x. Vessels are brighter than neighboring structures
like muscles and fat. With respect to intensity, they may be segmented using a straightforward region
criterion. We consider the data term of the Chan-Vese model [2], which we use on the enhanced image.

Edata[ψ] =
Z

D
(1−H(ψ(x)))(I(x)− kin)2 +H(ψ(x))(I(x)− kout)2dx

where the Heaviside step function H selects image points inside or outside the surface. The data speed term
is determined from the variational derivative of energy Edata with respect to ψ.

Fdata(x) = δ(ψ(x))[−(I(x)− kin)2 +(I(x)− kout)2]

Latest version available at the Insight Journal [ http://hdl.handle.net/10380/1338]
Distributed under Creative Commons Attribution License



6

Thanks to gradient descent, variables kin and kout are assigned to average intensities inside and outside the
current region, respectively. One may note that for implementation purpose, we use regularized versions
of the Heaviside H and Dirac δ functions, as in [2]. The level set function is updated according to the
narrow band technique with a single pixel-wide band. Unlike the minimal path, which is computed on a
downsampled image, level set-based refinement is performed in the initial resolution to achieve accurate
segmentation.

4 Results

Comparing coarse segmentations depicted in figure 2 on the one hand and refined segmentations, it turns out
that refining the volume obtained with the minimal path approach significantly improves fidelity to actual
vessel boundaries. As a drawback of using unconstrained level sets, we should point out the fact that a trade-
off has to be made between boundary fitting and leakage preventing. On a few datasets, we found difficult
to segment the carotids accurately on all slices and prevent the surface from propagating into neighboring or
branching vessels simultaneously. This phenomenon is depicted in fig. 3 bottom, where the refined surface
exhibits bumps corresponding to partial propagations into small branching vessels.

Figure 2: First line, segmentations generated with the tubular anisotropy-based method on data 022 (left
and middle), and on data 107 (right). Bottom, Refined segmentation with level sets on data 022 (left and
middle), and on data 107 (right).

Since level sets handle topological changes in a natural way, they allow the carotid volume to split during
evolution. As an example, fig. 3 top, depicts the surface before and after refinement, on a dataset holding
strong lumen occlusion. The refinement step puts the occluded part in evidence, with the carotid volume
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split into two connected components. We believe the results could still be improved. Indeed, the occlusion
is not total and a careful visual inspection on the enhanced image shows the presence of a extremely thin
lumen path.

Figure 3: Three dimensional view of initial segmentation with fast marching method (left) and refined
segmentation with level sets (right) on data 022 (first line), and data 107 (second line).

The 31 competition data sets were segmented using the method described above. Intermediate and final
segmentation results are shown on figures 2 and 3. The obtained segmentations were evaluated using four
performance measures: dice similarity index, mean surface distance, root mean square surface distance
and the maximum surface distance, see [3] for more details. A summary of lumen segmentation scores is
presented in Table 1. Averages lumen scores are presented in Table 2. The average processing time for a
single data set was approximately 2 minutes.

Table 1: Summary lumen
Measure % / mm rank

min. max. avg. min. max. avg.
L dice 43.3% 93.6% 83.6% 3 4 3.97
L msd 0.20mm 3.98mm 0.80mm 3 4 3.97

L rmssd 0.29mm 6.50mm 1.57mm 3 4 3.97
L max 1.11mm 17.50mm 6.47mm 4 4 4.00

Total (lumen) 3 4 3.98
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Table 2: Averages lumen
Team Total dice msd rmssd max Total
name success % rank mm rank mm rank mm rank rank

TubularAnisotropy 31 83.6 4.0 0.80 4.0 1.57 4.0 6.47 4.0 4.0
ObserverA 31 95.4 1.5 0.10 1.5 0.13 1.6 0.56 1.9 1.6
ObserverB 31 94.8 2.4 0.11 2.4 0.15 2.3 0.59 1.8 2.2
ObserverC 31 94.7 2.2 0.11 2.2 0.15 2.1 0.71 2.3 2.2

Conclusion and discussion

A semi-automatic method for Carotid lumen segmentation was presented. We tested our method on 31 CTA
data sets within the scope of the CLS’2009 MICCAI Challenge. Our dice mean score is 83.6%, making our
method relatively robust. The tubular anisotropy method provides us a good first estimate of Carotid lumen.
However, as discussed previously, it detects vessels with circular cross sections yielding to inaccuracies
on strong lumen occlusions. Therefore, we used a region-based level sets approach in order to refine our
segmentation. For future work, we would like to improve the metric for the tubular anisotropy method.
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