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Abstract. In this paper a contour detection method is described and evaluated 
on the evaluation data sets of the Cardiac MR Left Ventricle Segmentation 
Challenge as part of MICCAI 2009’s 3D Segmentation Challenge for Clinical 
Applications. The proposed method, using 2D AAM and 3D ASM, performs a 
fully automated detection of the myocardial contours, not requiring any user 
interaction. The algorithm’s performance is reported using the metrics provided 
by the LV Challenge organization. Endocardial contour detection was classified 
as successful in 86% of the images and epicardial contours in 94%. The average 
perpendicular distance (APD) of the successful contours was 2.28 mm and 
2.29 mm for the endo- and epicardial contours, respectively. 

Introduction 

In this paper a contour detection method is described and evaluated on the evaluation 
data sets of the Cardiac MR Left Ventricle Segmentation Challenge as part of 
MICCAI 2009’s 3D Segmentation Challenge for Clinical Applications [1]. The LV 
contour detection method described is composed of a pipeline of operations where the 
output of each stage is input to the next. In the setting of an application in which user-
interaction is allowed, review and correction of the result of a particular stage may 
improve the final outcome of the algorithm. However, in the context of the LV 
Challenge our contribution concerns a fully automated detection approach. The details 
of the algorithm and the results obtained on the LV Challenge evaluation set are 
described in the next sections. 
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Methods 

Preparation 

As initial preparation before applying fully automated contour detection, the two 
cardiac phases to be analyzed (i.e. ED and ES) and the image slices intersecting the 
LV were identified. The phase with a trigger delay closest to 300 ms was assumed to 
be the ES phase while the other phase was assumed to be the ED phase. 

LV center point detection 

The location and orientation of the long-axis of the left ventricle was identified 
using the Hough Transform for approximately circular objects [2]. For each of the 
images in the ED phase, the Hough Transform generates an accumulator image with 
identical dimensions as the input image, with high values near center points of objects 
having a radius within the specified range (2-60 mm). The range of radii was set large 
enough such that both endocardial and epicardial edge points would contribute to the 
automated determination of the ventricular center for a wide range of left ventricular 
sizes and cardiac pathologies. A straight line in 3D with maximum average intensity 
was fit through all available Hough accumulator images to estimate the long axis of 
the left ventricle. This procedure resulted in an estimation of the center of the left 
ventricle for each slice of the imaging study. 

AAM based image segmentation 

A 2D AAM based contour detection method similar as described by Mittchell et 
al [3] was used to obtain a first approximation of the LV endo- and epicardial and RV 
endocardial contours.  

The AAM model used was trained on 40 cardiac MR data sets from different 
institutions including a variety of cardiac pathologies; all acquired on GE 1.5 T MR 
scanners [4]. For every study an experienced observer manually traced the LV 
endocardial and epicardial contours and RV endocardial contours in the ED and ES 
phases. The contour tracing protocol was similar to the one defined for the LV 
Challenge expert contours. No papillary muscle contours were identified. Separate 
AAM models were built for the ED and ES phases. Apical slices with a very small or 
no visual RV blood pool were excluded. For the most basal section, slices without 
complete circumference of LV myocardium were also excluded from the AAM 
training set. On average 5-6 ED slices and 4-5 ES slices were included for every 
dataset. 

For AAM matching, the initial pose of the AAM was determined by the detected 
LV center point and the expected cardiac orientation derived from the image 
orientation information obtained from the DICOM image headers. The initial scale 
was chosen identical to the average cardiac size in the training set. AAM contour 
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detection was performed image by image, starting at a mid-ventricular slice. A 
conventional iterative matching procedure was followed minimizing the rms intensity 
difference between the model and the target image [3]. Improved robustness and 
computational efficiency was realized by propagating the found model parameters of 
a slice to initialize the model for neighboring slices. The matching process was 
performed for all ED and ES images and resulted in LV endocardial, epicardial and 
RV endocardial contours. These contours were used as input for the following contour 
detection steps. 

Endocardial and epicardial contour detection 

Despite the reported robustness of the AAM based contour detection approach, we 
have observed that the final result of the AAM method was deemed sub-optimal in 
various situations. First, since the metric minimized during the iterative fitting is 
global, the final contour location is often somewhat dislocated from the visually 
identified boundary even in cases where the boundary is depicted with high-contrast. 
This may partly be caused by the fact that the contour shape is too much constrained 
by statistical limits imposed by the model. Additionally, we have observed that for 
more complicated slices at the basal and apical level it occurs that during the fitting 
process the model fails to converge to a proper solution, which can lead to complete 
failures. This can be explained by the selection of images that was used for training 
the model, in which the most basal and apical slices were excluded. Finally, the 
iterative AAM matching process is sensitive to local minima, which may occasionally 
result in false contours. 

 
Endocardial contour detection. The final endocardial contours were obtained using 
the algorithm described in [5]. In short, within the available epicardial contour an 
optimal threshold was determined separating the LV blood pool from the 
myocardium. A smooth convex shape (model contour) around the isolated blood pool 
was extracted, followed by dynamic programming, to obtain an endocardial contour 
fitting on the image gradients. In this step the search region was constrained to a small 
distance to the model contour. 

 
Epicardial contour detection. Due to the variation in tissue characteristics of the 
region surrounding the myocardium, an edge based image detection technique, such 
as dynamic programming, can not be reliably applied for detection of the epicardial 
boundaries. Instead, we have applied a modified version of the SPASM algorithm 
described by van Assen et. al. [6]. This method uses a 3D Active Shape Model (ASM) 
which is fit on feature points detected by a fuzzy inference method. This method uses 
the Fuzzy C-Mean algorithm to classify pixels into three classes: blood/fat, 
myocardium and air. The 3D nature of this algorithm potentially results in better 
robustness, which is especially of importance for the detection in the basal and apical 
imaging sections.  

As preparatory step image mis-registration artifacts due to breath-hold 
inconsistencies during image acquisition were reduced by aligning the short-axis 
images using the center of gravity of the previously detected endocardial contours. 
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This preparatory step is essential to make the short-axis data set a valid 3D scene. The 
initial position and orientation of the model was defined by the detected LV and RV 
contours.  

The endocardial feature points were determined by the location of the detected 
endocardial contours, while the epicardial feature points were generated by applying 
the fuzzy inference method. The ASM model is divided into three sections: septal, 
lateral and apical. For each of the sections, fuzzy inference was applied. To this end 
image patches were sampled for which the location was determined by the available 
endocardial contours. The radial size of the patches was set to 20 mm multiplied by 
the LV size, computed from the AAM and dynamic programming contours, divided 
by the mean shape LV size. In the LV Challenge training set, the epicardial good 
percentage increased from 81% to 89% as a result of the SPASM detection while the 
APD and dice metric remained nearly the same. In cases where the epicardial 
detection failed, this was caused by incorrect endocardial contours. 

RESULTS 

Total processing time per study was 60 s on average, including reading the images 
and storing the contour files (Intel Core 2 Duo 2.2 GHz, single threaded). 

Table 1 lists the number of endocardial and epicardial contours successfully 
detected for each of the 15 studies. On average 86% and 94% of the endo- and 
epicardial contours, respectively were detected within an average distance of 5 mm of 
the reference contours. 

Table 1. Statistics for number of inner and outer contours per study and success rate of the 
automated contour detection algorithm. 

 Number of Contours Detect Percentage Good Percentage 
ID Inner Outer Inner Outer Inner Outer 
SC-HF-I-05 18 9 100 100 100 100 
SC-HF-I-06 22 11 100 100 100 92 
SC-HF-I-07 16 8 100 100 75 100 
SC-HF-I-08 22 11 100 100 100 100 
SC-HF-NI-07 24 12 100 100 92 100 
SC-HF-NI-11 20 10 100 100 100 90 
SC-HF-NI-31 18 10 95 100 84 100 
SC-HF-NI-33 18 10 100 100 89 90 
SC-HYP-06 13 7 100 100 85 100 
SC-HYP-07 16 8 100 100 69 100 
SC-HYP-08 19 10 100 100 68 90 
SC-HYP-37 13 7 100 100 85 86 
SC-N-05 15 8 100 100 80 100 
SC-N-06 13 7 100 100 92 86 
SC-N-07 18 10 100 100 78 80 
Average 17.7 9.2 99.7 100 86.4 94.2 
Stdev 3.4 1.6 1.4 0 11.0 7.0 
Min 13 7 95 100 68.4 80 
Max 24 12 100 100 100 100 
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Fig. 1. Illustrative example of the result of automated contour detection for the images of study 
SC-HF-I-05 (case with the best APD score and Dice metric, left is ED, right is ES). APD is 
1.7 mm for the inner and 1.6 mm for the outer contours. Ejection fraction was slightly 
overestimated by 4.6% while LV mass was underestimated by 4.4 g. Automatically detected 
center points are displayed in the ED images. Smoothness constraint applied in the endocardial 
detection algorithm results in contours surrounding the papillary muscles and trabeculations. 
However some overestimation occurred in the basal slices of the ES frame. Epicardial contour 
detection was successful for all slices of the ED phase.  

Table 2. Results of APD and Dice metric. 

 APD Dice metric 
ID Inner Outer Inner Outer 
SC-HF-I-05 1.7 1.6 0.94 0.96 
SC-HF-I-06 1.8 2.4 0.92 0.94 
SC-HF-I-07 2.8 2.2 0.88 0.93 
SC-HF-I-08 2.1 2.3 0.92 0.93 
SC-HF-NI-07 2.9 2.3 0.89 0.93 
SC-HF-NI-11 2.3 2.0 0.91 0.95 
SC-HF-NI-31 2.1 2.6 0.91 0.93 
SC-HF-NI-33 2.3 2.9 0.87 0.91 
SC-HYP-06 2.0 2.1 0.89 0.93 
SC-HYP-07 2.2 2.4 0.90 0.93 
SC-HYP-08 3.9 2.2 0.82 0.94 
SC-HYP-37 2.3 3.0 0.83 0.90 
SC-N-05 2.0 2.1 0.84 0.92 
SC-N-06 2.1 1.7 0.89 0.94 
SC-N-07 1.7 2.5 0.91 0.92 
Average 2.29 2.28 0.89 0.93 
Stdev 0.57 0.39 0.03 0.01 
Min 1.67 1.57 0.82 0.90 
Max 3.93 2.98 0.94 0.96 
 
The APD and Dice metric values are listed in Table 2. The APD was similar for 

both contour types, being 2.29 mm and 2.28 mm for endo- and epicardial contours, 
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respectively. Dice metric values for both contour types were 0.89 for endocardial 
contours and 0.93 for epicardial contours. In general the results for the ED phase were 
better than for the ES phase. This is mainly caused by the influence of papillary 
muscles and trabeculations on the visibility of the myocardial boundaries. 

The results of contour detection for the studies with the best and worst APD are 
illustrated in figure 1 and 2, respectively.  

 
Table 3 lists the results of assessment of the LV ejection fraction and LV mass 

based on the automatically detected and the reference contours. The EF derived from 
automatically detected contours was not statistically significant different from the 
reference. LV mass was overestimated by 22.5g (18.9%) on average. 

Table 3. Ejection fraction and LV mass evaluation obtained using PIC method (papillary 
muscles included in the LV blood pool) 

 Ejection fraction (PIC) LV mass (PIC) 
ID Reference Auto Reference Auto 
SC-HF-I-05 33.03 37.67 115.45 111.04 
SC-HF-I-06 25.78 28.64 147.34 177.83 
SC-HF-I-07 28.18 19.84 114.12 117.12 
SC-HF-I-08 21.42 26.27 124.40 179.53 
SC-HF-NI-07 12.91 23.78 130.54 160.24 
SC-HF-NI-11 14.84 22.82 158.25 203.80 
SC-HF-NI-31 35.59 43.02 127.38 176.67 
SC-HF-NI-33 58.35 63.84 130.78 182.49 
SC-HYP-06 60.43 59.31 91.59 112.13 
SC-HYP-07 62.27 45.98 133.55 182.25 
SC-HYP-08 58.69 48.88 278.17 268.57 
SC-HYP-37 71.68 67.29 125.38 93.02 
SC-N-05 62.81 79.25 73.50 75.74 
SC-N-06 54.59 58.57 64.02 80.94 
SC-N-07 59.06 59.85 102.34 133.34 
Average 44.0 45.7 127.8 150.3 
Stdev 20.0 18.7 48.8 53.0 
Min 12.9 19.8 64.0 75.7 
Max 71.7 79.35 278.2 268.6 
Signed 
difference 

 1.7±8.5 % 
(p=0.23) 

 22.5±26.2 g (p=0.0025) 
18.9±20.0 % 

Absolute 
difference 

 7.0±4.8 %  28.7±18.7 g 
23.3±14.2 % 
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Fig. 2. Detection for the images of study SC-HYP-08 (case with lowest score; left is ED, right 
is ES). APD is 3.9 mm for the inner and 2.2 mm for the outer contours. Ejection fraction was 
underestimated by 9.8% while LV mass was slightly underestimated by 9.6 g (3.5 %). The low 
APD score for endocardial contours in mainly caused by failure of the algorithm to find the 
myocardial boundary in between the papillary muscles and trabeculations in the ES frame.  

DISCUSSION 

The described contour detection method was applied with reasonable success on 
the LV Challenge evaluation data. The training data supplied for the LV Challenge 
was used to test several contour detection approaches. The presented hybrid approach, 
in which an AAM based contour detection method was used as initial step followed 
by other techniques for the final contour detection resulted in the optimal APD and 
Dice metric values in the training set. No specific optimization of the algorithm 
parameters was performed on the type of data, although this might have resulted in 
some additional improvements. The limited set of 15 studies in the training set was 
also not sufficient to build a more specific AAM model for the LV Challenge sets. 
Instead it was decided to use a model which was trained on another set of GE MR 
data with characteristics slightly different from the LV Challenge data sets [4]. The 
resulting contours from the AAM detection step were used as valuable input for 
further processing using more image driven contour detection techniques. This is in 
line with a number of recent papers presenting LV contour detection algorithms 
heavily relying on image data rather than on a statistical or geometric models [7,8]. In 
general the quality of the data was such that the expert contours were located on 
strong edges in the images. However, this was not the case in a number of cases of 
hypertrophy patients where in the ES phase the endocardial contour was located in a 
region where papillary muscles and trabeculations were compressed together. In such 
cases a correct interpretation of the images is only possible by integrating knowledge 
of temporal variations. However, in our proposed algorithm information from 
temporal neighboring images was not used. 
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The evaluation of the performance of algorithm involved testing the method in a 
fully automated mode without applying any user interaction. The processing pipeline 
consists in a number of steps, in which every step in the processing is affected by the 
correctness of the result of the previous step. In a setting were user interaction is 
allowed, the user might first evaluate and correct any errors in the processing before 
proceeding with the next step. It is obvious that in such setting more accurate results 
may be obtained. For example, in the wrongly detected endocardial contour in the 
most apical ES slice in figure 2, would not have occurred if the user would have 
corrected the initially detected epicardial contour in this image. 

In conclusion, we implemented a fully automated LV contour detection approach 
and successfully applied this algorithm on the LV Challenge evaluation data. Ejection 
fraction measurements derived from the automatically detected contour were in close 
agreement with expert results. LV mass measurements were over-estimated by on 
average 22.5%. However, by allowing a limited amount of user-interaction, the 
robustness of the developed approach can be significantly improved, resulting in a 
practical solution that can be implemented in clinical practice. 
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