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Abstract. In this paper a contour detection method is described and evaluated
on the evaluation data sets of the Cardiac MR Left Ventricle Segmentation
Challenge as part of MICCAI 2009’s 3D Segmentation Challenge for Clinical
Applications. The proposed method, using 2D AAM and 3D ASM, performs a
fully automated detection of the myocardial contours, not requiring any user
interaction. The algorithm’s performance is reported using the metrics provided
by the LV Challenge organization. Endocardial contour detection was classified
as successful in 86% of the images and epicardial contours in 94%. The average
perpendicular distance (APD) of the successful contours was 2.28 mm and
2.29 mm for the endo- and epicardial contours, respectively.

Introduction

In this paper a contour detection method is described and evaluated on the evaluation
data sets of the Cardiac MR Left Ventricle Segmentation Challenge as part of
MICCAI 2009’s 3D Segmentation Challenge for Clinical Applications [1]. The LV
contour detection method described is composed of a pipeline of operations where the
output of each stage is input to the next. In the setting of an application in which user-
interaction is allowed, review and correction of the result of a particular stage may
improve the final outcome of the algorithm. However, in the context of the LV
Challenge our contribution concerns a fully automated detection approach. The details
of the algorithm and the results obtained on the LV Challenge evaluation set are
described in the next sections.

*J.S. Wijnhout was supported by Casimir grant 018.003.007 of the Netherlands Organization
for Scientific Research (NWO).
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Methods

Preparation

As initial preparation before applying fully automated contour detection, the two
cardiac phases to be analyzed (i.e. ED and ES) and the image slices intersecting the
LV were identified. The phase with a trigger delay closest to 300 ms was assumed to
be the ES phase while the other phase was assumed to be the ED phase.

LV center point detection

The location and orientation of the long-axis of the left ventricle was identified
using the Hough Transform for approximately circular objects [2]. For each of the
images in the ED phase, the Hough Transform generates an accumulator image with
identical dimensions as the input image, with high values near center points of objects
having a radius within the specified range (2-60 mm). The range of radii was set large
enough such that both endocardial and epicardial edge points would contribute to the
automated determination of the ventricular center for a wide range of left ventricular
sizes and cardiac pathologies. A straight line in 3D with maximum average intensity
was fit through all available Hough accumulator images to estimate the long axis of
the left ventricle. This procedure resulted in an estimation of the center of the left
ventricle for each slice of the imaging study.

AAM based image segmentation

A 2D AAM based contour detection method similar as described by Mittchell et
al [3] was used to obtain a first approximation of the LV endo- and epicardial and RV
endocardial contours.

The AAM model used was trained on 40 cardiac MR data sets from different
institutions including a variety of cardiac pathologies; all acquired on GE 1.5 T MR
scanners [4]. For every study an experienced observer manually traced the LV
endocardial and epicardial contours and RV endocardial contours in the ED and ES
phases. The contour tracing protocol was similar to the one defined for the LV
Challenge expert contours. No papillary muscle contours were identified. Separate
AAM models were built for the ED and ES phases. Apical slices with a very small or
no visual RV blood pool were excluded. For the most basal section, slices without
complete circumference of LV myocardium were also excluded from the AAM
training set. On average 5-6 ED slices and 4-5ES slices were included for every
dataset.

For AAM matching, the initial pose of the AAM was determined by the detected
LV center point and the expected cardiac orientation derived from the image
orientation information obtained from the DICOM image headers. The initial scale
was chosen identical to the average cardiac size in the training set. AAM contour
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detection was performed image by image, starting at a mid-ventricular slice. A
conventional iterative matching procedure was followed minimizing the rms intensity
difference between the model and the target image [3]. Improved robustness and
computational efficiency was realized by propagating the found model parameters of
a slice to initialize the model for neighboring slices. The matching process was
performed for all ED and ES images and resulted in LV endocardial, epicardial and
RV endocardial contours. These contours were used as input for the following contour
detection steps.

Endocardial and epicardial contour detection

Despite the reported robustness of the AAM based contour detection approach, we
have observed that the final result of the AAM method was deemed sub-optimal in
various situations. First, since the metric minimized during the iterative fitting is
global, the final contour location is often somewhat dislocated from the visually
identified boundary even in cases where the boundary is depicted with high-contrast.
This may partly be caused by the fact that the contour shape is too much constrained
by statistical limits imposed by the model. Additionally, we have observed that for
more complicated slices at the basal and apical level it occurs that during the fitting
process the model fails to converge to a proper solution, which can lead to complete
failures. This can be explained by the selection of images that was used for training
the model, in which the most basal and apical slices were excluded. Finally, the
iterative AAM matching process is sensitive to local minima, which may occasionally
result in false contours.

Endocardial contour detection. The final endocardial contours were obtained using
the algorithm described in [5]. In short, within the available epicardial contour an
optimal threshold was determined separating the LV blood pool from the
myocardium. A smooth convex shape (model contour) around the isolated blood pool
was extracted, followed by dynamic programming, to obtain an endocardial contour
fitting on the image gradients. In this step the search region was constrained to a small
distance to the model contour.

Epicardial contour detection. Due to the variation in tissue characteristics of the
region surrounding the myocardium, an edge based image detection technique, such
as dynamic programming, can not be reliably applied for detection of the epicardial
boundaries. Instead, we have applied a modified version of the SPASM algorithm
described by van Assen et. al. [6]. This method uses a 3D Active Shape Model (ASM)
which is fit on feature points detected by a fuzzy inference method. This method uses
the Fuzzy C-Mean algorithm to classify pixels into three classes: blood/fat,
myocardium and air. The 3D nature of this algorithm potentially results in better
robustness, which is especially of importance for the detection in the basal and apical
imaging sections.

As preparatory step image mis-registration artifacts due to breath-hold
inconsistencies during image acquisition were reduced by aligning the short-axis
images using the center of gravity of the previously detected endocardial contours.
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This preparatory step is essential to make the short-axis data set a valid 3D scene. The
initial position and orientation of the model was defined by the detected LV and RV
contours.

The endocardial feature points were determined by the location of the detected
endocardial contours, while the epicardial feature points were generated by applying
the fuzzy inference method. The ASM model is divided into three sections: septal,
lateral and apical. For each of the sections, fuzzy inference was applied. To this end
image patches were sampled for which the location was determined by the available
endocardial contours. The radial size of the patches was set to 20 mm multiplied by
the LV size, computed from the AAM and dynamic programming contours, divided
by the mean shape LV size. In the LV Challenge training set, the epicardial good
percentage increased from 81% to 89% as a result of the SPASM detection while the
APD and dice metric remained nearly the same. In cases where the epicardial
detection failed, this was caused by incorrect endocardial contours.

RESULTS

Total processing time per study was 60 s on average, including reading the images
and storing the contour files (Intel Core 2 Duo 2.2 GHz, single threaded).

Table 1 lists the number of endocardial and epicardial contours successfully
detected for each of the 15 studies. On average 86% and 94% of the endo- and
epicardial contours, respectively were detected within an average distance of 5 mm of
the reference contours.

Table 1. Statistics for number of inner and outer contours per study and success rate of the
automated contour detection algorithm.

Number of Contours Detect Percentage Good Percentage
1D Inner Outer Inner Outer Inner Outer
SC-HF-1-05 18 9 100 100 100 100
SC-HF-1-06 22 11 100 100 100 92
SC-HF-1-07 16 8 100 100 75 100
SC-HF-1-08 22 11 100 100 100 100
SC-HF-NI-07 24 12 100 100 92 100
SC-HF-NI-11 20 10 100 100 100 90
SC-HF-NI-31 18 10 95 100 84 100
SC-HF-NI-33 18 10 100 100 89 90
SC-HYP-06 13 7 100 100 85 100
SC-HYP-07 16 8 100 100 69 100
SC-HYP-08 19 10 100 100 68 90
SC-HYP-37 13 7 100 100 85 86
SC-N-05 15 8 100 100 80 100
SC-N-06 13 7 100 100 92 86
SC-N-07 18 10 100 100 78 80
Average 17.7 9.2 99.7 100 86.4 94.2
Stdev 3.4 1.6 14 0 11.0 7.0
Min 13 7 95 100 68.4 80
Max 24 12 100 100 100 100
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Fig. 1. Hllustrative example of the result of automated contour detection for the images of study
SC-HF-1-05 (case with the best APD score and Dice metric, left is ED, right is ES). APD is
1.7 mm for the inner and 1.6 mm for the outer contours. Ejection fraction was slightly
overestimated by 4.6% while LV mass was underestimated by 4.4 g. Automatically detected
center points are displayed in the ED images. Smoothness constraint applied in the endocardial
detection algorithm results in contours surrounding the papillary muscles and trabeculations.
However some overestimation occurred in the basal slices of the ES frame. Epicardial contour
detection was successful for all slices of the ED phase.

Table 2. Results of APD and Dice metric.

APD Dice metric
1D Inner Quter Inner Quter
SC-HF-1-05 17 1.6 0.94 0.96
SC-HF-1-06 1.8 2.4 0.92 0.94
SC-HF-1-07 2.8 2.2 0.88 0.93
SC-HF-1-08 2.1 2.3 0.92 0.93
SC-HF-NI-07 2.9 2.3 0.89 0.93
SC-HF-NI-11 2.3 2.0 0.91 0.95
SC-HF-NI-31 2.1 2.6 0.91 0.93
SC-HF-NI-33 2.3 2.9 0.87 0.91
SC-HYP-06 2.0 2.1 0.89 0.93
SC-HYP-07 2.2 24 0.90 0.93
SC-HYP-08 3.9 2.2 0.82 0.94
SC-HYP-37 2.3 3.0 0.83 0.90
SC-N-05 2.0 2.1 0.84 0.92
SC-N-06 2.1 17 0.89 0.94
SC-N-07 1.7 2.5 0.91 0.92
Average 2.29 2.28 0.89 0.93
Stdev 0.57 0.39 0.03 0.01
Min 1.67 1.57 0.82 0.90
Max 3.93 2.98 0.94 0.96

The APD and Dice metric values are listed in Table 2. The APD was similar for
both contour types, being 2.29 mm and 2.28 mm for endo- and epicardial contours,
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respectively. Dice metric values for both contour types were 0.89 for endocardial
contours and 0.93 for epicardial contours. In general the results for the ED phase were
better than for the ES phase. This is mainly caused by the influence of papillary
muscles and trabeculations on the visibility of the myocardial boundaries.

The results of contour detection for the studies with the best and worst APD are
illustrated in figure 1 and 2, respectively.

Table 3 lists the results of assessment of the LV ejection fraction and LV mass
based on the automatically detected and the reference contours. The EF derived from
automatically detected contours was not statistically significant different from the
reference. LV mass was overestimated by 22.5g (18.9%) on average.

Table 3. Ejection fraction and LV mass evaluation obtained using PIC method (papillary
muscles included in the LV blood pool)

Ejection fraction (PIC) LV mass (PIC)
1D Reference Auto Reference Auto
SC-HF-1-05 33.03 37.67 115.45 111.04
SC-HF-1-06 25.78 28.64 147.34 177.83
SC-HF-1-07 28.18 19.84 114.12 117.12
SC-HF-1-08 21.42 26.27 124.40 179.53
SC-HF-NI-07 12.91 23.78 130.54 160.24
SC-HF-NI-11 14.84 22.82 158.25 203.80
SC-HF-NI-31 35.59 43.02 127.38 176.67
SC-HF-NI-33 58.35 63.84 130.78 182.49
SC-HYP-06 60.43 59.31 91.59 112.13
SC-HYP-07 62.27 45.98 133.55 182.25
SC-HYP-08 58.69 48.88 278.17 268.57
SC-HYP-37 71.68 67.29 125.38 93.02
SC-N-05 62.81 79.25 73.50 75.74
SC-N-06 54.59 58.57 64.02 80.94
SC-N-07 59.06 59.85 102.34 133.34
Average 44.0 45.7 127.8 150.3
Stdev 20.0 18.7 48.8 53.0
Min 12.9 19.8 64.0 75.7
Max 71.7 79.35 278.2 268.6
Signed 1.7+8.5 % 22.5+26.2 g (p=0.0025)
difference (p=0.23) 18.9+20.0 %
Absolute 7.0£4.8 % 28.7£18.7¢g
difference 23.3+14.2 %
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Fig. 2. Detection for the images of study SC-HYP-08 (case with lowest score; left is ED, right
is ES). APD is 3.9 mm for the inner and 2.2 mm for the outer contours. Ejection fraction was
underestimated by 9.8% while LV mass was slightly underestimated by 9.6 g (3.5 %). The low
APD score for endocardial contours in mainly caused by failure of the algorithm to find the
myocardial boundary in between the papillary muscles and trabeculations in the ES frame.

DISCUSSION

The described contour detection method was applied with reasonable success on
the LV Challenge evaluation data. The training data supplied for the LV Challenge
was used to test several contour detection approaches. The presented hybrid approach,
in which an AAM based contour detection method was used as initial step followed
by other techniques for the final contour detection resulted in the optimal APD and
Dice metric values in the training set. No specific optimization of the algorithm
parameters was performed on the type of data, although this might have resulted in
some additional improvements. The limited set of 15 studies in the training set was
also not sufficient to build a more specific AAM model for the LV Challenge sets.
Instead it was decided to use a model which was trained on another set of GE MR
data with characteristics slightly different from the LV Challenge data sets [4]. The
resulting contours from the AAM detection step were used as valuable input for
further processing using more image driven contour detection techniques. This is in
line with a number of recent papers presenting LV contour detection algorithms
heavily relying on image data rather than on a statistical or geometric models [7,8]. In
general the quality of the data was such that the expert contours were located on
strong edges in the images. However, this was not the case in a number of cases of
hypertrophy patients where in the ES phase the endocardial contour was located in a
region where papillary muscles and trabeculations were compressed together. In such
cases a correct interpretation of the images is only possible by integrating knowledge
of temporal variations. However, in our proposed algorithm information from
temporal neighboring images was not used.
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The evaluation of the performance of algorithm involved testing the method in a
fully automated mode without applying any user interaction. The processing pipeline
consists in a number of steps, in which every step in the processing is affected by the
correctness of the result of the previous step. In a setting were user interaction is
allowed, the user might first evaluate and correct any errors in the processing before
proceeding with the next step. It is obvious that in such setting more accurate results
may be obtained. For example, in the wrongly detected endocardial contour in the
most apical ES slice in figure 2, would not have occurred if the user would have
corrected the initially detected epicardial contour in this image.

In conclusion, we implemented a fully automated LV contour detection approach
and successfully applied this algorithm on the LV Challenge evaluation data. Ejection
fraction measurements derived from the automatically detected contour were in close
agreement with expert results. LV mass measurements were over-estimated by on
average 22.5%. However, by allowing a limited amount of user-interaction, the
robustness of the developed approach can be significantly improved, resulting in a
practical solution that can be implemented in clinical practice.
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