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Abstract

The arterial lumen is modeled by a spatially continuous right generalized cylinder with piece-wise con-
stant parameters. The method is the identifies the parameters of each cylinder piece from a series of
planar contours extracted along an approximate axis of the artery. This curve is defined by a minimal
path between the artery end-points. The contours are extracted by use of a 2D Fast Marching algorithm.
The identification of the axial parameters is based on a geometrical analogy with piece-wise helical
curves, while the identification of the surface parameters uses the Fourier series decomposition of the
contours. Thus identified parameters are used as observations in a Kalman optimal estimation scheme
that manages the spatial consistency from each piece to another. The method was was evaluated on
15 training and 31 testing datasets from the MICCAI 3D Segmentation in the Clinic Grand Challenge:
Carotid Bifurcation Lumen Segmentation and Stenosis Grading (http://cls2009.bigr.nl/).
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Although healthy blood-vessels have cylindrical shapes with circular cross-sections, pathologies may lead
to complex deformations of the cross-sectional shape. A generalized cylinder model capable of representing
complex elongated objects, using a reduced number of parameters, was proposed in [1]. The model is
composed of two parts: the first one describing the axial shape by means of orthonormal bases attached to
the axis, and the second one describing the surface by means of contours in the planes orthogonal to the
axis. This model was called RGC-sm, which stands for right generalized cylinder state model, since the
authors used the system-state formalism. According to this formalism, both components (the local base and
the cross-sectional contour) corresponding to any arc-length location, can be calculated knowing only one
initial base and contour, as well as their dynamics (parameters describing their variation).

In this paper, we describe an implementation of this model for the purpose of carotid arteries segmentation
and stenosis quantification. An early version of this work was published in [3].

1 Right generalized cylinder model

The RGC-sm model is an association of a generating curve H and a stack of contours describing the surface
S . The model is piecewise, i.e. it assumes that a generalized cylinder can be subdivided into pieces such
that the model parameters be constant within each piece separately. Each piece Hi of the generating curve is
defined by its length ∆i, curvature κi, torsion τi and by the azimuthal rotation angle νi of the local basis Γi(t)
attached to Hi, with respect to the corresponding Frenet frame. Each piece Si of the surface is a continuous
stack of contours ci(t,ω) defined by a tuple {Zi,Λi}, where Zi = {zi,l ∈ C;−q≤ l ≤+q} represents the
Fourier coefficients describing the first contour in the piece, and Λi = {λi,l ∈ C;−q≤ l ≤+q} is an ordered
set of 2q+1 coefficients linearly transforming the contour along Hi:

ci(t,ω) =
+q

∑
l=−q

(λi,l(t− ti)+ zi,l)e jlω, (1)

where t and ω respectively are arc-length and azimuthal parameters. The number q of harmonics controls
the level of details of the contours, and thus of the whole generalized cylinder surface. Each surface piece
Si is connected to the corresponding generating curve piece Hi by the following equation:

si(t,ω) = Γi(t) ·

 0
Re(ci(t,ω))
Im(ci(t,ω))

+hi(t), (2)

where hi(t) is the spatial location of the origin of Γi(t), which belongs to Hi. The entire model is thus:

M ≡ {h0,Γ0,Z0,{κi,τi,νi,∆i,Λi; 0≤ i < n}} , (3)

where h0≡ h0(t = 0) is the first point of H , Γ0≡Γ0(t = 0) is the first basis attached to h0 and Z0≡Z0(t = 0)
is the Fourier decomposition of the first RGC contour.

2 Kalman-based estimation of model parameters

Figure 1 shows the global flowchart of the proposed algorithm for vascular segmentation. The vascular
segment of interest is delimited by two points interactively given by the user. The Kalman state estimator
(KSE) [5] is used to control the vessel tracking along an approximate axis between these points. It predicts
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Figure 1: Flowchart of the segmentation algorithm.

the 3D locations, orientations and shapes of the contours that delimit the consecutive cylinder pieces. The
observation vector, coding the RGC-sm parameters of the i-th piece, is computed from the result of the
contour extraction performed in the predicted plane. The observation is then filtered by the KSE to produce
a corrected estimate of the parameters, which is expected to smooth out the possible errors of the contours
and initial axis extraction. Only the very first contour remains uncorrected.

The KSE adapts the tracking speed to the complexity of the local vascular shapes (axial and superficial). In
complex shapes (high local changes of curvature, for example) the length of the cylinder piece is automati-
cally reduced. This occurs when the predicted contours are too different from the observations.

3 Retrieval of observations from image data

Without loss of generality, we explain the process for the first cylinder piece. Under the assumption of
constant curvature and torsion, each piece of H is a helix, and a geometrical reasoning demonstrates that its
parameters can be recovered if the frames Γ0, Γ1 at its extremities, as well as their origin locations h0 and
h1, are available. Owing to a lack of space here, this reasoning will be given in a future publication. The
remaining parameters are calculated using the Fourier decompositions of the contours Z0 and Z1. We first
give main equations that lead from Γ0, Γ1, h0, h1, Z0 and Z1 to the RGC-sm parameters. Then we explain
the image processing steps that lead from the initial image and seed-points to these intermediate data.

Calculation of model parameters

We first compute the transition operators, respectively rotation and translation, between the extremities:

Φ(0,∆0) = Γ
>
0 ·Γ1, (4)
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Tr(0,∆0) = Γ
>
0 · (h1−h0) . (5)

Then, using the properties of the rotation matrices, we obtain some useful intermediate results:

Φ(0,∆0)−Φ(0,∆0)> =

 0 −c b
c 0 −a
−b a 0

 ,

Θ = arcsin
(√

a2 +b2 + c2/2
)

,

ϕ = arcsin
(

a/
√

a2 +b2 + c2
)

,

and a first output parameter:
ν0 = arctan(b/c). (6)

Now, the use of the properties of the helical curves leads to another intermediate result:

µ =
sinΘcos2 ϕ+Θsin2

ϕ[
Φ(0,∆0) [1 0 0]>

]>Tr(0,∆0)
,

which in turn permits the computation of the remaining axial parameters:
κ0 = µcosϕ,
τ0 = µsinϕ,
∆0 = Θ/µ.

(7)

Numerical stability problems might arise when Φ(0,∆0) = I, which occurs when H0 is a straight line seg-
ment. This is checked after the computation of Γ0 and Γ1, and the parameters, in this case, are set as follows:[

κ0 τ0 ν0 ∆0
]> =

[
0 0 0 |h1−h0|

]>. The last step is the computation of the parameters de-
scribing the linear evolution of the Fourier decomposition of the contours:

Λ0 =
{

z1,l− z0,l

∆
∈ C :−q≤ l ≤+q

}
. (8)

Approximate axial shape extraction

As mentioned above, in the current implementation, the vessel tracking with Kalman estimation of RGC-sm
parameters is performed along an initial approximate axis H̃ . The line H̃ , that coarsely describes the axial
shape of the vessel, is constructed as follows:

1. A binary image B(p) is computed from the initial image I (p), using locally adaptive thresholds that
coarsely separate the vascular lumen from the background. These thresholds are defined using the
results presented in [4]. According to that work, the vascular lumen intensities along the carotids have
two properties: (a) the global lower threshold values are in the range [140HU, 420HU], and (b) the
local threshold values vary almost linearly along the vessel axis. Using these properties, the lumen
is segmented using a flooding algorithm that computes thresholds depending on the distance of each
voxel to user-given seeds. The local threshold properties are computed using the Robust Automatic
Threshold Selection (RATS) scheme [6].

2. An Euclidean distance map E(p) is computed within B(p) using the algorithm proposed in [7].
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3. Finally, a cost function F (p) = 1
1+E(p) is used for a minimal path algorithm (as proposed in [9]),

which finds a set H̃ of points ordered along the shape and connecting the seed-points even in the
presence of lumen discontinuities (severe stenoses). These points are expected to be located near the
center of the vessel due to the cost function F (p), related to the distance map E(p).

Contours extraction

The planar contours are extracted using the fast marching (FM) method [8]. FM is a front propagation
technique that provides a set of (counter-clockwise) ordered points Ci = {ci,k : 0≤ k < K}. This technique
needs the definition of a speed function R (p) expected to be minimum (∼ 0) at discontinuities (edges) and
maximum within uniform regions (∼ 1). We use the speed function proposed in [2], where the native image
intensities I (p) along with image discontinuities represented by the gradient magnitude |∇I (p)| are used.
Instead of a direct use of |∇I (p)|, the proposed function uses exponential factors that strongly decrease the
propagation speed when the front moves beyond local maxima of the gradient norm (i.e. beyond borders
of the arteries) and beyond the range of luminal intensities, defined as described in previous subsection.
Furthermore, in this work the authors recommend that the FM propagation should be stopped at time value
T when the the growth of the area A encompassed by the front becomes very slow, which is characterized
by a large value of ∆T/∆A.

Front propagation is performed in the plane passing through the predicted point ĥi ∈ H̃ , and oriented ac-
cording to the predicted vessel orientation expressed by the orthogonal base Γ̂i. Summarizing, the point set
Ci is extracted as follows:

1. The speed image R (p) is sliced by the plane passing by ĥi and oriented by the first column vector of
Γ̂i, to obtain a 2D image Qi(p).

2. The FM algorithm is executed on Qi(p) with ĥi as the first trial point (front initialization).

3. The FM generates the level set Li(p) which contains Ci as its last level.

The initialization of the RGC-sm reconstruction process requires h0, Γ0 and Z0. One of the seed-points
(typically the distal one) is taken as h0. The orthonormal basis Γ0 is constructed such that its first vector is
tangent to H̃ in h0, the second vector is oriented along h0− c0,0, and the third one is orthogonal to both. Z0
is calculated as the Fourier series corresponding to C0.

4 Results

Both lumen segmentation and stenosis quantification were evaluated on 15 training and 31 testing carotid
CTA datasets available within the Carotid Bifurcation Algorithm Evaluation Framework. Details of the
evaluation methodology can be found on the web page of the challenge (http://cls2009.bigr.nl/).
Figure 2 displays an example of segmentation result.

Four criteria were evaluated to assess the lumen segmentation: Dice similarity index, mean surface distance,
RMS surface distance and maximal surface distance. Tables 1 and 2 summarize the results obtained.

Stenosis quantification was evaluated by calculating the difference between the calculated percentage and
the one provided by the reference standard, using both cross-sectional areas and diameters. The results are
presented in Tables 3 and 4.
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Table 1: Summary testing lumen
Measure % / mm rank

min. max. avg. min. max. avg.
L dice 0.0% 92.4% 51.8% 4 4 4.00
L msd 0.32mm 14.91mm 3.42mm 4 4 4.00

L rmssd 0.55mm 15.53mm 4.29mm 4 4 4.00
L max 1.28mm 17.50mm 9.46mm 4 4 4.00

Total (lumen) 4 4 4.00

Table 2: Averages testing lumen
Team Total dice msd rmssd max Total
name success % rank mm rank mm rank mm rank rank

Our method 29 51.8 4.0 3.42 4.0 4.29 4.0 9.46 4.0 4.0
ObserverA 31 95.4 1.5 0.10 1.6 0.13 1.7 0.56 2.0 1.7
ObserverB 31 94.8 2.4 0.11 2.4 0.15 2.4 0.59 1.8 2.2
ObserverC 31 94.7 2.2 0.11 2.2 0.15 2.2 0.71 2.4 2.2

5 Discussion and conclusion

RGC-sm is a powerful tool that permits a concise description of complex generalized cylindrical shapes.
The theoretical framework permits the reconstruction of a continuous surface corresponding to the lumen,
based on a limited number of discrete contours. Additionally, the Kalman estimator permits a correction of
the observation errors when these remain within a reasonable range. However, our current implementation
of the image processing steps devised to provide the observations is clearly not optimal. The initial rough
extraction of the axial shape begins by a thresholding step, which is prone to errors when neighboring
structures have a similar intensity range. Actually, this initial curve needs to be quite well-centered within
the lumen. Indeed, as the Fast Marching algorithm in planes orthogonal to this initial curve starts from
the intersection between the plane and the curve, this intersection has to fall within the lumen, otherwise
the contour extraction fails. Failures are also observed when the curve is located within the lumen, close
to a poorly contrasted boundary. In fact, the use of an always inflating deformable contour, such as the
Fast Marching front, is uneasy, since the speed function and stopping criteria hardly can cope with all
possible configurations (nearby veins, calcifications, etc.). Furthermore, 2D Fast Marching does not exploit
the 3D continuity of the vascular lumen, which might be helpful in some complicated situations. Future
work will be oriented towards an implementation that do not require the initial extraction of an approximate
axial shape and that perform a piece-wise local 3D boundary extraction. Let us also note that the current
implementation was designed with an implicit assumption that the seed-points are given at ”easy” locations,
i.e. healthy circular cross-sections without neighboring structures ”stuck” to the artery of interest, and that
the seed-points can also be considered as end-points. However, in several testing datasets the seed-point in
the internal carotid artery was located either too close to the bifurcation, so that our method segmented a too
short part of the artery, or far within the skull where the assumption of the absence of neighboring structures
did not hold.
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Table 3: Summary testing stenosis
Measure % rank

min. max. avg. min. max. avg.
S area 0.0% 100.0% 32.8% 1 4 3.32
S diam 0.0% 100.0% 40.3% 1 4 3.39

Total (stenosis) 1 4 3.35

Table 4: Averages testing stenosis
Team Total area diam Total
name success % rank % rank rank

Our method 31 32.76 3.3 40.31 3.4 3.4
ObserverA 31 2.71 1.3 3.61 1.5 1.4
ObserverB 31 4.55 1.6 5.29 1.7 1.7
ObserverC 31 5.61 2.2 5.74 1.9 2.1
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Figure 2: Example of the segmentation of a CTA image of a carotid using our algorithm. The internal
carotid is presented in cyan and the external carotid is presented in red. The yellow and blue lines represent
the generating curves calculated.
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