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Abstract. Probability distributions are a key component of clinical research. One only has to make
a cursory review of clinical literature to realize that nearly all clinical publications reference some sort
of statistical test; be it t-test, chi-squared test, or F-test. In this paper, we describe an architecture
for providing the Insight Toolkit with access to probability distributions. The architecture can support
parametric and nonparametric probability distributions. Each distribution provides access to its proba-
bility density function (PDF), cumulative distribution function (CDF), inverse cumulative distribution
function (inverse CDF), mean, and variance. These methods form the basis of statistical tests.

This work is part of the National Alliance for Medical Image Computing (NAMIC), funded by the
National Institutes of Health through the NIH Roadmap for Medical Research, Grant U54 EB005149.
Information on the National Centers for Biomedical Computing can be obtained from
http://nihroadmap.nih.gov/bioinformatics.

1 Introduction

Statistical analysis has application in both clinical research and medical image analysis. In clinical research,
statistical analysis is used to determine the relative merit of various treatments and in stratifying collections
of subjects. In medical image analysis, statistical analysis is used for signal decomposition, segmentation,
classification, and detection. The basis of these statistical analyses are probability distributions. Probabil-
ity distributions can be parametric, where the distribution is described by a small set of parameters, or
nonparametric, where the distribution is a function of a set of samples.

A probability distribution is characterized by its probability density function, f(z;-). The probability
density function can be integrated over a small interval to determine the probability of a random variable
being in the specified interval. When the probability density function is integrated from —oo to a value z,
the result is the cumulative distribution function

Py = [ s W

The cumulative distribution function determines the probability of a random variable having a value less
than or equal to z. The cumulative distribution function is the foundation of statistical inference. A typical
statistical inference measures the probability of a random variable attaining a value more extreme than
a given measurement x. If the probability of a more extreme value is low, we may choose to infer that
measurement x is not a measurement from the given distribution and perhaps is from a different population.
Arguments similar to this are used in constructing t-tests, chi-square tests, and F-tests.

In this paper, we present an architecture for providing the Insight Toolkit with access to probability dis-
tributions. These distributions can be used for a variety of clinical and medical image analysis applications.
Each distribution in the Probability Distributions library provides access to the distribution’s probability den-
sity function, cumulative distribution function, inverse cumulative distribution function, mean and standard
deviation.

2 Architecture

2.1 Class hierarchy

The Probability Distributions class hierarchy is intended to be shallow and wide. There is a single base class
ProbabilityDistribution from which all distributions inherit, see Figure 1. Gaussian, Chi-square, and
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| itk:: Statistics::ProbabilityDistribution |
% |
itk::Statistics::ChiSquareDistribution| | itk:: Statistics:: GaussianDistribution | | itk:: Statistics:: TDistribution

Fig. 1. Class hierarchy for probability distributions.

Student-t distribution are currently implemented. In the future, F, exponential, and uniform distributions
will be added.

The methods available to a ProbabilityDistribution are shown in Table 1. Access to the proba-
bility density function, cumulative distribution function, and inverse cumulative distribution function is
made through the EvaluatePDF (), EvaluateCDF(), and EvaluateInverseCDF() methods. The argument
to EvaluatePDF () and EvaluateCDF() can be any real number. The argument to EvaluateInverseCDF ()
must be between 0.0 and 1.0 inclusive. ProbabilityDistribution also provides access to the mean and
variance of the distribution. Since not all distributions have a mean or variance, ProbabilityDistribution
has methods HasMean() and HasVariance() to query whether the mean and variance exist. If GetMean ()
or GetVariance() is evaluated on a distribution that does not have a mean or variance, then (quiet) NaN is
returned.

virtual double EvaluatePDF (double x) const

virtual double EvaluateCDF (double x) const

virtual double EvaluatelnverseCDF (double p) const
virtual bool HasMean () const
virtual bool HasVariance () const

virtual double GetMean() const

virtual double GetVariance () const

Table 1. Methods provided by ProbabilityDistribution

Concrete subclasses of ProbabilityDistribution provide additional methods to specify the parameters
of the distribution. For instance, GaussianDistribution provides methods SetMean() and SetVariance()
while TDistribution and ChiSquareDistribution provide a SetDegreesOfFreedom() method.

Subclasses of ProbabilityDistribution that represent parametric distributions can also provide access
to the probability density function, cumulative distribution function, and inverse cumulative distribution
function via static methods of the class. GaussianDistribution provides the static methods in Table 2.
TDistribution provides the static methods in Table 3. ChiSquareDistribution provides the static methods
in Table 4. The static methods allow an algorithm to access a distribution without having to create an instance
of the distribution.

static double PDF(double x)

static double PDF(double x, double mean, double variance)

static double CDF(double x)

static double CDF(double x, double mean, double variance)

static double InverseCDF (double p)

static double InverseCDF (double p, double mean, double variance)

Table 2. Static methods provided by GaussianDistribution.
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static double PDF(double x, long degreesOfFreedom)
static double CDF(double x, long degreesOfFreedom)
static double InverseCDF (double p, long degreesOffFreedom)

Table 3. Static methods provided by TDistribution.

static double PDF(double x, long degreesOfFreedom)
static double CDF(double x, long degreesOfFreedom)
static double InverseCDF (double p, long degreesOfFreedom)

Table 4. Static methods provided by ChiSquareDistribution.

2.2 Usage

There are two distint ways in which to use the distributions in the Probability Distributions library. The first
is to create an instance of the class, call the methods to set the parameters of the distribution, and then call
the methods like EvaluateCDF ().

double p;

// Create and configure a Gaussian distribution with mean 5.0 and variance 2.0
typedef itk::Statistics::GaussianDistribution GaussianDistributionType;
GaussianDistributionType::Pointer gaussian = GaussianDistributionType: :New();
gaussian->SetMean(5.0);

gaussian->SetVariance(2.0);

// Evaluate the cumulative distribution function at 1.0
p = gaussian->EvaluateCDF(1.0);

// Create and configure a Student-t distribution with 50 degrees of freedom
typedef itk::Statistics::TDistribution TDistributionType;
TDistributionType: :Pointer t = TDistributionType::New();
t->SetDegrees0fFreedom( 50 ) ;

// Evaluate the cumulative distribution function at 30
p = t—->EvaluateCDF(30.0);

Since all distributions provide uniform access to the probability density function, cumulative distrib-
ution function, and inverse cumulative distribution, it is possible to write algorithms that merely take a
ProbabilityDistribution as input, allowing the algorithm to be reused for a variety of distributions.

A second way to use the distributions in the Probability Distributions library is to use the static methods
provided by the specific subclasses of ProbabilityDistribution.

double p;

// Evaluate the cumulative distribution of a Gaussian with mean 5.0
// and variance 2.0 at 1.0
p = itk::Statistics::GaussianDistribution::CDF(1.0, 5.0, 2.0);

// Evaluate the cumulative distribution of a Student-t distribution
// with 50 degrees of freedom at 30
p = itk::Statistics::TDistribution::CDF(30.0, 50);

Accessing the distributions via the static methods is useful when an algorithm writer knows the distri-
bution of the data at the time he/she is writing the algorithm. Using the static methods avoids having to
create an instance of the distribution.
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2.3 Netlib

Much of the numerical processing in the Probability Distributions library is provided by Netlib routines
(http://www.netlib.org) [1]. Originally crafted in the 1970’s, the Netlib routines were implemented in Fortran
with great attention paid to numerical precision and accuracy. From Netlib, the Probability Distributions
library uses implementations of the

Gamma function

Incomplete Gamma function
Logarithm of the Gamma function
Incomplete Beta function
Logarithm of the Beta function

CUk L=

The Probability Distributions library uses C versions of these Netlib routines, converted from the original
Fortran using f2c:

f2c -a -p *.f

One issue with using £2c converted code within ITK, is that the resulting C code is rarely thread safe. The
root cause of the thread un-safeness is the preponderance of static variables in the generated C code. The
-a and -p options to £2c attempt to convert the original Fortran common blocks to local variables instead
of naively translating Fortran common blocks to C static variables. But even using the -a and -p options to
f2c, the resulting C code can still have static variables.

One pattern used in the Netlib code is that the first time a routine is invoked, some pre-calculations
are performed and results cached for future invocations of the routine. These pre-calculations are usually to
determine machine precision. Determining machine precision in C is a lot simpler than it was when Fortran
ruled the world. The Fortran code had to determine the machine architecture (Vax, IBM Mainframe, Convex)
and lookup the precision hardcoded for that architecture. C code, on the other hand, only has to include
<float.h> and access symbols like DBL_MIN or DBL_MAX or DBL_EPSILON to determine machine precision. To
take advantage of this, the C code emitted by £2¢ was hand editted to remove the pattern of pre-calculating
machine precision on the first invocation of the routine, resulting in code that is thread safe.

2.4 Inverse CDF calculation

The cumulative distribution function is a key function in statistical analysis. The cumulative distribution
function F(x;-) is

p=r) = [ " )de (2)

where f(x;-) is the probability density function. The cumulative distribution function evaluates the prob-
ability of having a random variable less than or equal to z. In a one-side statistical test, the cumulative
distribution function can be evaluated at a measurement or sample x to determine the probability of a
having a measurement less than or equal to the current measurement. If the probability is high — greater
than a threshold P* (typical values of P* are 0.95, 0.99 or 0.999) — then the current measurement z is in
the upper tail of the distribution and perhaps the measurement is not actually from this distribution at all.
Similar evaluations can be performed on the lower tail of the distribution by comparing against small values
of P*, identifying measurements that are less than P* and therefore in the lower tail.

Evaluating the cumulative distribution function can be an expensive calculation, one which you may want
to avoid if you need to analyze a large number of measurements or samples. An alternative construction of this
statistical test is to use the inverse of the cumulative distribution function. Here, the probability threshold
P* is prescribed, for instance P* = 0.99, and the inverse cumulative distribution function evaluated at P*
to determine the value x* such that the probability of a measurement being less than or equal to z* is P*.
Once z* is determined, the statistical test is merely a comparison of each measurement z against «*. In you
have a lot of measurements to evaluate, using the inverse cumulative distribution function approach requires
only a single evaluation of the inverse cumulative distribution function instead of multiple evaluations of the
(forward) cumulative distribution function.
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The inverse cumulative distribution function is
x:Ffl(p;-)zargxp—/ flu;)du=0 (3)

For most distributions, a closed form solution for F~!(p;-) is not available. Therefore, the inverse cumulative
distribution function is solved numerically. There are approximations to the inverse cumulative distribu-
tion function for many distributions, see [2] for specific approximations. Some of these approximations are
polynomial and some are based on other inverse functions. For example, the approximation for the inverse
CDF of the Student-t distribution is a polynomial of order 9. The approximation for the inverse CDF of the
chi-square distribution uses the inverse cumulative distribution function of the Gaussian under a change of
variables. These approximations are only asymptotically accurate but can serve as reasonable initial guesses
for a numerical optimization process. In many cases, just a few Newton iterations (3 to 10) is all that is
needed to find the inverse of the cumulative distribution function to roughly 1071° accuracy.
In the Newton iterations, we are trying to find the roots of

9(x) =p — Fx;-) (4)

where p is given. Let 2o be an initial guess to F~!(p) provided by an approximation as discussed above. The
Newton iterations are

L 9(@i)
Tit1 = T4 gl<$¢) (5)
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where F'(x;-) is the cumulative distribution function of x and f(z;-) is the probability density function of x.

2.5 Numerical precision

One goal of the Probability Distributions library is to maximize numerical precision while limiting compu-
tational complexity. Since the values computed by the methods of the Probability Distributions library are
typically used in other calculations to form statistical tests — with each of these calculations loosing nu-
merical precision — maximizing numerical precision at the level of the Probability Distributions library is
paramount. Numerical precision is one of the reasons the Probability Distributions library utilizes routines
from Netlib. The precision of the methods in the Probability Distributions library are typically between 10710
and 10715 (though some calculations drop down to 107%).

The numerical precision attained by these methods does come at the cost of computational complexity.
Where possible, iterative techniques have been limited in duration to yield only the precision needed. One
option to mitigate computational complexity when many statistical tests need to be perfomed is to use the
methods in the Probability Distributions library to build tables of thresholds and refer to these thresholds
instead of evaluating the distributions for every sample being tested.

3 Statistical inference

Statistical inference is the process of inferring information about a process or population based on a set of
samples. The main activity in statistical inference is hypothesis testing [4]. Hypothesis testing involves:

— constructing a null hypothesis, Hy,
— modelling the null hypothesis via a test statistic,
— calculating the probability of the test statistic, assuming the null hypothesis is true.
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The null hypothesis is the research question being considered. An example of a null hypothesis is ”there
is no difference between the response of two groups of subjects receiving different treatments”. The null
hypothesis is transformed into a concrete concept by modelling the hypothesis with a test statistic. For the
previous example, the test statistic may be based on the difference between the two (unknown) population
means of a response variable. Finally, the test statistic is measured and the probability of this measurement
is determined assuming the null hypothesis is true. For the previous example, the probability of the difference
between the group means being different from zero is calculated. This probability is referred to as the P
value, with values near 0 indicating an unlikely occurence if the null hypothesis is true. For the previous
example, a group mean difference with a low P value would indicate that the two groups are unlikely to be
from the same population.

The key to statistical inference is in modelling the null hypothesis with a test statistic that is descriptive,
sufficient, and whose probabilities can be evaluated.

There are many statistical tests that can be used in statistical inference. Several of these statistical tests
are used as motivating examples in the next section.

4 Distributions

4.1 Gaussian distribution

Many natural processes have been found to approximately follow a Gaussian or normal distribution. When-
ever a process is the result of many independent and additive events, we can infer from the central limit
thereom the resulting distribution will be approximately Gaussian [5]. The Gaussian distribution has a

probability density function
1 _(e=w)?

flzyp,0°) = e 22 (8)
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where 1 and 02 are the mean and variance of the distribution. The cumulative distribution function is

F(z;p,0%) = % (1 +ert ‘Z\_/g) 9)

where erf(x) is the error function.

4.2 Student-t distribution

William Sealey Gosset published the derivation of the t-distribution in 1908 under the pseudonym Student
[6,7]. Gosset needed statistical methods appropriate for small sample sizes for selecting the best yielding
variants of barley for Guinness brewery. The Student-t statistic arises when comparing the sample mean to
the population mean when the population variance is unknown. Given n independent samples, identically
distributed, from a normal distribution, the statistic

=Lk o

where /i is the sample mean, 62 is the sample variance, and p is the population mean, has a Student-t
distribution with probability density function

N I'((v+1)/2)
fliv) = VUrD(v/2)(1 + 2 /v)(w+1)/2 "

with v = n — 1 degrees of freedom and where I'(z) is the Gamma function. The cumulative distribution of
the Student-t distribution [2, derived from 26.7.1] is

L J1=in(w/2,1/2) t>o,
Fltv) = {;Iw(v/z 1/2) t<0 12)
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where I, (a,b) is the incomplete Beta function and

v

-7 1
v+ t2 (13)

The Student-t distribution is symmetric, has a mean of zero, and a variance of v/(v — 2) for values of v > 2.
The square of a t-distributed random variable with v degrees of freedom is an F-distributed random variable
with 1 and v degrees of freedom.

t Tests In practice, the population mean is rarely known, so Equation 10 is actually used to make inferences
on the population mean. One such inference is to identify a likely lower (or upper) bound on the true value
of the population mean given just n identically distributed samples from a normal distribution. We define a
statistical bound on a random variable ¢ from a Student-t distribution

Prt <t*] < P* (14)

where P* is a desired confidence on the bound. A value for P* of 0.95 defines an upper bound on the t-
statistic with confidence of 95%. Frequently, the confidence level is specified by « where P* = 1 — . The
inverse cumulative distribution function with v = n — 1 degrees of freedom can be used to determine ¢*,

t* = F~Y(P*;v). (15)
Comparing the critical value of ¢* with the Student-t statistic in Equation 10

p—p

o/vn

provides an equation that can be solved for the population mean g,

<t* (16)

.t

> N (17)

Equation 17 defines a lower bound on the population mean p. Note that the lower bound is a function of

the number of samples n. As the number of samples increases, the confidence bound on the population mean

converges to the sample mean [ (as expected since the sample mean [i converges to the population mean p

as the number of samples increases). A similar analysis can be performed to determine an upper bound on

the population mean. TDistribution: : InverseCDF(p, n - 1) can be used to determine t* for any desired
confidence level P*.

An alternative to this test is to hypothesize a particular population mean and test the hypothesis that
the sample mean models the population mean. Here, we evaluate Equation 10 using the hypothesized mean
1, and the estimated i and &. The probability of the resulting ¢ value is calculated from the cumulative
distribution function,

Prit] = F(t;v) — F(—t;v) (18)

at v =n — 1 degrees of freedom. This is the probability the sample is from the population with the hypoth-
esized mean. The P wvalue of this test is

P=1—(F(t;v) — F(-t;v)) (19)

which yields a value close to zero when the sample mean is ”far” from the hypothesized mean (where ”far”
is a function of the sample variance and the number of samples). TDistribution::CDF(t, n — 1) can be
used to evaluate F'(t;v) and F(—t;v).

A second common inference is determining whether two groups of samples are from same population. This
is a common test when analyzing two groups of subjects receiving different treatments. If we hypothesize the
two groups of subjects are from the same population and hence have the same mean, then we can compare
the confidence intervals on the population mean for the first group with the confidence intervals on the
population mean for the second group. If the confidence levels do not overlap, then we conclude the two
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groups are from different populations at the 2« level. Again, TDistribution: : InverseCDF(p, n; - 1) can
be used in determining the confidence levels for each population mean.

Alternatively, we can construct a single test statistic based on the difference between the two population
means. The statistic
(An — fi2) — (p1 — pi2)

2 =2
91 4 %3

t:

(20)
ni na

where fi1, 67 and n; are the sample mean, sample variance, and number of samples in group one, and
fi2, 62 and ny are the sample mean, sample variance, and number of samples in group two, is commonly
approximated as a Student-t random variable with n; + ny — 2 degrees of freedom. For the two groups of
subjects to be from the same population py — o must be zero. Therefore, Equation 20 reduces to

T o S (21)

~2 ~2
ﬁ+&
ni n2

A value of t can calculated from the data and the probability that the two group means are the same can
be calculated using the cumulative distribution function

Prit] = F(t;v) — F(—t;v) (22)
at ni + no — 2 degrees of freedom. The P value of this test is same as the previous test
P=1—(F(t;v) — F(—t;v)) (23)

which yields a value close to zero when the difference in the sample means is so large that it is unlikely to
have occurred from random chance (where random chance is a function of the sample variances and sample
sizes). TDistribution: :CDF(t, n; +ny — 2) can be used to evaluate F'(¢;v) and F(—t;v).

4.3 Chi-square distribution
Given n independent samples, normally distributed, with parameters (u;, 0?), the statistic
n T — g 2
f22(2f> @
i=1 '

is a chi-square random variable with v = n degrees of freedom. The chi-square probability density function
[2, 26.4.1] is

1
. _ v/2—1_—x/2 25
f(l',’l)) 2v/2F(1}/2)x e ( )
and the chi-square cumulative distribution function [2, 26.4.19] is
V(v/2,2/2)
F(x:v) = 26

where 7y(a, z) is the incomplete gamma function and I'(z) is the gamma function. The chi-square distribution
has mean v and variance 2v.

Chi-square Tests The chi-square statistic in Equation 24 measures the total squared deviation of a set
of samples from their respective population means and normalized by their respective population standard
deviations. A simplified version of this statistic is used when the samples are all from the same distribution
(i = i, 02 = o%). Under these conditions, chi-square statistics are frequently used for goodness of fit tests,
for instance evaluating a fit calculated via regression.

Another goodness of fit application is testing whether a set of samples is from a particular hypothesized
distribution. Here, the chi-square statistic takes the form

)2
=y OBl (27)

%
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where O; is the i observed frequency and Ej; is the it" expected frequency. Given a set of samples, histogram
methods can be used to determine the frequencies of measurements. These frequencies are used as the O;
values in the test. F; is determined by integrating the probability density function of the hypothesized
distribution over the i*" histogram bin,

E;, = F(l‘upper; ) - F(-Tloweﬂ ')7 (28)

where Zupper and Tiower are the upper and lower bounds on the ith histogram bin. ChiSquareDistribution-
::CDF (x, v) can be used to evaluate the test statistic in Equation 27. The number of degrees of freedom in
the chi-square distribution is

vV =ng — Ny (29)

where ny, is the number of nonempty histogram bins and 7, is the number of parameters in the hypothe-
sized distribution. Any distribution in the Probability Distributions libary can be used for the hypothesized
distribution in Equation 28.

4.4 Other distributions

At the time of this writing, the Gaussian, Student-t, and chi-square distributions have been implemented
in the Probability Distributions library. We plan to extend this library with at least the F-distribution, uni-
form distribution, and exponential distribution. Other distributions may follow (Poisson, Binomial, Cauchy,
lognormal, etc.).

5 Sample based distributions

The distributions presented in Section 4 are all parametric distributions. These are idealized distributions
that can be modelled using a small number of parameters. The drawback to parametric distributions lies
in the relevancy to the processes being analyzed. If the process under consideration can only be modelled
approximately by a parametric distribution, then any resulting inference can be in error simply because the
parameteric distribution did not model the process accurately.

Alternatives to parametric distributions are non-parametric distributions. These distributions are based
on a collection of samples. Examples include histogram methods and kernel function methods [8]. The
Probability Distributions library can be extended to include non-parametric distributions. Such distribu-
tions only need to respond to EvaluatePDF (), EvaluateCDF(), EvaluateInverseCDF(), GetMean(), and
GetVariance (). Supporting non-parametric distributions would allow for for distributions to be learned
from the data being analyzed. Non-parametric distributions can be constructed from a set of training data
and used in evaluating test data.

6 Random variates

When validating a statistical model, it is common to draw samples from the hypothesized underlying dis-
tribution to compare against the actual measurements. The methods in the Probability Distributions library
can be used to draw samples from any of the probability distributions modeled by using the inverse method
[2]. First, draw a sample from a uniform distribution in the range of 0.0 to 1.0. ITK provides a Mersenne
Twister [9] algorithm that can be used for produce uniform variates. Then evaluate the inverse cumulative
distribution function of the distribution in question at this random value to map it to a random variable from
the hypothesized distribution. This method of generating random variates can be used on any distribution
that is at least numerically invertible.

7 Conclusion

In this paper, we present an architecture for providing the Insight Toolkit with access to standard parametric
probability distributions. These distributions form the basis of the statistical tests used in the majority of
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the clinical research publications. We describe the architecture, two different ways to utilize the API, and
described the underlying mathematics and algorithms. The architecture can be extended to include non-
parametric statistical distributions as well as multivariate distributions. The architecture leverages methods
from Netlib for much of the numerical processing. The Netlib routines were converted to C using £2c and
then editted by hand to ensure thread safety.
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