Transforming an itkPointSet

Release 0.00
David Doria

July 29, 2009

Rensselaer Polytechnic Institute, Troy NY

Abstract

This document presents a set of classes to enable operations on itkPointSet objects. In particular, itk-
TransformPointSetFilter allows a transformation to be applied to a set of points. We propose these
classes as addition to the Insight Toolkit ITK www.itk.org.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3112]
Distributed under Creative Commons Attribution License

Contents

1 Transforming an itkPointSet 1

The Insight Toolkit provides a container, itkMesh, for data sets which contain geometry and topology. An-
other container, itkPointSet is provided for data sets consisting only of points (no topology). However, many
functions which apply to both meshes and point sets are implemented only for meshes. Users have been
required to instantiate a topology-less itkMesh in order to perform operations (for example, transformations)
to their point set data. This set of classes removes that requirement and allows point sets to be operated on
more intuitively.

1 Transforming an itkPointSet

As to mirror the existing itkTransformMeshFilter class structure, we created itkPointSetSource and itk-
PointSetToPointSetFilter as supporting classes for itkPointSetTransformFilter. The PointSetTransformFilter
is designed to work exactly as the existing MeshTransformFilter. The following code snipped demonstrates
how to apply a transform to an itkPointSet:

// Declare the pointset pixel type.
typedef itk::PointSet<double, 3 > PointSetType;

// Declare the type for PointsContainer
typedef PointSetType::PointsContainer PointsContainerType;

// Declare the type for PointsContainerPointer

typedef PointSetType::PointsContainerPointer
PointsContainerPointer;

// Declare the type for Points

typedef PointSetType::PointType PointType;

// Create an input PointSet
PointSetType::Pointer inputPointSet = PointSetType::New();

// Insert data in the PointSet
PointsContainerPointer points = inputPointSet->GetPoints();

// Fill the PointSet with data

PointType p;

pl0] = 1.0; // x coordinate

pll] = 2.0; // y coordinate

pl2] 3.0; // z coordinate
points->InsertElement (count, p);

//... continue filling point set...

// Declare the transform type
typedef itk::AffineTransform<float,3> TransformType;

// Declare the type for the filter
typedef itk::TransformPointSetFilter<
PointSetType,
PointSetType,
TransformType > FilterType;

// Create a Filter
FilterType::Pointer filter = FilterType::New();

// Create an Transform

TransformType: :Pointer affineTransform = TransformType::New();
TransformType: :0ffsetType::ValueType tInit[3] = {100,200,300};
TransformType::0ffsetType translation = tInit;
affineTransform->Translate(translation);

// Connect the inputs
filter->SetInput (inputPointSet);
filter->SetTransform(affineTransform);

// Execute the filter
filter->Update();

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3112]
Distributed under Creative Commons Attribution License

