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Abstract. The segmentation of left ventricular structures is necessary for the 
evaluation of the ejection fraction (EF) and the myocardial mass (LVM). A 
semi-automated 2D algorithm using connected filters and a deformable model 
allowing an accurate endocardial detection was proposed. The epicardial border 
was deduced using a deformable model restricted inside a region of interest 
defined from the endocardial border. Papillary muscles were detected using a 
fuzzy k-means algorithm. The method was applied to the challenge training and 
validation databases, consisting of 15 subjects each. The evaluation was 
performed using the tools provided by the challenge. For both datasets, results 
show a mean Dice metric of 0.89 for endocardial borders (0.92 for epicardial 
borders). Overall average perpendicular distance was 2.2 mm. Very good 
correlation was obtained for the EF and LVM parameters. Visual overall rating 
given by the challenge’s cardiologist was 1.2. Segmentation was robust and 
performed successfully on both datasets. 
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1 Introduction  

Most cardiac pathologies, particularly ischemic heart disease, involve the left 
ventricle. The clinical evaluation of left ventricular (LV) functions requires the 
qualitative and/or quantitative analysis of global and regional functions. Cine 
magnetic resonance imaging (MRI) is considered as the modality of choice for the 
assessment of the LV ejection fraction (EF) and the LV myocardial mass (LVM). The 
relevance of these parameters depends on the accuracy of the delimitation of the left 
ventricular endocardial and epicardial borders. Moreover, the inclusion of papillary 
muscles inside the cavity or in the myocardial mass is still under debate. This 
segmentation, when achieved manually, is of course time-consuming and the inter- 
and intra-observers variability is relatively high. This fact supports the need for some 
automation. Despite the high number of segmentation approaches that have been 



proposed, a comparison of different methods on the same dataset and using the same 
evaluation criteria was lacking. Moreover, the ground truth for evaluation purposes is 
still under discussion, even if the drawing by an expert can be considered in a first 
approach as a “gold” standard. Thus this challenge provides a first step towards a 
thorough and objective evaluation. Our group has recently proposed a 2D LV 
segmentation algorithm, which was dedicated to the endocardial segmentation and 
was applied to end-diastolic images in order to have a regional estimation of mean 
transition times and endocardial velocities [1]. This algorithm is a combination of 
morphological filters and deformable contours, for which a robust setting of the 
different parameters was proposed. For this challenge, this method was adapted to 
systolic endocardial contours, and diastolic epicardial contours. A first attempt to 
segment papillary muscles was implemented. Finally, the proposed contours were 
validated or refined by an operator using a dedicated user-friendly graphical interface. 

2 Materials and Methods 

2.1 Imaging Protocol and Datasets 

Cine MR short-axis (SAX) images were obtained with a 1.5T GE Signa MRI. All 
images were obtained with a temporal resolution of 20 phases over the cardiac cycle. 
Acquisition was triggered from the end-diastolic phase. Six to twelve SAX slices 
from the atrioventricular ring to the apex were obtained, (slice thickness = 8 mm, gap 
= 8 mm, FOV = 320 mm x 320 mm, matrix= 256 x 256 pixels) [2]. 

 HF-I HF-NI HYP N 

Training set 1 -4 5-8 9-12 13-15 

Validation set 16 -19 20-23 24-27         28-30 

Table 1. Structuring of training and validation datasets (HF-I = Ischemic Heart Failure; HF-NI 
= Non-Ischemic Heart Failure; HYP = Hypertrophy; N = Normal). 

Two datasets, a training dataset and a validation dataset were provided to the 
participants in the MICCAI Grand Challenge, by Sunnybrook Health Sciences Centre. 
Each dataset contains 3 healthy subjects and 3 groups of 4 subjects with different 
pathologies (Table 1). Ground truth was provided to the participating teams for the 
end-diastolic (ED) and end-systolic (ES) phases for the training dataset. Further 
details on datasets and the acquisition protocol can be found in [3]. 



2.2 Methods 

2.2.1 Segmentation of the endocardium 
The segmentation is based on previous works detailed in [1] and [4]; it proceeds in 

three main steps. The first step consists in defining a region of interest (ROI) by 
manually positioning a point P0 at the center of the LV and a point P1 at the upper 
insertion between the LV and the right ventricle (RV). Secondly, a morphological 
filter that combines openings and closings on connected sets [5] is applied to the ROI, 
providing an image with homogeneous regions. The number and size of these regions 
depend on a size parameter λ. Images are filtered with the value of λ that varies from 
5% to 80% of the ROIs surface. The ratio between the filtered surface including P0 
and λ is computed for each filtered image and the one with the ratio closest to 1 is 
defined as the default filtered image. The user can either accept it, or refine the value 
of λ and thus choose another filtered image. Once the best filtered image has been 
chosen, the third step consists in segmenting the ventricle using P0 as an initialization 
of the GVF-Snake [6]. The GVF-Snake parameters are similar to those defined in [4]. 
Figure 1 shows an example of the above described steps and the resulting endocardial 
contour. 

 

Fig. 1. Illustration of all the steps of an endocardial border segmentation (Subject: SC-HYP-
37). From left to right: definition of P0 and P1; definition of the ROI around the LV; filtered 
image with optimal λ value; resulting segmentation of the endocardium. 

2.2.2 Segmentation of the epicardium 
The epicardial border is difficult to segment because of the low contrast between 

the myocardium and surrounding structures. Thus, it appeared necessary to restrain 
the GVF-Snake evolution within a limited area (Fig. 2-middle) derived from the 
endocardial border using geometrical considerations such as the expected thickness of 
the myocardium. The GVF-Snake is initialized with the obtained endocardial border 
and its default parameters were similar to those of the endocardium except the 
pressure forces attenuated with successive iterations of the GVF-Snake. This 
decreasing feature of the pressure forces is chosen to avoid: 1) attraction of the 
processed contour by the endocardium during the first iterations, and 2) attraction by 
the external structures. 



 

Fig. 2. Illustration of an epicardial border detection (Subject: SC-HYP-37) left: initialization 
with endocardium; middle: restraining mask (yellow) with endocardial border (red); right: 
resulting epicardium (green) and endocardium (red). 

2.2.3 Detection of papillary muscles (PM) 
This is achieved using a fuzzy k-means algorithm [7] applied only within the 

previously segmented endocardial region. The fuzzy k-means clustering is thus 
expected to classify between PM regions (dark) and non-PM regions (enhanced). 
After classification, all pixels that have a probability of membership to the PM region 
lower than 0.6 are set to zero. Due to the presence of small trabeculations around the 
LV cavity, the resulting image is eroded. It is then filtered with a median filter (3 x 3) 
to eliminate the small non-connected regions related to flow effects inside the LV 
cavity. Structures with the largest areas are proposed as PM. Figure 3 illustrates the 
PM detection via fuzzy k-means clustering. 

 

Fig. 3. Left: map of membership to PM regions after fuzzy k-means clustering on the 
endocardial region; middle: zoomed PM isolation via threshold erosion and median filtering; 
right: final result (Subject: SC-HYP-37). 

2.2.4 Evaluation criteria 
Evaluation was based on the delineation of the contours made by an expert 

cardiologist. The accuracy of the contours provided by the automated segmentation 



was evaluated using the Dice metric (DM) and the average perpendicular distance 
(AVP). Moreover, EF and LVM were deduced from automated results and were 
compared to the expertise. A visual scoring was given by the organizing committee to 
each participant on the validation dataset. Evaluation tools were common for all 
participants of the challenge and were fully described in [3]. 

3 Results 

Segmentation was achieved successfully in all cases except for subjects SC-HYP-
01, SC-HYP-38, SC-HYP-08 and SC-HF-I-08, where one or two apical slices were 
removed in systole since they were difficult to segment (with a reduced cavity area). 
Also, for these same subjects, some epicardial contours were excluded as well 
because slices were too basal as the amount of myocardium seen was less than 50% of 
its total surface. The values of the mean "good" percentage (a contour is considered 
“good” if its AVP is lower than 5mm) obtained for the endocardial and the epicardial 
borders were respectively: 
− 88.41% ±10.17 and 92.89% ± 6.51 for the training dataset 
− 92.28% ± 6.05 and 92.22% ± 5.02 for the validation dataset 
As the comparison of DM and AVP obtained for both training and validation datasets 
showed no statistical significance (Student’s t-test), results of both datasets were 
merged.  
Figure 4 shows the average perpendicular distance (AVP) and the average Dice 
metric (ADM) for each patient, patients being numbered as in Table 1. 

 

Fig. 4. AVP and ADM for the 30 subjects, endocardium in red, epicardium in blue 

The mean AVP for endocardial borders was 2.04 mm ± 0.47 and 2.35 mm ± 0.57 for 
epicardial borders and it was mostly lower for the endocardium than for the 
epicardium. It was the lowest for normal subjects (N) (mean AVP_i was 1.74 mm ± 
0.36 and mean AVP_o was 1.90 mm ± 0.34) and subjects with ischemic heart failure 
(HF-I) (mean AVP_i was 1.82 mm ± 0.29 and mean AVP_o was 2.32 mm ± 0.52). 



The mean ADM for endocardial borders was 0.89 ± 0.04 and 0.92 ± 0.02 for 
epicardial borders. The lowest ADM is obtained for one case with hypertrophy (0.8). 
For both datasets and both contours, our minimal AVP corresponds to the maximum 
ADM. 
Furthermore, comparisons were performed on EF and LVM basis, papillary muscles 
being either included inside the myocardium (PIM) or inside the cavity (PIC). Results 
show a good correlation with ground truth for EF independently of papillary muscle 
inclusion. Equation 1 and figure 5 show the linear regression of the EF and the LVM: 
 

EF with PIC: Y = 1.00X + 1.60, r2=0.97 . 
EF with PIM: Y = 1.02X + 1.00, r2=0.96 . 

LVM with PIC: Y = 0.80X + 31.51, : r2=0.88. 
LVM with PIM: Y = 0.82X + 30.02, r2=0.89  . 

 

(1) 

where X contains the ground truth values and Y the estimated 
data.

 

Fig. 5. Linear regression for EF and LVM with PIC: automated (y-axis) vs. ground truth (x-
axis). 

A visual assessment was made for each subject of both datasets for all slices. The 
largest differences between manual and automated endocardial contours occurred in 
apical slices. Furthermore, the organizing committee of the challenge provided visual 
evaluation results (on the validation dataset only) based on one expert’s opinion, a 
cardiologist. A scale from 1 (excellent contours where only little correction is 
required) to 4 (subjects contours are unusable) was given. Thirteen subjects got a 
rating of 1 and two subjects (SC-HF-I-05 and SC-HF-NI-07) got a rating of 2, 
meaning that more than 50% of the contours are acceptable for these subjects. In the 
case of subjects with hypertrophy (SC-HYP-08, SC-HYP-37), some systolic and 
diastolic slices were a bit unmatched with the manual contours. Also, a difficulty with 
accurate placement of the contours around the LV outflow tract (LVOT) was shown 



for subjects with hypertrophy and non-ischemic heart-failure as well as for one 
healthy subject (SC-HYP-08, SC-HF-NI-07 and SC-N-06). 

4 Discussion 

An accurate estimation of the EF and LV mass is essential for the evaluation of LV 
function in clinical routine. In this paper a robust and semi-automated segmentation 
was presented and successfully tested on 30 subjects including patients with various 
pathologies. Our technique has been successfully used on 20 normal subjects in a 
previous study [1]. However, only the endocardium was segmented in this study. Our 
present study aimed at extending the segmentation technique to the epicardium and at 
reducing computational time. Indeed, compared to the previous study [1], the choice 
of the filtering parameter λ was made prior to GVF-Snake segmentation, thus 
reducing the number of segmentations to one.  

The epicardial segmentation was more difficult to achieve because of the low 
contrast between myocardium and surrounding structures. The mask was a simple 
way to prevent the deformable model from any accidental and unnecessary "over-
expansion". One simple way to correctly detect the epicardial border was to modify 
the size of the mask. The main drawback of this constraint was that it required some 
user intervention. Finally, papillary muscle detection was quite successful using fuzzy 
k-means clustering and the approach was easy to automate.  

Further developments are required to take into account the temporal variations of 
the myocardial contours during the cardiac cycle. This can be achieved by the 
adaptation of the 2D+t approach which was recently proposed for aortic segmentation 
[8]. Moreover, to reduce the manual interactions, the spatial continuity between slices 
should be better taken into account. These developments should be tested for the “on-
line” contest.  

One advantage of the proposed approach is that it does not require any specific 
training. Confirmation was given by the fact that similar results were obtained for 
both datasets. According to provided results and remarks, difficulty with accurate 
placement of the contours around the LVOT was shown, but all participants in the 
challenge suffered from it. The lowest performance was observed for subjects with 
hypertrophy, whereas results for subjects with ischemic and non-ischemic heart 
failure and healthy subjects were satisfactory. This challenge provides the opportunity 
to objectively evaluate several cardiac segmentation algorithms on a single database. 
Despite some technical difficulties (including the default setting of the GVF-Snake 
parameters that sometimes needed modification), our segmentation algorithm 
including myocardial borders and PM detection performed successfully on the 
provided datasets. Moreover, the usefulness of the segmentation technique presented 
in this paper on data provided by different centers (different acquisition devices) is 
currently under investigation [9]. This would potentially allow rendering it robust to 
image characteristics such as spatial resolution and signal-to-noise ratio. 
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