4D Morphological segmentation and the miccai
LV-segmentation grand challenge

Laszlé Mardk, Jean Cousty, Laurent Najman, and Hugues Talbot

Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, A3SI, ESIEE
{1.marak, j.cousty, l.najman, h.talbot}@esiee.fr

1 Introduction

The goal of the Cardiac MR Left Ventricle Segmentation Challenge at MICCAI
2009 is to compare state-of-the-art LV segmentation methods. This goal is
facilitated through an evaluation system and a database of cardiac cine MR
images, as well as expert contours, now freely available on the internet for
research purposes. This challenge is important because the analysis and the
segmentation of 3D+t sequences of MR cardiac images is fastidious, time
consuming and error-prone for human operators, due to the large amount of
data. Conversely, automated segmentation of cardiac images is well-known to be
a challenging task.

This paper describes the method that our group submitted for the challenge.
Section 2 briefly recalls the cardiac segmentation approach, based on 4D discrete
mathematical morphology, introduced in [1]. This method leads to discrete
segmentations, i.e., binary masks (bitmaps) of the left ventricular myocardiums
that are both spatially and temporally consistent. In section 3, we describe the
data provided by the organizers of the challenge and the method they use to
assess all segmentations. Finally, section 4 describes the necessary adaptation to
our method in order to fulfill the requirements of the challenge, and presents the
results obtained on the provided dataset.

2 Previous work: A morphological segmentation scheme

This section gives a quick overview of the method proposed in [1] to analyze
4D MR images of the left ventricular (LV) myocardiums of patients with recent
acute myocardial infarction.

2.1 Image acquisition

The patients were examined on a 1,5 T MR scanner (Magneton Symphony®,
Siemens) and dynamic, breath-held, ECG gated, cine-MR images were acquired
perpendicularly to the long axis of the left ventricle from base to apex. Typical
imaging parameters were 6 mm slice thickness, 1.7mm square pixels and 30-40
ms temporal resolution (more details in [2]). These acquisition parameters are
similar to those of the challenge database.



For each patient, the cine MRI dataset consisted of a succession of contiguous
gap-less LV short-axis 2D planes that were successively imaged over time (2D+t).
The sequences were registered to the heart-cycle, and could be stacked in order
to construct 3D sequences. The most basal slice included in the analysis was
located just above the mitral valve within the LV cavity. To be included, the
basal myocardium had to be visible in the entire circumference at end-systole.
The most apical slice was chosen as the one with the smallest visible LV cavity at
end-systole. Taken together, these different planes from base to apex constitute
a 3D representation of the LV. The succession of these, over time, is a 3D+t
representation of the LV. The images were oversampled in order to provide
isotropic voxels. For each 3D+t sequence, a single mouse click on the center
of the LV cavity at end-systolic time was recorded, and the images were cropped
centered on the corresponding location. When a misalignment of the different
slices of a same volume was observed, translation-only registration was applied.

2.2 Morphological segmentation

Our method is different from those based on deformable models that are
commonly presented in the literature. Any segmentation method performs
two tasks: recognizing the objects of interest and delineating their contours.
Whereas model-based methods often perform these two tasks at the same time
by minimizing some energy including internal forces (recognition) and external
forces (delineation), the classical scheme in mathematical morphology (MM)
separates these two tasks. More precisely, segmentation schemes in MM [3]
comprise, in general, three main steps: recognition, delineation and smoothing,
performed sequentially. Recognition is the process of determining the rough
whereabouts of the objects. Delineation consists of the precise spatial localization
of the objects borders. Finally, smoothing can be defined as the process of
matching the smoothness properties of the segmented object with the a priori
smoothness properties of the ground truth.

Many operators in MM consists of analyzing (unknown) geometrical objects
(or more generally grayscale images) through their interaction with predefined
shapes, called structuring elements. These operators can, in particular, select
sets of pixels based on their shape, contrast or topological properties. They are
well adapted to the recognition task and can be used to extract sets of points,
called markers, that roughly correspond to the objects of interest. The sequence
of operators chosen for recognition constitutes the knowledge-based part of the
morphological segmentation. It must be adapted to each particular application
by taking into account properties on the objects to be segmented. The delineation
step is, in general, devolved to the watershed [4-6]. This operator looks, based
only on the image contrast, for the “best” contours between the recognized
markers. Finally, the smoothing step, which can also be done thanks to MM
operators, filters the delineated objects by removing their non-significant parts,
with respect to prior knowledge.

Based on this framework, we presented a new automated method [1] to
segment both the endocardial and epicardial borders in 4D (3D+t) cine-MR



images. The endocardial border is segmented using a geodesic reconstruction - a
morphological region growing technique - of a marker in a set of voxels detected
as potential candidates. In order to recognize interior and exterior markers of
the epicardial border, we use i) an exact Euclidean distance transforms [7] to
take into account prior geometric properties and ii) homotopic transforms [8]
to guarantee topological soundness. The delineation process is then devolved
to watershed cuts [5,6]. This operator takes as input the 4D graph -each voxel
is adjacent to its 6 neighbors in 3D plus the voxels just after and before in the
sequence -associated to the 3D+t sequence and a weighting function that assigns
a gradient (either spatial or temporal) value to each pair of adjacent voxels. From
these data, the watershed cut optimally separates the marker obtained from the
recognition step, using the minimum spanning tree weights as criterion. Finally,
the smoothing step is computed through sequences of morphological openings
and closings. From these binary masks, we extracted the 3D surfaces of the LV
myocardium at each time step — thanks to a marching cube algorithm. Thus,
we obtain a succession of surfaces over time that constitutes a 4D segmentation,
which is both spatially and temporally consistent.

Fig. 1. Example of segmentation produced by our method. Left: the LV myocardium
contours are superimposed in red. Right: 3D rendering of the segmentation.

2.3 Evaluation

This method was evaluated on cine-MR image sequences of 18 patients. Through
experiments performed on this database, we demonstrated the following strong
points:

— A good accuracy of the automated method compared to manual segmenta-
tions performed by two cardiologists. The mean distances between manual
and automated segmentations were 1.5mm =+ 0.38 and 1.8mm =+ 0.38 for
respectively the endocardial and epicardial borders.



— The ability of the method to compute reliable characteristics of the LV:
ejection fraction (EF) and left ventricular mass (LVM). Over all the patients
of the database, the automated method achieved a mean deviation on the
EF (resp. LVM) of 4% (resp. 7%): a value comparable to the inter-expert
deviation;

— The temporal continuity of the resulting automated segmentation. In
particular, we have quantitatively shown that temporal consistency is better
preserved when using one 4D watershed for the whole sequence compared to
one 3D watershed per time step.

— The time-efficiency (about 3mn to segment a sequence of 25 3D-images on
a low-end computer) of the proposed method; and

— the robustness of the few parameters whose settings rely mostly on physical
and anatomical facts.

Furthermore, in an effort to promote open science, the database (see also [2])
used for validation was made freely available on the internet. For each one of
the 18 patients, it contains 3D+t cine-MR images of the LV, together with
three associated segmentations: two hand made segmentations - each one of
them performed by an independent and blinded expert cardiologist - and one
4D automated segmentation obtained by the method described above. The web-
address of this database is http://laurentnajman.org/heart.

3 MICCALI Challenge

3.1 Data: images and manual segmentation

Images from the MICCALI challenge contain slices that do not fit the guideline
described in Section 2.1. However, our software includes an interactive graphical
interface that allows the user to select the slices that follow the guideline. Our
method was directly applied on the selected slices without any problem, despite
the fact that both the scanners (GE vs. Siemens) and the resolutions (1.3mm x
1.3mm X 10mm vs. 1.7mm x 1.7mm x 6mm) were different. Hence, we obtain
a set of 4D segmentations.

For each 4D image, one manual segmentation comes from the MICCAI
challenge. This manual segmentation can be roughly described, for each 2D slice,
as a smooth convex 2D curve that does not always follow the most contrasted
structures seen in the images (see e.g. the green contours depicted in Fig. 2, first
row). These manual segmentations are quite different from the ones drawn by
our physicians on our own validation database (see e.g. Fig. 2, second row).

3.2 Evaluation method

In order to assess the methodology, the MICCAI Challenge proposes to compute
the following measures : LV ejection fraction (EF), LV mass (LVM), and Dice
index. EF and LVM are critical parameters for cardiac diagnosis and remodeling
prevention. The EF is the amount of blood ejected during a heart cycle expressed
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Fig. 2. First row: image examples from the challenge database. Second row: example
of an image from our own database [2]. Green contours show the ground-truth
segmentations of the endocardial borders. Red ones show the segmentations of the
endocardial borders developed for this challenge (see Section 4.2).

as a fraction of the tele-diastolic volume. The Dice index is a measure of similarity
between two sets. It ranges between 0 and 1: a value of 1 indicates a perfect
agreement, whereas a value of 0 indicates an empty intersection. It is defined
by %, where X and Y are two sets (binary masks) representing two
segmentations of a same object, and where |X| denotes the size (are, volume,
etc.) of set X.

Furthermore, the organizers of the challenge wanted to compute the average
perpendicular distance (APD), that is meant to measure the distance from the
automatically segmented contour to the corresponding manually drawn expert
contour, averaged over all contour points. However, as it is implemented right
now, the evaluation software used by the challenge organizers imposes that the



segmentation of each slice be made of a single smooth and closed curve. Thus
the APD is not adapted to 3D surfaces, nor to discrete curves for which normals
are difficult to compute. Indeed, the intersection of a 3D surface with a plane is
not necessarily a 2D curve: it can consist of several closed curves and/or pieces
of planes. Our method produces discrete (hence, non-smooth) 3D triangulated
surfaces. This leads to great difficulties for evaluating our segmentation with
APDs. For instance, in the left image of Fig. 2, it can be observed that the
normals are not correctly computed (see in particular the normal emanating
from point x). Because of such problems, the organizers decided to compute the
normals emanating from the ground-truth instead of those emanating from our
automated contours. Since the APD is not symmetric, this raises the problem
of the comparison between our APD results and the APD results of the other
participants, for whom the initial procedure was kept. We finally want to mention
that the APD does not really reflect the distance between two curves. This can
be seen for instance in the left image of Fig. 2, where for some points {z;}
belonging to the green curve, the normals emanating from the individual z; do
not intersect the red curve at the point that is closest to that x;.

Following this discussion, we decided to submit two sets of results for the
challenge. The first one is the direct result of our algorithm, i.e., binary masks
of LV cavity and LV myocardium. The second one is a downgraded version of
the first set, completed with missing slices, following the process described in
the next Section 4. Only this second set has been considered by the evaluation
team: indeed, due to the reasons we just discussed, the evaluation team was not
able to quantitatively assess the first set, and only a qualitative evaluation was
not deemed acceptable.

4 Adapting our method to the segmentation challenge

4.1 4D segmentation

We list below the different steps (and the associated user interactions) that our
software requires to produce a 4D segmentation from a DICOM dataset.

Loading of the whole DICOM dataset in the software.

Manual selection of the slices that fulfill the guideline of Section 2.1.
Interactive adjustment of the image contrast (selection of two parameters).
Recording of a single mouse click in the center of the LV cavity on one 2D
slice.

5. Registration of the adjacent 2D+t slices to form a single 3D+t sequence.

6. Segmentation of the 3D+t sequence.

Ll el

Our segmentation method (i.e. step 6) comprises two kinds of parameters. A first
series of four parameters is related to the geometry of the left ventricle. A second
one, also made of four parameters, is related to brightness properties of cardiac
MR images. The former has to be estimated only once. On the contrary, the
later must be re-estimated for each new device since the brightness properties



of the left ventricle can change from one device to another. Thus to segment
the images of the challenge, we only had to re-estimate the brightness-related
parameters, which took less than one hour. Then, timings for performing the six
steps described above range from 10 to 20mn.

4.2 From 4D surfaces to 2D curves

We downgraded the 4D segmentations obtained by our software in order to
obtain curves that fulfill the evaluation format described in Section 3.2. To
this end, we started by computing the intersection of each 2D slice and our
3D+t segmentation, leading, for each slice, to one binary 2D mask for the
inside of the endocardial border and one binary 2D mask for the inside of the
epicardial border. Then, we computed the convex hull of each mask from which
we extracted the border edges. These sets of edges compose 2D curves that can
be quantitatively assessed by the organizers of the challenge.

4.3 Missing slices

As shown above, the most basal and apical slices were discarded (see step 2,
Section 4.1) before being processed by our software. In order to segment these,
we: i) derive landmarks of the inside of the endocardial and epicardial borders
from the already available segmentation of the adjacent slices; and ii) extract a
minimal surface separating these landmarks from the borders of the 2D slices [9].
This constitutes the evaluated segmentation.

4.4 Quantitative assessment

We briefly summarize the results (sent by the organizers) of the quantitative
assessment of the curves that we submitted. For the endocardial contours, our
method achieved a mean shift of 3.0mm! + 0.59 and a mean Dice index of
0.86 £+ 0.04. For the epicardial contours our method achieved a mean shift of
2.6mm! + 0.38 and a mean Dice index of 0.93 & 0.01. The mean deviation of the
ejection fractions (resp. left myocardium mass) computed from the automated
segmentation with respect to the one obtained from the ground truth was 14%
(resp. 23%).

We have not commented in details the challenge evaluation results. They look
much inferior to those on our own dataset. We are unable at this time to assess
the precise reason for this. We observe that on many slices our segmentation
does not match the manual delineation. This may come from many factors,
including perhaps medical informations we do not know. In order to obtain
good segmentation results our experience is that a close collaboration with
cardiologists is essential. This is of course very difficult to achieve in a challenge
context. However, the Dice index achieved on the images of the challenge
indicates that our method correctly segments these images.

! Note that all our contours were shifted of half a pixel (0.65mm) on both z and y
axis, due to the use of different coordinate systems in our format and in the format
of the challenge (see, e.g. the right image in Fig. 2).



5 Conclusion

Thanks to the challenge, we showed that our software runs on MR images
acquired by GE scanners and also produces acceptable results in this situation.
From our point of view, one of the most striking interest of such a challenge is
to allow teams focusing on MR LV segmentation to meet and discuss together
at the conference. We look forward to meetings all the people involved. We also
wish to deeply thank the organisers of the challenge, in particular Dr. Perry
Radau for his most extreme patience.

The challenge raises the question of the difficulty of having a general
framework for evaluation, given the numbers of different methodologies set
in different mathematical frameworks. The present challenge is a definite
step forward in this direction. More generally, setting up such an evaluation
framework for cardiac segmentation is precisely the goal of the French association
IMPEIC. This association is a gathering of nine French teams working on cardiac
segmentation. First results obtained by IMPEIC have been published in [10].
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