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Abstract

We provide examples and highlights of Advanced Normalization Tools (ANTS) that address practical
problems in real data.
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1 Introduction

The ANTS framework provides open-source, encapsulated, software-engineered functionality for de-
formable normalization and segmentation. Independent evaluation of ANTS normalization tools, applied
to “control” data, placed the toolkit as a top performer amongst 14 methods [22]. Developer evaluation
showed stronger differences with other methodology in neurodegenerative neuroimaging data, where large
deformation is required [9]. ANTS serves as both a base for further algorithm development and also as an
application-oriented toolkit. ANTS enables diffeomorphic normalization with a variety of transformation
models, optimal template construction, multiple types of diffeomorphisms, multivariate similarity metrics,
diffusion tensor processing and warping, image segmentation with and without priors and measurement of
cortical thickness from probabilistic segmentations. The normalization tools, alone, provide a near limitless
range of functionality and allow the user to develop customized objective functions. Objective functions in
ANTS are of the form:

Deformation Cost+Data Terms,

and the command line reflects this balance of two terms. As mentioned above, the data term may
combine multiple different measures of similarity that are optimized in parallel, for instance, im-
age similarity and landmark terms. This document seeks to provide a practical overview of ba-
sic functionality and some of the common use cases that users seek. Additional information is
available online – see ANTS Homepage : www.picsl.upenn.edu/ANTS. For compilation details, see:
Compile and download: http://picsl.upenn.edu/ANTS/download.php. The most important ANTS programs
are described below. 1

1.1 The ANTS Executable

The ANTS program itself is the central program encapsulating normalization/registration functionality. Its
main output is an affine transform file and a deformation field, potentially with inverse. Options to ANTS
allows the user to navigate the similarity and transformation options that are available. ANTS takes multiple
similarity and optimization criteria as options. The program is wrapped in ants.sh for normalization with

1This document is a work in progress. Please check for updates with each release.
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“out of the box” parameters and in buildtemplateparallel.sh for computationally distributed optimal
template construction.

1.2 The WarpImageMultiTransform Executable

The WarpImageMultiTransform program applies ANTS mappings to images. One may apply an arbitrarily
long series of transformations to an image through this program. Thus, it enables one to compose a series
of affine and deformable mappings – and/or their inverses – such that one may avoid multiple interpolations
of a single image. This program is used internally in ANTS optimization to avoid ever using more than one
interpolation. The use-NN option applies nearest neighbor interpolation, otherwise linear interpolation is
used.

1.3 The ImageMath Executable

This is a multi-purpose program that has the following syntax: “ImageMath ImageDimension outputfile-
name Operation InputFileName parameters “. Most basic scalar image operations – and some tensor oper-
ations – may be performed with this program. Some operations output text files, some output images and
some output only to the terminal. ImageMath allows one to multiply images together (m), to negate images
(Neg), to take an image to a power (pow), to test the invertibility of transformations (InvId), to compute the
fractional anisotropy of an image (TensorFA) and to perform Markov Random Field segmentation with or
without priors (Segment). Many other operations are available. Like all other ANTS programs, one may call
ImageMath from the command line to see all of its options. ImageMath is used heavily in ANTS scripts.

1.4 ANTS Scripts

The ANTS/Scripts directory contains (hopefully) user-friendly wrappings of ANTS tools that enable
higher-level error checking and combinations of basic ANTS functions. These scripts are called as sh
antsscriptname.sh and provide usage when called from the command line. For instance, try sh ants.sh.

2 ImageRegistration with ANTS

Quick Start: call ants.sh (from ANTS/Scripts/)
to get usage and apply a normalization to some
of your existing data. It is instructional to
read the script, modify some of the parame-
ters and re-run to witness the effect of your
changes – image registration is an art as well
as science. Many other “ready to go” scripts
are available in ANTS/Scripts. The user must
set his/her ANTSPATH environment variable –
which points to the location of ANTS binaries
– within these scripts or in their environment.
Note: All ANTS programs provide usage when
called from the command line. Most require
the image dimension to be specified as the first
parameter. E.g. ImageMath ImageDimension
where ImageDimenion is 2 or 3.

There are two general applications of image regis-
tration. The first application is transforming labeled
data from a template image space into an individ-
ual space. This strategy is important when appear-
ance alone is not enough to locate a structure as,
for example, in the case of hippocampus segmen-
tation. The template provides a prediction of the
hippocampus-amygdala boundary. The second ap-
plication operates in the ”inverse” direction of the
first: instead of mapping template to individual,
we map individual(s) to the template. Voxel-based
population studies of either functional or structural
variables depend on mapping to a template space.
The common coordinate system enables a statistical
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Transformation Model Appearance/Similarity Metrics

ANTS  -t Syn[0.5]    –m MSQ(I,J,w1,0) –m MI(I,J,w2,#bins) –m PSE(I,J,w3)

Diffeomorphic Regularization
Intensity 
Difference

Mutual 
information+ + +

Landmark 
Guidance

Note:  the choice of L above relates to the -r (regularization) parameter in ANTS, 
which would be part of the blue above.

Figure 1: The relationship between the variational form that defines the optimization goals and the ANTS command
line. The SyN option implements the method in [9] and evaluated in [22].

evaluation of the likelihood of consistent activation
across a group or, in other contexts, the differences
in anatomy between two groups.

The ANTS toolkit enables both types of mapping.
The main challenge in image and brain mapping is defining the way in which images/anatomy are compared.
There are two components to the comparison. The shape transformation space defines the range of shape
variation that will be allowed in the optimization. The appearance similarity space defines the statistical
assumptions that determine when one image is considered to appear similar to another.

These two components interact in a weighted optimization within a multiple resolution gradient descent
framework. Each component may use either ”strict” or ”flexible” assumptions about the shape or appearance
similarity. The selection of these models should be done in a principled way that fits the problem at hand.
No single choice is appropriate for all scenarios (see the ”no free lunch” theorem).

Thus, ANTS enables many operating points from both the transformation and appearance domains such
that users may make choices appropriate for their problems. The ANTS command-line syntax, shown in
figure 1, reflects these operating points and the various components that interact in the optimization. ANTS
may be used to navigate the transformation and similarity metric space.

2.1 Use Your Header!

ANTS uses the direction/orientation, spacing and origin in its definitions of the mapping between images.
That is, ANTS uses the nifti standard defintions of an image space. So, the image orientation (direction),
origin and spacing are important! You may “check” for consistency between two image header definitions
by using: ImageMath 3 Image2repaired.nii.gz CompareHeadersAndImages Image1.nii.gz Image2.nii.gz
This will compare Image2 to Image1 and “fix” the header of Image2, writing out to Image2repaired.
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Category Transformation, φ Similarity Measures Brief Description

Linear Rigid† MI, MSQ Rigid registration.
Affine† MI, MSQ Affine registration.

Elastic Deformable CC, PR, MI, MSQ, PSE Demons-like algorithm.
DMFFD CC, PR, MI, MSQ, PSE FFD variant.

Diffeo. Exponential† CC,PR, MI, MSQ, PSE min v(x)
Greedy SyN† CC, PR, MI, MSQ, PSE locally in time min v(x, t)

Geodesic SyN† CC, PR, MI, MSQ, PSE min v(x, t) over all time

Table 1: Transformations and a subset of the similarity metrics available in ANTS. Similarity metric
acronyms: CC = fast cross correlation, PR = pure cross correlation (the preferred metric), MSQ = mean
squared difference, MI = mutual information, PSE = point-set expectation [24]. ANTS also provides the
inverse of those transformations denoted by the ‘†’ symbol. The brief descriptions of the diffeomorphic al-
gorithms contrast the way in which the velocity field is optimized and used to parameterize φ, the mapping.
All ANTS Diff algorithms generate φ(x, t) over t ∈ [0,1] through gradient descent.

2.2 ANTS Transformation Models

The ANTS toolkit provides a hierarchy of transformations with adjustable levels of complexity, regulariza-
tion, degrees of freedom and behavior as optimizers. The simplest transformation model is the rigid and/or
affine transform. The most complex – and most flexible – is a symmetric diffeomorphic transformation
based on optimizing and integrating a time-varying velocity field. Computation time also increases with
transformation model complexity, but most normalization needs may be met with under an hour of compu-
tation. We provide an overview of some of the ANTS models below and try to communicate intuition on
what one gains/loses with each choice. An overview of available models and similarity terms is in Table 1.

Affine and Rigid Registration

The most basic mapping between images is an affine mapping. The ANTS affine mapping syntax is shown
in the affine mapping figure 2. The parameter breakdown of the ANTS call in the affine figure is:

• ANTS – the normalization program

• 2 – the expected image dimension

• -m MI[...,...,1,32] – the similarity metric ”mutual information” with a 32-bin square joint histogram
and weight of 1. Metric details will be discussed in a later section.

• -i 0 – no deformable iterations (affine only).

• -o ab – the output prefix. A specific extension may also be specified, e.g. -o ab.mhd .

The parameter breakdown of the WarpImageMultiTransform call in the affine figure is:

• WarpImageMultiTransform – to apply the mapping output from ANTS to an image.

• 2 – the expected image dimension.



2.2 ANTS Transformation Models 6

Affine Registration with ANTS

Affine

ANTS 2 -m MI[a.img,b.img,1,32] -i 0 -o ab.nii
WarpImageMultiTransform  2 b.img bwarp.img  abAffine.txt -R a.img

WarpImageMultiTransform  2 a.img awarp.img -R b.img  -i abAffine.txt 

Outputs:   abAffine.txt
Note: the inverse affine map transforms “fixed” to “moving” space

“fixed” image “moving” image

a.img b.img

bwarp.img awarp.img

Figure 2: The anatomy of an ANTS optimization and application of the resulting warping.
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• the image to be deformed is input next.

• the deformed image output file name is next.

• the transform itself is next – if is affine and preceded by ” -i ”, we apply the inverse affine map.

• the ” -R ” option dictates the domain you want to warp into – usually the “fixed” image, unless using
the inverse mapping, in which case one switches the role of fixed and moving images.

Note that -i 0 (in the ANTS call) means that no deformable mapping is performed. The call ”ANTS 2” means
to treat the images as 2-dimensional. ”ANTS 3” would be called for 3D images. The ” -m ” term defines
the similarity metric. Note that no more than one image interpolation is used during optimization. That is,
ANTS always references the original image before applying a transformation or series of transformations.

Affine mapping may become nontrivial when the region of interest occupies only a small portion of the
image data. In such cases, ANTS enables the user to define a mask to focus the optimization effort on the
region of interest. Example code for (affine) registration with a mask:

ANTS 3 -m MI[AtlasHead.nii,crAnatomical.nii,1,32]
-o TEST -i 10x10x0 -r Gauss[1.5,0] -t Exp[0.5] -x mask.nii.gz

The difference between this command and a regular ANTS call is the -x option, which specifies the mask,
defined in the template space (here, AtlasHead.nii). The mask option also affects the deformable opti-
mization. Other affine registration options include --number-of-affine-iterations 5000x5000x5000
which specifies that the affine registration uses a 3 level image pyramid with each level 5000 iterations at
most. --MI-option 48x6000 means to use Mutual Information as similarity metric with 48 bins and 6000
samples. --affine-gradient-descent-option defines the options for the gradient descent procedure;
the 4 numbers are maximum step length, relaxation factor, minimum step length and translation scale.

Rigid Registration: ANTS will also perform rigid registration. To force the linear component of regis-
tration to be purely rigid (no scaling or shearing), then pass the parameter --rigid-affine true to the
ANTS command line. For example,

ANTS 3 -m MI[AtlasHead.nii,crAnatomical.nii,1,32]
-o TEST -i 0 --rigid-affine true

The jacobian of the resulting affine mapping should be unity.

Deformable Registration

Affine mapping is adequate when the difference between images involves only rotation, scaling or shearing.
Other data requires more deformable mappings to capture shape differences and find a good alignment of
image features. Figure 3 shows how deformable mapping may improve the correspondence of the deformed
beetle to the ford image. Most ANTS-based applications use symmetric diffeomorphic normalization. How-
ever, ANTS also enables a simpler parameterization of a deformable mapping via a regularized vector space.
We term these types of transformations as “elastic”. The original Demons algorithm provides a classic ex-
ample of using a regularized vector space for nonlinear registration. Caveats are that a regularized vector
space may not preserve the underlying topology and may also prove too inflexible to capture the shape
changes one is after. Both of these shortcomings motivate the use of diffeomorphisms.
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!

Affine Elastic Diffeomorphic 

Figure 3: This example shows the degree to which the beetle (b.img) may be deformed to the ford (a.img) under
different transformation models. Left to right increases the degrees of freedom in the mapping and thus the registration
accuracy.

Image I Image J

Before Deformation After Deformation Applied

Figure 4: A deformation in a digital domain.
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Elastic/Vector Space Transformations. If we assume no affine transformation, then an elastic transforma-
tion involves computing a mapping from image I(x) to image J(x) through a deformation field u(x). The
deformation is defined in the physical space of the image and dictates the positional difference between
corresponding features in the two images. Thus, if a feature defined at I(x) matches a feature in J at position
y then the deformation field at x should give u(x) = y− x. Such a deformation field may be applied to
deform image J into image I by composing the mapping Jde f ormed(x) = J(x+u(x)). In a perfect world, then
I(x) = Jde f ormed(x), though this is rarely the case. Figure 4 visualizes the deformation of an image under
this standard model. Gradient descent optimization of an elastic mapping may be summarized (crudely) as:

Compute the similarity gradient: ∇E = ∂uΠ(I,J(x+u(x))).
Update the deformation field: u(x)← u(x)+δ∇E.

Regularize the deformation field: u(x)← Gσ ?u(x), (1)

where Π is the similarity, δ is a gradient step length and Gσ is a gaussian smoother. This optimization is
captured in the following ANTS command:

ANTS 3 -m PR[AtlasHead.nii,crAnatomical.nii,1,4] -r Gauss[0,3]
-o ElasticTest.nii.gz -i 30x20x10 -t Elast[1.5]

Here, we use the PR metric (a cross-correlation implementation) with window radius 4, weight 1 and gra-
dient step length 1.5. The optimization will be performed over three resolutions with a maximum of 30
iterations at the coarsest level, 20 at the next coarsest and 10 at the full resolution. We use a Gaussian regu-
larizer with a sigma of 3 that operates only on the deformation field and not on the similarity gradient, as 0 is
passed as the first parameter to Gauss. One may see the correspondence, yet again, between the ANTS call
and the optimization scheme. The optimization will stop when either the energy cannot be smoothly mini-
mized or the maximum number of iterations is reached. BSpline regularization is also available in ANTS –
see the DMFFD section below.

Warping and Invertibility. ANTS uses physical space to define mappings. The origin etc is in the coordi-
nates of the world in which the picture (e.g. MRI) was taken. Then, warping between physical coordinates
is relatively easy. Differences in bounding boxes etc present no problem – assuming you avoid inconsis-
tent headers i.e. origins, directions, data orientation. One may use PrintHeader to check the data and run
simple, fast tests (few iterations) to perform sanity checks before running through loads of data. An ANTS
deformation consists of a standard naming prefix plus a standard naming extension. We usually assume nii
but other file types may be used. The standard naming extension is Warpxvec.nii for the x component of
the deformation with similar naming for y and z. Each component is stored in a separate scalar image. The
value of a voxel of a deformation/warp component image is the physical space displacement from that voxel.
Note that the inverse mapping is stored in InverseWarpxvec.nii and provides the mapping in the opposite
direction. Note that an inverse – in the digital domain – is only approximate as shown in figure 5. A few
important notes follow. (1) Deformation directionality: Warps/deformations applied to images occur in the
opposite direction from warps/deformations applied to points. That is, if we map image B to A using

ANTS 2 -m PR[A,B,1,2] -o OUTPUT

then we get a deformation called OUTPUTWarp+extensions and an affine transform called
OUTPUTAffine.txt. This composite mapping - when applied to B - will transform B into the space of A.
However, if we have points defined in B that we want to map to A, we have to use OUTPUTInverseWarp and
the inverse of OUTPUTAffine.txt. This is because the domain and range of the map’s definition need to
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A

B

A

B

InverseWarp pulls A into space of B, but is not dense in A.

Has inverse arrow
in target domain

No inverse arrow
in target domain

Warp pulls B into space of A, but is not dense in B.

Figure 5: Digital invertibility presents some limitations. Here, we see that invertibility is not exact but is gained only by
interpolation. Thus, in three-dimensional scenarios in particular, there are fundamental limits to the degree of invertibility
that may be achieved. The second and third voxels – from left – in image A undergo an expansion by a factor of 2. That
is, under the mapping, 2 voxels are mapped to 4. This gives the definition of the Jacobian – computed by ANTSJacobian
– which is a unitless measure defined by the ratio of volumes. Thus, J (x) = V (φ(x))/V (x) where V represents the
volume operation and x, here, may be a small object. Thus, if φ – the mapping – causes expansion, then J (x) > 1.
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C.niiA.nii B.nii

ABWarp ABAffine BCWarp BCAffine

CtoAdeformed.nii CtoBdeformed.nii AtoCdeformed.nii

Read Warp Parameters left to right and pass to WarpImageMultiTransform - in short hand:

Warp    C.nii   CtoAdeformed.nii  -R A.nii   ABWarp  ABAffine  BCWarp  BCAffine   

Read right to left and take inverses to reverse the direction:

Warp   A.nii   AtoCdeformed.nii -R C.nii   -i BCAffine BCInverseWarp   -i ABAffine  ABInverseWarp 

Figure 6: Here, we detail how one applies a deformation and associated inverses. We also see how WarpImageMulti-
Transform can be used to concatenate a series of transformations.

be dense in a way that is appropriate for the data type. Figure 5 illustrates the concept. (2) Older Image
Formats: older image formats (e.g. Analyze) may not have proper origin/offset/direction support! In these
cases, we recommend converting to nii and verifying that data overlays properly. (3) Transorm Composi-
tion: Composition of transforms may be achieved with ComposeMultiTransform. (4) Warping with inverses
and concatenations – viable when using diffeomorphisms – are described in figure 6.

Diffeomorphic Transformations. The elastic mapping space – as indicated above – may prove inadequate
for some large deformation mapping scenarios. Figures 3 illustrate the changing performance one may
get in switching from affine to elastic to diffeomorphic normalization. Figure 7 shows how one may use
ANTS to achieve a state-of-the-art diffeomorphic mapping. The ANTS diffeomorphic model chosen for
this example – symmetric normalization [9, 21] – is invariant to the order of the input images (although the
affine mapping is not). An additional advantage of the diffeomorphic model over the elastic model is that
both forward and inverse transformations are computed thus allowing one to deform fixed to moving and
also moving to fixed. The transformation model chosen here – SyN[0.25]– may be replaced with other
diffeomorphic transformation models. The most general is global-in-time SyN via SyN[0.25,2,0.01] ,
where the time step for integration is 0.01 (lower is more accurate). A fast approximate solution may be
gained through exponential mapping via Exp[0.25,10], where 10 integrations points are used. Update
schemes for diffeomorphic optimization are similar to the elastic case and are described elsewhere [9, ?].

2.3 ANTS Similarity Terms

Here is a script that will let you experiment with different similarity term and transformation model combi-
nations. A few are listed, with parameters that are a reasonable starting point.
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Symmetric Diffeomorphic Mapping with ANTS

Affine+ Diffeomorphic SyN

ANTS 2 -m PR[a.img,b.img,1,2] -i 100x100x10 -o ab.nii -t SyN[0.25] -r Gauss[3,0]

WarpImageMultiTransform  2 b.img bwarp.img -R a.img abWarp.nii  abAffine.txt
WarpImageMultiTransform  2 a.img awarp.img -R b.img -i abAffine.txt  abInverseWarp.nii    

SyN + Affine

Outputs:   abAffine.txt  (invertible and composable with the warps) 
abWarp.nii =>  abWarpxvec.nii & abWarpyvec.nii

abInverseWarp.nii =>  abInverseWarpxvec.nii & abInverseWarpyvec.nii

a.img b.img

bwarp.img awarp.img

Figure 7: This example shows the benefit of the symmetric normalization model – invertibility, symmetry, highly de-
formable and accurate registration. The transformation model used here is highlighted in red.
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II=r16slice.nii # change to your own images
JJ=r64slice.nii
DIM=2 # two-dimensional images
ITS=" -i 100x100x30 " # 3 optimization levels
TSYNWITHTIME=" -t SyN[1,2,0.05] -r Gauss[3,0.5] "
TGREEDYSYN=" -t SyN[0.25] -r Gauss[3,0] "
TELAST=" -t Elast[1] -r Gauss[0,3] "
TEXP=" -t Exp[0.5,10] -r Gauss[0,3] "
LABELGUIDED=" -m PSE[${II},${JJ},${II},${JJ},0.75,0.1,25,0,10] "
INTMSQ=" -m MSQ[${II},${JJ},1,0.1] "
INTMI=" -m MI[${II},${JJ},1,32] "
INTPR=" -m PR[${II},${JJ},1,4] "
NAME=TEST
INT=$INTPR
TRAN=$TSYN
ANTS $DIM -o $NAME $ITS $TRAN $INT
INVW=" -i ${NAME}Affine.txt ${NAME}InverseWarp.nii "
FWDW=" ${NAME}Warp.nii ${NAME}Affine.txt "
WarpImageMultiTransform 2 ${II} a.nii -R ${JJ} $INVW
WarpImageMultiTransform 2 ${JJ} b.nii -R ${II} $FWDW

Convergence occurs under two conditions: (1) either the maximum number of iterations are reached at a
given optimization level or (2) the slope of the change in the optimization objective is negative or very
small. Note: ANTS does not like spaces between brackets in the call to the metrics.

2.4 Choosing a Metric

ANTS supports both volumetric registration and point set registration. The image / point set similarity
metrics in ANTS are unified in the form of a function on the images or the point sets:

Simlarity[fixedImage,movingImage,weight,parameters].

The similarity type for the deformation transformation is specified by -m option, which contains two parts:
simarity type and the parameters inside the brackets. (Note: no white spaces exist between parameters.) The
possible similarity metrics for volumetric images are:

• Cross correlation estimate: -m CC[fixedImage,movingImage,weight,radius].
This metric works well for intra-modality image registration. For exxample,
-m CC[fixed.nii,moving.nii,1,5] specifies:

– the fixed image: fixed.nii

– the moving image: moving.nii

– weight for this metric is 1 (i.e. only this metric drives the registration).

– the region radius for computing cross correlation is 5

• Mutual information: -m MI[fixedImage,movingImage,weight,number-of-histogram-bins].
This metric works both well for intra-modality and inter-modality image registration. For example,
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the first three parameters in -m MI[fixed.nii,moving.nii,1,32] is similar to the example above
in cross correlation, except that the last parameter means that the number of bins in computing mutual
information is 32.

• PR: -m PR[fixedImage,movingImage,weight,radius]. This metric works for intra-modality im-
age registration and some inter-modality cases. This metric is a strict implementation of correlation
whereas CC estimates correlation-like optical flow. The meaning of parameters are similar to cross
correlation.

• Mean square difference: -m MSQ[fixedImage,movingImage,weight,0]. This metric works for
intra-modality image registration. The last parameter 0 is a padding value of no real meaning. For
example, -m MSQ[fixed.nii,moving.nii,1,0].

ANTS also support registration of point sets. The supported formats for point sets can be found in I/O
section. The similarity metrics for point sets are:

• Point set expectation:

-m PSE [fixedImage,movingImage,fixedPoints,movingPoints,weight,
pointSetPercentage,pointSetSigma,boundaryPointsOnly,
kNeighborhood,PartialMatchingIterations=100000]

– fixedImage: defines the space domain of the fixed point set.

– movingImage: defines the space domain of the moving point set.

– fixedPoints/Image: defines the coordinates of the fixed point set or label image. It can be
an image with discrete positive labels, a VTK format point set file, or a text file. Details can be
found in I/O section (TODO).

– movingPoints/Image: defines the coordinates of the moving point set or label image.

– weight: weight for this metric. 1 means that only this metric drives the registration.

– pointSetPercentage: the percentage of points to be randomly sampled used in the registration.

– pointSetSigma: the standard deviation of the Parzen window used to estimate the expectation.

– boundaryPointsOnly: 1 (or “true”) means only the boundary points in the label image is used
to drive registration.

– kNeighborhood is a positive discrete number. The first k neighbors are used to compute the
deformation during the registration.

– PartialMatchingIterations controls the symmtry in the matching. This option assumes the
complete labeling is in the first set of label parameters ... more iterations leads to more symmetry
in the matching - 0 iterations means full asymmetry

• Jensen-Tsallis BSpline

-m JTB[fixedImage,movingImage,fixedPoints,movingPoints,weight,
pointSetPercentage,pointSetSigma,boundaryPointsOnly,kNeighborhood,alpha,
meshResolution,splineOrder,numberOfLevels,useAnisotropicCovariances]
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fixed image moving image MSE

Figure 8: registration using mean square intensity difference

– fixedImage: defines the space domain of the fixed point set.

– movingImage: defines the space domain of the moving point set.

– fixedPoints: defines the coordinates of the fixed point set. It can be an image with discrete
positive labels, a VTK format point set file, or a text file. Details can be found in I/O section
(TODO).

– movingPoints: defines the coordinates of the moving point set.

– weight: weight for this metric. 1 means that only this metric drives the registration.

– pointSetPercentage: the percentage of points to be randomly sampled used in the registration.

– pointSetSigma: the sigma for the Parzen window used to estimate probabilities.

– boundaryPointsOnly: [TODO] 1 (or “true”) means only the boundary points in the point sets
are used to drive registration.

– kNeighborhood is a positive discrete number. The first k neighbors are used to compute the
deformation during the registration.

– alpha

– meshResolution

– splineOrder

– numberOfLevels

– useAnisotropicCovariances

In current implementation, the affine registration only supports two types of similarity metrics on volumetric
images, which are specified using --affine-metric-type:

• Mutual information, specified as --affine-metric-type MI. This usually works for both inter and
intra-modalities in 3D. Also, the options used in computing mututal information in affine registration
can be specified as --MI-option N1xN2. The first parameter N1 specifies the number of bins. The
second parameter N2 specifies the number of samples. For example: --MI-option 32x8000.

• Mean square difference, specified using --affine-metric-type MSE. There is no options for this
metric.

Fig. 2.4 shows the registration result using intensity difference with the following command:

ANTS 2 -m MSQ[r16slice.nii,r64slice.nii,1,0] -r Gauss[3,0] -t SyN[0.5] -i 50x50x30

Here is also an example script to register a pair of images using mean square intensity difference and com-
puting the metrics of the registration image.

#use intensity difference with radius 0 -- radius no effect on intensity difference
ANTS 2 -m MSQ[r16slice.nii,r64slice.nii,1,0] -r Gauss[3,0] -t SyN[0.5] -i 50x50x30
WarpImageMultiTransform 2 r64slice.nii resMSQ.nii Warp.nii Affine.txt
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Individual Data:  Accurately
Coregister to T1 Anatomy

Perfusion

Group Data Stored in
Multivariate Template

Diffeomorphic 
Mapping

Perfusion Thickness

Diffusion

Thickness

Diffusion AnatomicalAnatomical

Figure 10: The current version of ANTS may perform normalization of multiple modalities by combining intrasubject,
intermodality mappings with intersubject, intramodality maps to a group template. In brain imaging, the intersubject
maps are usually guided by the T1 component.

MeasureImageSimilarity 2 0 r16slice.nii resMSQ.nii metricexamplelog.txt
MeasureImageSimilarity 2 1 r16slice.nii resMSQ.nii metricexamplelog.txt
MeasureImageSimilarity 2 2 r16slice.nii resMSQ.nii metricexamplelog.txt
ConvertToJpg resMSQ.nii resMSQ.jpg

2.5 Diffusion Tensor Normalization

The ImageMath program – via TensorFA and TensorMeanDiffusion – may derive scalar images from DTI.
Such images may be used to distortion correct DTI to T1 or to map DTI together. See the ANTS/Scripts
program called antswithdt.sh for a ready to go example. Figure 9 shows what might happen if your
tensor entries are stored in the wrong order. ANTS expects the nifti standard ordering of the DT six vector.

Good FA, MD Bad FA, MD

Figure 9: The FA and mean diffusion of the tensor may be
corrupted, as at right, if the order of the DT entries is wrong.

2.6 Multivariate Normalization with ANTS

Multivariate normalization may be performed in
two ways with ANTS. First, as shown in figure 10,
intra-subject mappings may be used to conform all
modalities into a common subject space defined by
the “anchor” modality. In brain imaging, this is usu-
ally the T1 component.

A second type of multivariate normalization is able
to use the T1 and DTI components directly in the
optimization of the mapping. An example of this type of call is below, where we assume that one has
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resampled the DT data to the space of T1:

ANTS 3 -m PR[T1template.nii,T1subject.nii,1.25,4]
-m PR[FAtemplate.nii,FAsubject.nii,1,4]

-o MultiVar -i 30x30x20 -r Gauss[3,0] -t SyN[0.25]

In this case, dense features within white matter are gained by using the DT component in addition to the
T1 component. The T1 PR metric, here, is weighted slightly more than the FA PR metric, 1.25 vs. 1.0.
The convergence criterion for the multivariate scenario is a slave to the last metric you pass on the ANTS
command line.

2.7 Optimal Template Construction with ANTS

A useful script for setting up optimal template construction is available in ANTS/Scripts. This method is
described in [6, 15, 21, 29], where more recent publications are more descriptive and incorporate more
recent features and optimization strategies. Two versions of this algorithm are available : serial and parallel.
Data and a script for building an average face template is available the ANTS/Examples/Data directory. Two
key points about optimal templates: 1. The outcome stabilizes at around ten images, for most populations.
That is, if we randomly select images from individuals within the same demographic distribution, we will
end up with very similar average images. 2. Optimality, for the ANTS-SyN approach, is defined by the
minimum shape and appearance distance image. See the template page for some examples of this and users
may contact ANTS developers for previously derived template images that may be useful.

A Concrete Template Construction Example, Step-by-Step

For this example, we will use the data in ”ANTS/Examples/Data/B*.tiff.” The files are B1.tiff, B2.tiff,
B3.tiff, B4.tiff and B5.tiff. They are single slices from a dataset of real MRI brain images – individuals
around 15 years of age. Our goal is to derive a ”most representative” single image from this population. The
steps are:

1. Make a directory for this example. Copy or link all the B*tiff images into it.

2. Copy the file ANTS/Scripts/buildtemplate.sh into that directory.

3. On the command line, within that directory, run the following command: sh buildtemplate.sh to
get usage.

4. If you follow the usage, you will then call the script something like this:
sh buildtemplate.sh 2 B tiff OUT 4 .

5. The script should exit and ask if the parameters are ok for your problem. Check the path to the
programs, the fact that all the images you want to use are being listed and that the template output
name is ok with you. Once everything is prepared, then edit the script to remove the exit call at the
end of the parameter check.

6. Call the script as in step 4 and then wait for the output. The template will be called something like (in
this example) OUTtemplate.nii.
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Figure 11: This example may be recreated by the user. The shared anatomy – across this dataset – is recovered in
the derived optimal template.

The script is fairly easy to alter so that you can send the whole thing to distributed computing. Typi-
cally, one would use voxbo or the qsub program available in the Sun Grid Engine. This is what is done in
buildtemplateparallel.sh. Figure 11 shows the data and a result that may be recreated by the user.

2.8 Notes on Large Deformation Mapping

Figure 12 defines what one might expect from a high-resolution, large deformation, successful normaliza-
tion. Major and many minor features are well aligned between these images to an extent that is approaching
the limits allowable by biological variation. Turning ”Failures” into Successes: Below are some pointers
to follow if you are unable to recreate such normalization quality. Usually, reasons for registration failure
are one of a very few things:

1. The initialization is so off mark that affine registration fails – thus meaning all subsequent deformable
registration will not be meaningful.

2. The information within headers is inconsistent e.g. origins are defined in different ways, the ”direc-
tions” are not correct or some combination of these. The PrintHeader executable can help one in
debugging this type of problem. Also, the ImageMath function CompareHeadersAndImages can fix
some problems of this type.

3. The similarity or transformation model is inappropriate or has too small a capture region for the
problem.

An example of this final point is given here. A recent study used the following call to ANTS across a dataset
of elderly subjects:

ANTS 3 -m PR[template.nii.gz,subject.nii.gz,1,2] -i 10x50x50x20
-o subjectmap.nii -t SyN[0.25] -r Gauss[3,0]
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Figure 12: ANTS succeeds in a challenging normalization scenario. Comparing the template mapping to the individual
shows that much of the cortex is well-aligned, as is the hippocampus, despite the relatively large difference between the
initial template and the target. Here, one might note a limitation of whole brain mapping: occipital lobe sulcal variation
is highly idiosyncratic and extremely difficult to capture, in particular when there is such severe atrophy nearby.
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Original Data Segmentation Probability CSF Probability GM Probability WM Thickness

Figure 13: ANTS provides basic Markov Random Field regularized Gaussian model tissue segmentation. The ANTS
program N3BiasFieldCorrection is very valuable as preprocessing for this naive approach to segmentation. The last
panel – far right – shows the thickness derived from the white matter and gray matter probabilities where a prior on
thickness was used to prevent thickness overestimation. Thickness was derived with DiReCT [16], a software tool
available in binary form only – a future release may provide code.

This succeeded for all subjects but one. This subject had severe neurodegeneration which caused ”under-
normalization” to result. A larger deformation mapping was required and so we increased the maximum
number of iterations (the ”-i” parameter). One might also increase the gradient-descent step-size (SyN[0.25]
=¿ SyN[0.5]). Large deformation mapping is challenging not only because of the amount of deformation,
but also because the ”true” solution is difficult to find. Keeping this in mind, we also increased the ”span”
(radius) of the correlation window in the similarity metric (which also increases computation time). These
modified parameters succeeded:

ANTS 3 -m PR[template.nii.gz,subject.nii.gz,1,4] -i 100x100x100x20
-o subjectmap.nii -t SyN[0.25] -r Gauss[3,0]

Key changes were to increase the radius of the correlation and to allow more iterations at the coarsest
resolution. This two coarsets levels of the computation take only about 10 percent of the time (about 5-10
minutes depending on the machine) but accounts for the large majority of the shape variation. Note that this
is a 3D example – that is why the eyes appear only in the frame at left.

3 Image Segmentation and Labeling

ANTS has tools for both tissue based segmentation and prior-based segmentation that leverages spatial
priors, usually based on a template mapping.

3.1 Basic Segmentation

A basic MRF segmentation algorithm is available in ANTS ImageMath. We apply the segmentation to the
example data in: ANTS/Examples/Data/r16slice.nii.

ImageMath 2 r16slice.nii Segment r16slice.nii 4 0
% output = r16slice_seg.nii, r16slice_prob_0.nii, r16slice_prob_1.nii, r16slice_prob_2.nii .

The parameter 4 indicates 3 tissues plus background are sought. The 0 indicates that there are no prior
images available to guide the segmentation. Output is shown in figure 13 and – with priors – in figure 14.
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Prior Weight
0 10.25 0.5 0.75

Figure 14: ANTS extends basic Markov Random Field regularized Gaussian model tissue segmentation to include pri-
ors, which allow spatially varying tissue models to determine segmentation. The ANTS program N3BiasFieldCorrection
is less critical as preprocessing when using this approach to segmentation. Here, we see the improvement in segmen-
tation as the locally varying prior models are weighted more heavily. The last panel – far right – shows the segmentation
derived from data driven with an initialization founded purely on prior models based on template mapping. The prior
model brings out the caudate and some CSF – highlighted by arrows – as their weight increases.

3.2 Prior and Template-based Image Segmentation

The same algorithm may be augmented to perform Prior-based segmentation.

ImageMath 2 r16sliceprior.nii Segment r16slice.nii 4 0.5
csfprior.nii wmprior.nii gmprior.nii

% output = r16sliceprior_seg.nii r16sliceprior_prob_0.nii
% r16sliceprior_prob_1.nii r16sliceprior_prob_2.nii .

The parameter 4indicates 3 tissues plus background are sought. The 0.5indicates we weight the priors
equally as the data term and use a spatially varying set of Gaussians to estimate the segmentation. In this
way, data from the priors may be used to modify and guide the segmentation in a locally varying way,
accomodating for both inhomogeneity and the different imaging signature that different tissues provide.
Prior images should be of the same size and dimension as the input data and should have intensities in the
range [0,1].

3.3 Cortical Thickness

Two forms of cortical thickness estimation from probability maps are available in ANTS: first, the tra-
ditional Laplacian cortical thickness estimation and, second, the more recently developed Diffeomorphic
Registration-based Cortical Thickness (DiReCT) [16]. Both methods estimate thickness of an object from
probability or binary images that define object boundaries. This tool is mainly of interest in brain mapping
and cardiac imaging for morphometric studies. Cortical thickness, for instance, is known to correlate with
language development and IQ in adolescents. The laplacian approach to cortical thickness may be used via
the program LaplacianThickness, which implements the method described in “Three-dimensional mapping
of cortical thickness using Laplace’s Equation” by Jones, et al []. Super-sampling and controlling segmen-
tation accuracy for input to this program is up to the user. Otherwise, the Laplacian method may grossly
overestimate thickness in closed sulci.
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Figure 15: Expected output for the frown to smile shows a smooth, though large deformation. The grids are overlaid
on the deformed images.

3.4 User/Label-Guided Normalization for Hippocampus Mapping

See the link for details on hippocampus labeling: http://picsl.upenn.edu/ANTS/hipptutorial.php.
Expectation-Based Point-Set Registration. Here, we apply the expectation-based point set registration
method for mapping labeled points sets, as described in [24]. ITK-SNAP may be used to label images and
exported segmentation images may be input to the PSE metric below, as labeled data. The Frown and Smile
data is used as example. This data is available in the ANTS/Examples/Data/ directory.

ANTS 2 -o PSEtest -i 91x70x55x40x30 -r Gauss[3,0.] -t SyN[0.2]
-m PSE[Frown.nii,Smile.nii,Frown.nii,Smile.nii,0.75,0.1,11,0,10]
-m MSQ[Frown.nii,Smile.nii,1,0] --number-of-affine-iterations 0

WarpImageMultiTransform 2 Frown.nii FrownToSmile.nii -R Smile.nii
-i PSEtestAffine.txt PSEtestInverseWarp.nii

WarpImageMultiTransform 2 Smile.nii SmileToFrown.nii -R Frown.nii
PSEtestWarp.nii PSEtestAffine.txt

CreateWarpedGridImage 2 PSEtestInverseWarp.nii grid1.nii
CreateWarpedGridImage 2 PSEtestWarp.nii grid2.nii

This example should run on the downloaded ANTS data so you may see the results.
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(a) (b) (c)

Figure 16: Here, we see a semi-automated approach for lesion analysis based on diffeomorphic normalization. The
user outlines the lesion site in the subject space, as shown in (a). Diffeomorphic mapping is then used to deform the
subject image in (a) into the space of the reference template. The deformed subject is shown in panel (b). Panel (c)
shows the reference template space with the estimated position of the subject’s lesion overlaid on the healthy tissue of
the template. This approach enables one to compare the subject image against prior information stored in the template
space such as anatomical labels or statistics on the appearance of lesioned and/or normal tissue.

4 Application to Studies

4.1 Brain Mapping in the Presence of Lesions

Many cases violate the basic assumption of a one-to-one mapping from a template image to a target image.
Brain lesions caused by stroke or traumatic brain injury are a common instance of this.

The ANTS toolkit handles this situation by a constrained cost-function masking approach. In short, the
mapping within an excluded region (as determined by an inclusive mask) is determined by the solution
outside of the region. To achieve this with ANTS, one would use a call similar to this:

ANTS 3 -m PR[tp22_s1.nii,template.nii.gz,1,4] -i 50x20x0
-o tp22map -t SyN[0.5] -x mask.nii.gz -r Gauss[3,0]

The additional parameter needed for this approach is the -x mask.nii.gz which is the mask defined in
the ”fixed” (or individual) image space. Mask values above 0.5 are considered non-outlier or non-lesioned
regions. The labeling may be performed with ITK-SNAP. Figure 16 illustrates the approach. Once the
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ANTS mapping is solved, one is able to estimate the location of the lesion in the template space by mapping
the inverse lesion mask to the template. To take the negative image of the inclusive mask and warp the mask
to the template :

ImageMath 3 lesionmask.nii.gz Neg inclusivemask.nii.gz
WarpImageMultiTransform 3 lesionmask.nii.gz lesiontotemplate.nii.gz

-R template.nii.gz -i tp22mapAffine.txt tp22mapInverseWarp.nii

More details on this approach are being prepared for publication. See also:
http://www.ncrrn.org/papers/methodology_papers/sp_norm_kim.pdf.

4.2 Statistical Mapping with ANTS: Morphometry, Function, Jacobian, Thickness

ANTS has been applied in a wide array of imaging studies [5, 4, 13, 16, 22, 23, 24, 28, 29, 11, 9, 19,
21, 26, 27, 30, 1, 3, 14]. All of these studies benefit in some way from normalization whether the topic
is cortical thickness, Jacobian-based morphometry, volumetric morphometry or functional studies. From a
broad perspective, each of these applications requires the same steps:

1. Preprocess images – bias correction, segmentation, etc. Potentially construct an optimal template.

2. Normalize images – run ants.sh to map a population of images to a template and store the defor-
mations.

3. Derive any data from the deformation that may be necessary, e.g. the log-Jacobian.

4. Apply the warp to any images one may want to analyze in template space.

5. Perform statistics in template space over the region of interest, e.g. all cortex.

We now illustrate this procedure using ANTS tools and example images from ANTS/Examples/Data. The
expected output is in figure 17.

1. ImageMath 2 r64slice.nii Segment r64slice.nii 4 0
1. ImageMath 2 r16slice.nii Segment r16slice.nii 4 0
2. sh ants.sh 2 r16slice.nii r64slice.nii SPM 100x100x100
3. SmoothImage 2 r64slice_prob_1.nii 1. r64slice_prob_1.nii
3. WarpImageMultiTransform 2 r64slice_prob_1.nii r64slice_prob_1_norm.nii

-R r16slice.nii SPMWarp.nii SPMAffine.txt
3. ANTSJacobian 2 SPMWarp.nii SPM 1 # take the log
4. ImageMath 2 SPMlogjacobianmask.nii m SPMlogjacobian.nii r64slice_prob_1_norm.nii
5. Repeat for a population and run statistics on log jacobians.

This example uses a standard Jacobian-based approach to morphometry. Here, we use the log-Jacobian
because it is symmetric about zero and mask with the gray matter segmentation to restrict the analysis to the
cortex. The Jacobian is discussed in figure 5 and visualization of the Jacobian is shown in figure 18. This
Jacobian comes from the mapping shown in figure 12. Similar analyses may be performed on thickness
images, functional images or fractional anisotropy images derived from the diffusion tensor modality. In all
these cases, steps similar to those above would be performed.
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Figure 17: The output from the ANTS morphometry example.
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Figure 18: The Jacobian: Note that the bright values in the template image ventricles (left) indicate that the ventricles
are relatively larger in the subject image. Similarly, the dark jacobian values in the individual image show that the
template has smaller ventricles. This example is described on the large deformation page Large Def. Once one gains
the Jacobian (or more appropriately, the log-Jacobian), then one may compute statistics across the population.



4.3 Statistics with ANTS and R 26

4.3 Statistics with ANTS and R

R is an open-source, cutting-edge statistical package used by statisticians world-wide. ANTS is designed to
interface with R via an ImageMath tool that converts image sets into an R compatible format. Three steps
are required. First, convert image data into vector and matrix formats through a mask of your statistical
region of interest. Second, read that data into R and run your statistics. Third, write out the data from R and
convert back to an image. Here are the steps, in code examples,

1. Create a vector for your output:

ImageMath 3 testresultvec.nii ConvertImageSetToMatrix 1 mask.nii image1.nii

Here, we assume all images are called image1.nii, image2.nii, ... , imageN.nii so we can use a wildcard
to pass to ImageMath and create a matrix for all your input data:

ImageMath 3 datamatrix.nii ConvertImageSetToMatrix 1 mask.nii image*.nii

2. Run R by reading your data above, performing whatever statistics you want and then writing out.

3. Convert the test result back to an image.

ImageMath 3 testresult.nii ConvertVectorToImage mask.nii testresultvec.nii

Most statistical requirements may be met with this setup.

5 Dependencies and Related Software

5.1 Dependencies and Compilation

ANTS depends on the most recent version of the Insight ToolKit (ITK) – www.itk.org. File types that may
be read and written are all of those available in itk and a few more http://picsl.upenn.edu/ANTS/ioants.php.

ANTS and ITK are both compiled through pointing CMake – www.cmake.org – to a CMakeLists.txt file.
The ANTS CMakeLists.txt is in the Examples directory.

See below for more details on compilation and binaries:
Compile and download: http://picsl.upenn.edu/ANTS/download.php. We maintain a dashboard to give
users an idea of what to expect from compilation:
http://picsl.upenn.edu/cdash/index.php?project=ANTS

5.2 Visualization and Quantification of ANTS Results

Use itk SNAP : www.itksnap.org or mricro / mricron for viewing images. The ANTS program StackSlices
can be used to conveniently scan through a dataset in any of its axes. It is useful for checking both input
data quality and output normalization quality. MeasureImageSimilarity will supply numerical measures of
image similarity via three different metrics.
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5.3 Statistics Beyond ANTS

Use SPM, R or npm (from Chris Rorden’s mricron) for computing population statistics.

5.4 Pipelining with ANTS

Use PipeDream for automating large-scale processing:
PipeDream Homepage : https://sourceforge.net/projects/neuropipedream/
PipeDream is integrated with ANTS and automates more complex studies such as multivariate diffusion ten-
sor and T1 cortical thickness studies, longitudinal mapping and reconstruction of nifti images from Dicom.

6 Annotated Bibliography

The original statement of the symmetric normalization and template construction methodology was given
in [6]. A follow up study that used landmark guidance to compare the chimpanzee cortex to the human
cortex was published here [8] – this study used in vivo MRI and template-based normalization to confirm
volumetric numbers derived from an early 20th century post-mortem study comparing one human and one
chimp. This conference article has some additional detail and alternative updates to the methodology, in
particular application to shape-based interpolation [7]. Network based studies were performed here [17, 18].
The main SyN paper is here [12]. Applications to neurodegeration are here [2, 10, 20, 13, 16, 29, 23].
Hippocampus focused work is here [25, 29]. The main evaluation papers include [12] and [22] for the cortex
and deep brain structures whereas [25] evaluates the use of automated and semi-automated normalization
for high-throughput hippocampus morphometry. An additional evaluation paper is being developed.
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