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Abstract

This carotid-bifurcation segmentation and stenosis quantification method uses one seed-point per vessel.
Each seed-point initializes the extraction of one centerline by use of an algorithm based on an elastic
model and on a multi-scale eigen-analysis of the inertia matrix. This algorithm requires that the vessels
be brighter than the background. The initial image is transformed and enhanced by a three-stage filter,
in order to comply with this requirement: 1) extraction of regions falling into the typical vascular lumen
range, 2) refinement using a Fuzzy C-means classifier, and 3) enhancement using gradient magnitudes
and an exponential function. The method was evaluated on 31 datasets from the Carotid Bifurcation
Algorithm Evaluation Framework and the segmentation results obtained an average of 80.4% Dice simi-
larity score, copmared to reference segmentations, and the mean stenosis quantification error was 14.4%.
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This paper describes a 3D CTA image segmentation method submitted to the CLS09 contest (Carotid Lu-
men Segmentation and Stenosis Quantification) held in conjunction with the MICCAI 2009 conference
(http://www.miccai2009.org/). Figure 1 presents the pipeline of the proposed methodology. Initially,
images are denoised to improve image quality and posterior segmentation. Second, region-based measure-
ments are performed to differentiate possible vessels from other structures. Then, edge-driven metrics are
used to allow vessel separation from nearby structures. Using, both edge-driven and region-based metrics a
filter is used to enhance the vessels. The vessels of interest are extracted by use of the provided initialization
points and of a model-driven segmentation algorithm. Using the obtained result, the final stage is devoted
to stenosis quantification.

1 Image intensity-based preprocessing

Figure 1: Carotid lumen segmentation and stenosis quantification framework.

Denoising

Segmentation algorithms are often sensitive to image degradations. Unfortunately, CT-scans are prone to
noise and artifacts. Thus, to increase the segmentation rate, our algorithm preprocesses the images. A χ2

test revealed that the noise is Gaussian. To reduce it, we use a robust NL-means approach [1]. The quasi
constant piecewise nature of the CT scans enables to decrease the robust criterion, and thus consider only
sample pixels belonging to the same object as the pixel to be denoised. Hence, as in [1], a gaussianity test is
performed on each sample pixels set. When the null hypothesis of the test is true, the output pixel is set as
the mean gray-value of the sample set. In few cases, when the opposite occurs, a local constant regression
gives the output pixel. Streak artifacts are mainly visible in the section of the patients’shoulders. They are
due to the high absorption of photons when the signal crosses a large body section. On the images, they
are oriented in between -20 and 20 degrees. In our algorithm a Dual Tree Complex Wavelet Transform
(DT-CWT) [4] decomposes the image following 6 different directions. The streak artifacts impact on the
coefficients associated to the -15 and 15 degrees oriented wavelets and at different scales. These coefficients
are shrunk using a hard threshold. In the other four directions, the corresponding wavelet coefficients are
threshold following a bi-shrink approach [4], only to remove noise.
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Figure 2: Left: Original slice. The red square shows the artery of interest (with a calcification) at the center. Nearby it
is possible to see the jugular vein. Center: Initial presegmentation using the statistical analysis values, Right: Refined
segmentation of lumen.

Presegmentation

An initial rough segmentation uses global thresholds, in order to create the following classes:
bone/calcification, lumen, possible lumen (voxels typically belonging to borders that cannot be clearly clas-
sified into one category) and other tissues. The values of the thresholds were determined empirically and
depend on whether the arteries contain low or high level of contrast agent (Table 1). The decision is based
on the average density of the seed points and of their 26 neighbors, compared to an empirical threshold
T = 330 HU.

Table 1: Threshold values used to classify image components (in Hounsfield Units)

Type of image Other structures Possible lumen Lumen Calcifications
Low contrast < 50 50-260 261-500 > 500
High contrast < 330 330-440 441-680 > 680

After this stage only ”other tissues” regions are eliminated, while the remaining regions are refined by use
of a Fuzzy C-means algorithm, in order to identify only lumen components. The classifier operates over the
original image masked by the presegmentation result. The use of 4 different clusters (background, lumen
and two classes for calcifications/bones) showed to be enough to approximately differentiate lumen from
other tissue types. The resulting mask M(x) is constructed by assigning the value 1 to the voxels classified
as lumen, and 0 to the remaining ones (Figure 2).

Enhancement filtering

Density-based image segmentation is often not reliable enough, owing to the vicinity of structures having
similar intensities (i.e. the jugular vein). To overcome this, we propose to modify the values of the pre-
segmented regions labeled as lumen, by use of the normalized gradient magnitude |∇I(x)|. This is done by
multiplying M(x) by 1− |∇I(x)|, which is expected to produce values close to 1 near arteries center and
lower values at the arterial boundaries (Fig. 3). To strengthen the response we use an exponential function:

V (x) = exp(k ∗M(x)∗ (1−|∇I(x)|)) (1)
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Figure 3: Left: Gradient magnitude |∇I(x)|, Center: 1−|∇I(x)|, Right: Enhanced image

were k is a tuning parameter that controls the strength of the filter (k = 0.3) and V (x) is the filter response.
The original image is finally multiplied by V (x) (Fig. 3).

2 Model-based refinement and quantification

Since medical images can contain low-contrast regions where it is difficult to segment using only image
intensities, we include a cylindrical artery model that is used for centerline extraction and posterior stenosis
quantification. The model represents a centerline by a curve having limited elasticity and flexibility, and
passing by or near the local centroids. It also characterizes the cylinder local radius via the eigen-analysis of
the inertia matrix. The centerline algorithm extracts the centerline of a vessel, starting from one point within
its lumen. It includes the following steps:

a) estimation (refinement) of the current point location, based on centroid information and restricted by
continuity and smoothness constraints,
b) estimation of the local orientation of the vessel, based on inertia matrix eigenvectors,
c) prediction of the next (candidate) point, based on the estimated location and orientation.

First- and second-order image moments used in the algorithm are computed within a spherical sub-volume
called analysis cell. We use a multi-scale framework to determine the locally most suitable size of the cell.
The iterative tracking process is carried out starting from a seed-point, and stops when a boundary of the
volume of interest (VOI) or another seed-point is encountered. More details can be found in our previous
publications [3, 2].

Centerlines extraction using an elastic model and inertia moments

The tracking process is carried out within the enhanced image. The VOI is created using reasonable margins
around the three seed-points provided with the datasets. Since the centerline extraction starts with a single
point, three different centerlines are generated: one per seed-point. In order to overcome the missegmenta-
tions of structure ”stuck” to the arteries of interest, which can occur at the presegmentation stage, we sweep
a sphere all along the carotid centerlines to ”clean up” structures that do not belong to the artery. We use
the analysis cell for this purpose. The cell radius corresponds to an estimation of the vessel radius, so it is
possible to say that voxels outside the cell radius do not belong to the artery and can be rejected.
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Figure 4: Resulting segmented vessel after including the cylindrical model.

Bifurcation detection and cross-sectional quantification

Bifurcation detection is based on the three previously extracted centerlines. Typically, the three axes must
have a common section and at least one of them diverges from the rest at a certain point. Detection of this
point identifies the bifurcation.

Since we cannot control, towards which endpoint a centerline heads during its growth, our first step consists
in detecting the two lines that diverge the most (to guarantee that they follow the internal and external carotid
artery, respectively). For every possible pair of axes we evaluate, on a point-to-point basis, how different
they are. The sum of all distances gives a score. The pair of lines giving the highest score is selected to
be evaluated. Using the point-to-point distance we detect the region where the distance between the lines is
above a given threshold. This point is defined to be the bifurcation. Quantification analysis is restricted to
the zone starting from the bifurcation up to the point identifying the internal carotid artery. Using the line
along this region and the segmented image, planes perpendicular to the axis are extracted.

Stenosis quantification is performed on a plane-by-plane basis. For every extracted plane, the lumen bound-
ary is extracted by use of isocontours. We compute the area inside the contour as well as minimum diameter.

Once the areas and diameters are computed, every plane is analyzed in order to detect the slice where the
smallest area and diameter are found. Once the smallest value is found, the distal plane located 2 cm away
(in the internal carotid point direction) is marked as the healthy region. Using this two planes the stenosis is
computed following the challenge definition.

3 Results

Both lumen segmentation and stenosis quantification were evaluated on 31 carotid CTA datasets provided
by the organizers of the Carotid Bifurcation Algorithm Evaluation Framework. Details of the evaluation
methodology can be found on the web page of the challenge (http://cls2009.bigr.nl/).
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Table 2: Summary lumen
Measure % / mm rank

min. max. avg. min. max. avg.
L dice 63.4% 92.6% 80.4% 4 4 4.00
L msd 0.34mm 2.56mm 0.86mm 4 4 4.00

L rmssd 0.54mm 4.57mm 1.57mm 4 4 4.00
L max 1.31mm 11.26mm 6.10mm 4 4 4.00

Total (lumen) 4 4 4.00

Table 3: Averages lumen
Team Total dice msd rmssd max Total
name success % rank mm rank mm rank mm rank rank

Our method 31 80.4 4.0 0.86 4.0 1.57 4.0 6.10 4.0 4.0
ObserverA 31 95.4 1.5 0.10 1.5 0.13 1.6 0.56 1.9 1.6
ObserverB 31 94.8 2.4 0.11 2.4 0.15 2.3 0.59 1.8 2.2
ObserverC 31 94.7 2.2 0.11 2.1 0.15 2.1 0.71 2.3 2.2

Concerning the segmentation, four aspects were evaluated: Dice similarity index, mean surface distance,
RMS surface distance and maximal surface distance. The obtained results are presented in Tables 2 and 3.

Stenosis grading was performed using both vessel area and diameter. Quality of the quantification was
evaluated by calculating the difference between the quantified value and the one provided by the reference
standard. The obtained results are presented in Tables 4 and 5.

4 Discussion

We presented an approach for carotid lumen segmentation and stenosis quantification from CTA datasets.
The method is based on a model initially designed for the purpose of vessel segmentation in magnetic
resonance angiography images (MARACAS). Our efforts were mainly directed towards the adaptation of
MARACAS to segment CTA data and to cope with bifurcations. These adaptations include a three-stage
enhancement filter based on image intensities and gradients. While the results were encouraging on training
data, the method performed much worse on the testing data. One explanation is that in some of these
datasets the seed-point corresponding to the internal carotid was located very low. In consequence, the
extracted centerline was too short and the subsequent segmentation and quantification steps partly failed.
Nevertheless, other reasons of the counter-performance can be attributed to the method itself. On the one
hand, it provides only hard segmentations (0 or 1) instead of including partial volume at the borders. On the
other hand, the enhancement filter only based on intensities and gradient magnitudes seems to be insufficient
in some configurations. It probably should include local orientations, too.
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Table 4: Summary stenosis
Measure % rank

min. max. avg. min. max. avg.
S area 0.0% 50.0% 14.3% 1 4 2.94
S diam 0.0% 56.0% 14.4% 1 4 2.71

Total (stenosis) 1 4 2.82
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Table 5: Averages stenosis
Team Total area diam Total
name success % rank % rank rank

Our method 31 14.32 2.9 14.39 2.7 2.8
ObserverA 31 2.71 1.3 3.61 1.6 1.4
ObserverB 31 4.55 1.7 5.29 1.9 1.8
ObserverC 31 5.61 2.3 5.74 2.1 2.2
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