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Abstract. This study investigates a fully automatic left ventricle segmentation
method from cine short axis MR images. Advantages of this method include
that it: 1) is image-driven and does not require manually drawn initial contours.
2) provides not only endocardial and epicardial contours, but also papillary
muscles and trabeculations’ contours; 3) introduces a roundness measure that is
fast and automatically locates the left ventricle; 4) simplifies the epicardial
contour segmentation by mapping the pixels from Cartesian to approximately
polar coordinates; and 5) applies a fast Fourier transform to smooth the
endocardial and epicardial contours. Quantitative evaluation was performed on
the 15 subjects of the MICCAI 2009 Cardiac MR Left Ventricle Segmentation
Challenge. The average perpendicular distance between manually drawn and
automatically selected contours over all slices, all studies, and two phases (end-
diastole and end-systole) was 2.07 *# 0.61 mm for endocardial and 1.91 * 0.63
mm for epicardial contours. These results indicate a promising method for
automatic segmentation of left ventricle for clinical use.
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1 Introduction

The automatic segmentation of the left ventricle (LV) in cine MR typically faces
five challenges: 1) The difficulty of locating the left ventricle; 2) the overlap between
the intensity distributions within the cardiac regions; 3) the lack of edge information;
4) the shape variability of the endocardial and epicardial contours across slices and
phases; and 5) the inter-subject variability of 2), 3), 4). In this work, we investigated a
novel image-driven method for the accurate, robust, fast and fully automatic LV
segmentation from short axis (SAX) cine MR images. The method is expected to give
robust location of LV and accurate segmentation of papillary and trabecular muscles,
as well as endocardial and epicardial contours in all the phases.

Main contributions of the work are that it introduces a roundness-measure-based
fast and automatic LV location technique, simplifies the epicardial contours



segmentation by mapping the pixels from Cartesian to approximately polar
coordinates, and applies a fast Fourier transform to smooth the endocardial and
epicardial contours. The method is fully automated and is capable of computing
contours for all images in approximately 2.5 minutes with non-optimized Matlab
code.

2 Materials and Methods

2.1 Datasets

15 clinical cardiac cine MRI data (4 ischemic heart failure, 4 non-ischemic heart
failure, 4 LV hypertrophy and 3 normals) were used in this study. The data was
provided by the MICCAI 2009 Cardiac MR LV Segmentation Challenge organizers.
Refer to [1] for details of the dataset.

2.2 LV Location

This section presents method based on a roundness metric to automatically locate
the LV blood pool’s centroid on the middle slice in the ED phase. This method is
based on the following assumptions: 1) the heart is approximately in the centre of the
original image; 2) the left ventricle blood pool is more circular than the right ventricle
blood pool; and 3) the blood has higher signal intensity than the myocardium (i.e.,
bright blood imaging). This procedure consists of five steps (refer to Fig.1):

Fig. 1. LV location procedure. a. Target image with rectangular ROI (green box) and image
center(green point), b. ROI image, c. Binary image, d. Surviving objects’ convex hulls (red)
and the corresponding roundness metric(green). The detected LV blood pool centroid is labeled
as a red point.

1. Choose the middle (normally in the mid-cavity level) slice image in the ED phase
as the target image.

2. Specify a centered, fixed rectangular region of interest (ROI) on the target image.
The size of the rectangular is 110 x 110pixels (Fig.1a, b).



3. Apply the optimal threshold method of Otsu[2] to convert the ROI to a binary
image (Fig.1c).

4. Remove all objects smaller than a predefined threshold (40 pixels) and compute
the convex hull of the surviving objects (Fig.1d).

5. Compute the roundness metricR:@of each survived convex-hulled object,
P

where, 4 isareaand P is perimeter length. R isequal to 1 for a circle. The
object with the largest roundness metric is recognized as the L'V blood pool, and
its centroid coordinate (x, y) is utilized for following segmentation (Fig.1d).

2.3 LV Segmentation

For each 2D image, the LV blood pool contour, endocardial contour, papillary
muscles’ and trabeculations’ contours, and epicardial contour will be detected
sequentially. Given a 2D image, the first problem is how to specify a ROI that
includes the LV. Our method uses a fixed size rectangle centered on the
predetermined centroid (x,y) of the LV blood pool to determine an ROI. This is
based on the assumption that the central part of the LV blood pool does not move
much across slices and phases.

Fig. 2. LV contour calculation procedure. a. Image with rectangular ROI and previously
identified LV blood pool centroid (red), b. ROI image, c. Binary image, d. Coarse LV blood
pool, e. Dilated mask, f. Refined LV blood pool, g. LV blood pool contour, h. Convex hull of
the LV blood pool (cyan), i. Smoothed endocardial contour (red), j. Papillary muscles and
trabeculations’ mask, k. Papillary muscles and trabeculations’ contours (blue).



The blood pool contour is detected by the following steps (refer to Fig.2a-g):

1. Specify a rectangular ROI centered on the previously identified LV blood pool
centroid coordinate (x,y) (see Section 2.2). The size of the rectangle is
110x 110pixels (Fig.2a, b);

2. Apply the optimal threshold method of Otsu[2] to convert the ROI to a binary
image (Fig.2¢c);

3. The LV blood pool object is identified by choosing the object that has maximum
overlap with a predefined mask (20 x 20 pixels) centered on the LV blood pool
centroid (Fig.2d);

4. Dilate the LV blood pool object by a disk-shaped structuring element with radius
of 20 pixels to produce a refined, smaller ROI (Fig.2e);

5. Repeat steps 2-3 based on the refined ROI. This will give a refined blood pool
mask (Fig.2f).

The endocardial contour is detected by the following steps (refer to Fig.2h, i):

1. Compute the convex hull of the refined blood pool (Fig.2h);

2. Smooth the convex hull’s contour by applying the 1D fast Fourier transform
(FFT) [3]. We first compute the FFT of the x coordinate of the contour point
index, multiply the result by a low pass filter transfer function (keep only the
four lowest frequency components), then take the inverse transform to produce
the smoothed x coordinate. Repeat for y coordinates (Fig.2i).

The papillary muscles’ and trabeculations’ contours are detected by these steps:

1. Subtract the convex-hull mask of the refined blood pool from the refined blood
pool mask to calculate the mask image of the papillary muscles and
trabeculations (Fig.2j);

2. Trace the exterior boundaries of the objects in the mask image to determine the
papillary muscles’ and trabeculations’ contours (Fig.2k).

The epicardial contour is calculated by the following steps (refer to Fig.3a-f):

1. Map the pixels from Cartesian to approximately polar coordinates. An outer
boundary is calculated by dilation of the endocardial contour. The two contours
are interpolated to the same number of points, and paired to derive scan lines,
each of a predefined length (20 pixels) (Fig. 3a). The result is a rectangular
image that extends from the endocardial contour (top row) outward (bottom
row) (Fig.3b).

2. Use each top-row pixel as a region growing seed, with all grown regions added
and converted to a binary image (Fig.3c). For region growing, intensities are
normalized by the original image maximum, and pixels added to a grown region
must meet the intensity criterion (difference from mean of the grown region less
than 0.04).

3. Fill image holes by morphological operations (Fig.3d).

4. The end point of each column’s grown region determines an edge point (Fig.3e).

5. Inverse transform the edge point coordinates to the original coordinate space to
determine the epicardial contour (Fig.3f).

6. Smooth the contour by applying the FFT technique as described earlier (Fig.3f).



Fig. 3. LV segmentation procedure for epicardial contour. a. Scan lines for mapping the pixels
from Cartesian to polar coordinates. b. Result of image transform. c. Region growing binary
image. d. Image after filling holes. e. Edge points (green). f. Epicardial contour before (blue)
and after FFT smoothing (red).

2.4 Evaluation

The performance of the segmentation algorithm was evaluated, both quantitatively
and qualitatively according to the Challenge evaluation framework [1]. In order to
quantitatively evaluate the detected endocardial and epicardial contours of the ED and
ES phases of all slices several measures were assessed: average perpendicular
distance (APD), the Dice metric (DM) [4], Clinical parameters (Ejection fraction(EF)
and Left Ventricular Mass(LVM)). In order to qualitatively evaluate the contours, an
experienced cardiologist (blinded to the participants) rated the segmentation results on
a four point visual scale. In accordance with the Challenge rules, the algorithm
training did not include the validation or online data sets. The algorithm was
previously trained with data sets from other subjects, with similar MR scan
characteristics.

3 Results

The automatic segmentation method were tested on 15 clinical MR exams. The
accuracy of LV location is 93.33%(14/15). The average computation time of LV
location is 0.074 = 0.014s per subject. The average perpendicular distance (APD) and
Dice metric (DM) over slices and ES and ED phases calculated for our method are
shown in Table 1. The EF and LVM are shown in Table 3, indicating only the results
where the papillary muscles are included in the cavity in accordance with the expert
contours. The visual assessment results are shown in Table 3. There are five studies
where the algorithm has difficulty with detection of Left Ventricular Outflow Tract
(LVOT), six studies with difficulty at the apex, and four studies have the problem of
missing contours. For all the studies, the detected contours are very accurate.

The average computation time of the segmentation of the proposed method is
144.89 + 44 07s per subject including the time of reading DICOM data and saving
contour files. The computation time is 0.65s per image for the the 15 exams. The
computation time was tested on consumer hardware (2x2.8GHz Quad-core Intel



Xeon Mac Pro, Apple) with a non-optimized Matlab code (Mathworks)
implementation.

Table 1. Detect percentage, good percentage, APD and DM

. Detect percentage Good percentage APD DM
Patient ID

1C oC IC oC 1C oC IC oC
SC-HF-I-05 83.33 88.89 83.33 88.89 1.37 1.06 0.94 0.97
SC-HF-I-06 100.00 100.00 95.45 100.00 1.32 2.15 0.94 0.93
SC-HF-1-07 87.50 100.00 87.50 100.00 2.44 1.57 0.87 0.95
SC-HF-1-08 50.00 63.64 50.00 63.64 1.61 2.59 0.94 0.94
SC-HF-NI-07 87.50 91.67 87.50 91.67 2.61 1.09 0.89 0.97
SC-HF-NI-11 100.00 100.00 100.00 80.00 2.19 1.57 0.90 0.96
SC-HF-NI-31 63.16 70.00 63.16 70.00 2.41 1.51 0.90 0.96
SC-HF-NI-33 94.44 100.00 83.33 90.00 2.04 2.01 0.89 0.94
SC-HYP-06 76.92 85.71 76.92 57.14 2.30 3.26 0.85 0.90
SC-HYP-07 68.75 87.50 50.00 87.50 1.87 2.81 0.90 0.92
SC-HYP-08 63.16 80.00 42.11 80.00 3.77 1.81 0.85 0.95
SC-HYP-37 46.15 57.14 46.15 57.14 1.93 2.45 0.84 0.92
SC-N-05 66.67 75.00 53.33 75.00 1.66 1.38 0.87 0.95
SC-N-06 84.62 85.71 84.62 85.71 1.77 1.77 0.88 0.93
SC-N-07 94.44 100.00 83.33 90.00 1.79 1.63 0.89 0.93
Statistics
Mean 717.78 85.68 72.45 81.11 2.07 1.91 0.89 0.94
Std 17.35 14.06 19.52 13.95 0.61 0.63 0.03 0.02

IC: inner contour, OC: outer contour

Table 2. Ejection Fraction and Left Ventricle Mass

. EF(PIC) LVM(PIC)
Patient ID
Auto Expert Auto Expert

SC-HF-I-05 34.24 3 33.0 111.22 115. 45
25.7

SC-HF-1-06 21.32 8 178.62 147. 34
28.1

SC-HF-1-07 38.16 8 142.70 114.12
21. 4

SC-HF-I-08 23.99 9 134.79 124. 40

. 12.9 .

SC-HF-NI-07 23.81 1 155.99 130. 54
14.8

SC-HF-NI-11 17.71 4 198. 98 158. 25
35.5

SC-HF-NI-31 43.88 9 126. 25 127. 38
58.3 ;

SC-HF-NI-33 66. 54 5 176. 95 130. 78

SC-HYP-06 69. 55 3 604 78.53 91.59
62. 2

SC-HYP-07 75.04 7 175.83 133. 55

SC-HYP-08 NaN 9 °8.6 298.08 278. 17
71.6

SC-HYP-37 81.84 8 94. 00 125. 38

SC-N-05 82.57 62.8 64. 49 73.50

SC-N-06 65.20 54.5 74.48 64.02



9
59.0

SC-N-07 61.33 6 112.05 102. 34
Mean 50. 37 8 13.9 141.53 127.79
Std 23.81 19.9 60. 09 48. 717

7
EF:ejection fraction, LVM: left ventricle mass, PIC: papillary included in the LV cavity

Table 3. Visual assessment
Category HF-I HF-NI HYP N Overall
Average 1.8 2.0 2.8 1.7 2.1

4 Discussion and Conclusions

The proposed segmentation method does not need initialization by manually drawn
contours, prior statistical shape model, or gray-level appearance model. The proposed
method is an image-driven method with only the assumption that the LV blood pool
in a short axis image is approximately circular. Therefore it should be suitable for
datasets with a wide range of anatomy, function, and image contrast as required for
routine clinical use.

Previous methods of LV location usually have two steps: locate the entire heart and
then the LV. The proposed roundness metric method provides an alternative for
locating the LV, and it requires only a single step. It is very fast, taking
0.0736 = 0.0139s per subject. However, analysis of the validation data sets indicates
that some development is required to improve robustness

A difficult challenge of LV segmentation is the accurate delineation of the
epicardial contours. The typical problem is ballooning epicardial contours at the
junction between myocardium and lung parenchyma and subdiaphragmatic tissues.,
caused by small intensity difference between these tissues. By mapping the pixels
from Cartesian to polar coordinates, the irregular, ring-shaped ROIs are transformed
to rectangular images. In this way, the epicardial contour detection problem was
simplified.

Smoothing the contours by the FFT is a very fast and effective technique. The
main merit of the FFT technique is to provide smoothed contours by removing
outliers of the detected edge points without changing the overall shape.

The proposed method can provide contours of papillary muscles and
trabeculations. Clinical studies have employed different quantification methods for
calculation of LV volume, mass and ejection fraction by including or excluding
papillary muscles and trabeculations in the ventricular cavity [9, 10]. Recent studies
have shown that the papillary muscles and trabeculations have a significant impact on
calculation of LV volume and mass [9] and ejection fraction [10]; therefore the
proposed method provides additional important options for daily clinical application.

There are limitations of the proposed method: 1) it can not segment the LV from
the right ventricle if the SAX slice includes the atria; 2) the small blood pool at the
apex is difficult to detect correctly; and 3) there are some slices where the algorithm
fails and the contours are not generated. These problems were most noticeable for the



subjects with hypertrophy. There is a need for an improved 3D or 4D (3D + phase)
constraint to improve the contour detection robustness of the algorithm, and this will
be the subject of future research.

For subjects where the contour detection percentage and “good” percentage (i.e.
APD < 5Smm) were less than 100% there were insufficent or inadequate contours, and
the clinical parameters EF and LVM were not reliable for clinical purposes.
However, where the contours met these criteria, the resulting EF and LVM were
highly correlated with the expert values.

In summary, the proposed fully automated segmentation technique has shown
promising results that merit further development for quantification of cine cardiac MR
in clinical practice.
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