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Abstract. This paper describes a fully automatic system to segment the
left ventricle in all slices and all phases of a magnetic resonance cardiac cine
study. After localizing the left ventricle blood pool using motion, thresh-
olding and clustering, slices are segmented sequentially. For each slice, de-
formable registration is used to align all the phases, candidate contours are
recovered in the average image using shortest paths, and a minimal surface
is built to generate the final contours. The advantage of our method is that
the resulting contours follow the edges in each phase and are consistent over
time. As part of the MICCAT grand challenge on left ventricle segmentation,
we demonstrate using 15 training datasets and 15 validation datasets that
the results are very good with average errors around 2 mm and the method
is ready for clinical routine.

1 Introduction

Cardiovascular disease is now the largest cause of death in the modern world and
is an important health concern. Physicians use non invasive technologies such as
magnetic resonance (MR) imaging to observe the behavior of the heart and more
specifically the left ventricle (LV). This paper proposes a system to automatically
segment the LV in all slices and all phases of a cardiac MR cine study.

An MR cine study consists of 4D (3D+T) data and the segmentation of all
the images can be tackled in various ways. Some researchers have attempted 4D
segmentation [1]. We believe however that this approach is not feasible, since it is
very difficult to build a model that is general enough to cover all possible shapes and
dynamics of the LV and a model-free approach would not be constrained enough.
The opposite approach is to segment each image individually [2]. This results in
little cohesion between images and unsmooth contours over time. An intermediate
approach used very often is to segment the LV in one phase (ED for example) on all
slices [3,4]. This can be quite difficult however. When a model is used, it needs to be
carefully trained for all possible LV shapes and all possible MR acquisition protocols.
Conversely, image-based techniques tend to be ad-hoc. We have chosen instead to
segment all phases in one slice and propagate the segmentation between slices.
This method can take advantage of the strong temporal correlation between phases
to segment individual slices. For temporal propagation, researchers have proposed



using a dynamic model of the LV [5, 6] while other methods incorporate a tracking
component into the recovery [7, 8]. We use deformable registration to align all phases
and generate an average image that is then segmented. We then use minimal surfaces
to enforce consistency between phases which is the main strength of our method.
Contours follow the edges of the image in each phase and are smooth over time. We
also use deformable registration to propagate the segmentation between slices.

In the next section, we will describe the main steps of our method. For the
MICCALI grand challenge on left ventricle segmentation, it was only necessary to
segment the endocardium and epicardium at ED and the endocardium at ES to
compute the ejection fraction (EF) and the myocardial mass, which are the main
clinical measurements. However, since it is more difficult to segment individual im-
ages or even individual phases, and our method makes use of temporal consistency,
we segmented all images in the datasets. This also allows to compute additional
measures such as blood pool volume over time, peak ejection and filling rates, and
myocardial thickening. In Section 3, we demonstrate the performance of the method
on 30 MICCATI challenge datasets.

2 Left Ventricle Segmentation

The proposed algorithm is completely automatic. It is divided into the following
steps: 1) Heart localization; 2) Left ventricle blood pool detection; 3) Polar space
transformation; 4) Gray scale analysis; and 5) Segmentation of the individual slices,
which comprises of deformable registration to align all the phases, contour can-
didates on the average temporal image and minimal surface segmentation of all
phases. We will describe each of these steps in more details.

The detection of the heart and the localization of the LV blood pool are described
in Jolly [9]. First, we compute the first harmonic of the temporal Fourier transform
in each slice, and extract the pixels which have a strong response. The final region
of interest (ROI) consists of the most consistent connected components in space.

Otsu’s thresholding is applied within the ROI in each slice to extract blood
pixels which are then grouped into 2D+T connected components (CC) characterized
by their shape, temporal behavior, position, etc. Isoperimetric clustering [10] is
used to group CCs between slices and form the LV blood pool. The graph for the
isoperimetric clustering algorithm consists of nodes for the 2D+T CCs and edges
between overlapping CCs in neighboring slices. This process does not generate a
blood pool region on all slices, nor does it handle the papillary muscles correctly in
the blood pool region, but it is a good starting point for the rest of our algorithm.

The segmentation of the myocardium is described in Jolly et al. [11]. The polar
space transformation is fairly straightforward, its center and maximum radius are
calculated from the blood pool estimates. Then, the goal of the gray scale analysis
(illustrated in Fig. 1) is to build histograms for the lungs, myocardium and blood
pool distributions. We use the multiseeded fuzzy connectedness approach proposed
n [12]. Rough histograms for the lungs, myocardium, and blood are built using the
LV blood pool estimates. The fuzzy connectedness algorithm is then seeded using
the pixels in the center of the main peaks in those histograms. It groups pixels into
homogeneous regions from which the final histograms are built.



1
Multilabel fuzzy o4 = J 1N
connectedness L 7 X

b
Fig. 1. Gray level analysis: (a) Original histograms; (b) Polar image and multiseeded fuzzy
connectedness region labeling; (c) Final histograms.

Fig. 2. Strategy to capture the large deformations between pairs of phases (especially ED
and ES) during registration in polar space.

We choose the first slice to be segmented as the first slice on which an LV blood
pool was detected. It is usually a clean slice, below the valve plane, without many
papillary muscles inside the blood pool. It is a good candidate to start the segmen-
tation process which will be described shortly. For the other slices, the segmentation
of the first slice is propagated in both directions to the apex and to the base by
applying deformable registration [13] to align the ED and ES phases of the current
slice to the previous slice. The resulting deformed contours define shape priors.

To segment a given slice, we first register all the phases in the slice using a vari-
ational non-rigid algorithm [13] and generate an average image. The registration
algorithm is applied to the polar images because the contours will be recovered in
polar space and the intrinsic motion of the myocardium is mostly radial. To over-
come the fact that there might be a large deformation between frames (especially
between ED and ES), the registration from one frame to the reference frame is
initialized with the registration from the previous frame to the reference frame as
illustrated in Fig. 2.

The endocardium and epicardium contours are recovered independently in the
average image using a shortest path algorithm. Since it is very difficult to design the
best cost function that will work in all possible cases, we have chosen to generate
multiple contour candidates as illustrated in Fig. 3. First, the phases are aligned sep-
arately to the ED and ES phases to produce the average images Ipp(z) and Igs(z).
Then, we compute two different class probabilities: a) the distribution probability
PH () is the response of the class histogram to the pixels in the average image, for
the lungs (P (x)), blood (PH (x)) and myocardium (P (z)); b) the label proba-
bility P%(z) is the average of the label images £,(z) produced by the multiseeded
fuzzy connectedness algorithm for the lungs, blood and myocardium. The gradi-



Fig. 3. Segmentation of the average images to generate multiple candidate contours.

ent cost function for each type of probability image is computed by combining the
gradients of the probability images, of the original image, and of the label image.
The endocardium cost function is defined as:
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In addition, when prior contours are available (for all but the first slice), the
gradient images are combined with the distance maps from the prior contours as
follows:
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k=ED,ES.

We use Dijkstra’s algorithm to recover the shortest path. All the pixels in the
leftmost column in the polar image are initialized as starting points on the path and
as soon as a path reaches a pixel in the rightmost column, the algorithm terminates.
The contours generated by the shortest path algorithm using the two different prob-
ability images for the two average images are transfered back to all the phases using
the corresponding deformation fields to obtain four different candidate contours per
phase. These contours are then combined using a minimal surface algorithm.

The minimal surface algorithm was proposed by Grady [14] to extend the short-
est path algorithm to 3D. This extension of the shortest path algorithm accepts one
or more closed 2D contours as input and produces the global minimal surface, with
respect to the cost function, having these 2D contours as its boundary.



Fig. 4. Segmentation of an entire slice (cropped for better viewing).

The cost functions G&*°(x) and GSPi(x) for each phase p are defined in a fashion
similar to Eq. (1)-(2). Then, different pixels are emphasized for the endocardium or
the epicardium cost function.

The endocardium should stay behind the papillary muscles, so we emphasize
pixels that are farther from the center of the candidate contours. A distance map
is initialized column by column in polar space by setting to 0 the pixels on candi-
date contours with largest row position and good gradients. If there are no pixels
with good gradient on the candidate contours for a particular column, the average
prior position is set to 0. The distance map is then expanded using the traditional
chamfering technique and combined with the gradient cost function to produce the
final endocardium cost function.
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For the epicardium, more candidates have to be retained because there are many
missing and spurious edges. Again, a distance map is initialized by setting pixels
on candidate contours to value DSP(i, j) = ||i — ig|| where iq is the average row
position for the prior contours or the average thickness in the case of the first slice
(when there is no prior contours). It is expanded and combined with the gradient
cost function as for the endocardium (Eq. (3)).

To initialize the contours for the minimal surface algorithm, we apply Dijkstra’s
algorithm in the ED phase to generate a 2D contour. The 3D volume consists of
all phases with the ED phase as the first phase and added again as the last phase.
This way, the algorithm is initialized with two contours and the minimal surface is
generated between them. In order to not bias the algorithm with the initial contour,
we apply a second pass where the initial contour is the ES contour from the first
pass and the 3D volume goes from the ES phase to the ES phase. Once the contours
have been segmented, they are converted back to Cartesian space. Fig. 4 shows an
example of the segmentation results in an entire slice.

3 Experiments

As part of the MICCALI grand challenge on left ventricle segmentation, the method
was evaluated on 15 training datasets and 15 validation datasets. Our algorithm is
quite fast, it takes 1 minute to segment an average dataset with 200 images (0.3 s per
image) on a dual core laptop (2.33GHz and 2GB RAM). Our segmentation contours



Detect | Good EF (%) LV mass (g) |Dist (mm)| Dice

patient endo| epi|endo| epi| auto|manual| auto|manuallendo| epilendo| epi
SC-HF-1I-01 | 100|100 100{100|23.65| 26.16|152.96| 116.75| 2.63| 2.06| 0.88|0.93
SC-HF-1-02 | 100|100| 100{100{22.25| 25.46|133.38| 141.84| 2.07| 1.91| 0.89|0.94
SC-HF-1-04 | 100|100 100{100|19.03| 21.82|136.78| 132.08| 1.72| 1.94| 0.93|0.94
SC-HF-1-40 | 100|100{ 100{100{34.40| 40.61|104.59| 87.09| 1.64| 1.26| 0.92|0.95
SC-HF-NI-03| 100|100{ 100{100{19.71| 16.76/216.40| 154.59| 2.73| 1.95| 0.90|0.95
SC-HF-NI-04| 100|100 100{100|19.88| 20.37|121.63| 107.84| 2.25| 1.51| 0.91]0.95
SC-HF-NI-34| 100|100{ 90|100{30.58| 34.39|196.61| 171.05| 1.82| 2.39| 0.90|0.92
SC-HF-NI-36| 100|100| 100|{100{16.76] 15.68|167.60| 113.56| 1.35| 2.18| 0.95|0.94
SC-HYP-01 | 100|100 92| 86|58.11| 61.06| 71.96| 74.10| 1.86| 2.55| 0.89/0.91
SC-HYP-03 | 100|100| 100{100{54.78| 60.54|109.58| 94.38| 1.79| 1.48| 0.90|0.94
SC-HYP-38 | 100|100| 100{100(69.73| 77.82|167.30| 124.35| 2.61| 2.04| 0.75(0.91
SC-HYP-40 | 100|100{ 72|100|31.86| 44.13| 98.50| 85.36| 3.23| 2.03| 0.76{0.92

SC-N-02 100{100| 100|100|53.49| 55.61| 94.89| 82.72| 2.13| 1.20| 0.85(0.95
SC-N-03 100{100| 100]|100{48.28| 50.31| 70.59| 68.97| 1.38| 1.53| 0.92(0.94
SC-N-40 100{100| 100{100|47.88| 42.05| 88.43| 61.38| 2.10| 2.20| 0.86|0.92

Table 1. Results on the MICCALI challenge training dataset.

were compared to the ground truth using the evaluation program. The datasets and
evaluation criterion are fully described in [15]. The results are reported in Tables 1
and 2. We only report EF and LV mass for the case where the papillary muscles are
included inside the cavity since our algorithm encloses them inside the endocardium
and does not produce separate contours.

Fig. 5 shows the regression and Bland-Altman plots for the EF and LV mass
measurements. For the EF, the slope is not quite 1, demonstrating a bias (-5.22
on the Bland-Altman plot). However, the regression coefficient is very good, and
the spread of the values is pretty low. For the LV mass, it can be seen that the
regression coefficient is lower (mostly due to the outlier: SC-HYP-08), the bias is
larger (18.38). Therefore, the algorithm is pretty accurate at computing the EF,
but not as accurate for the LV mass.

The raw results are summarized in Table 3. It can be seen that the contours
are always detected and they are good (less than 5 mm from the ground truth)
on the average 95% of the time for the endocardium and 97% of the time for the
epicardium. This means that the contours are very satifactory and do not need to
be edited much. This is in agreement with the visual examination, where 7 of the
segmentations were considered excellent and only 4 were poor. No segmentation was
deemed unusable making this method ready for clinical use. The average error is
2% mm for the endocardium and just under 2 mm for the epicardium. As suggested
by the expert examiner, we will focus our effort on improving the accuracy of the
segmentation around the outflow tract.

4 Conclusions

We have proposed a fully automatic system to segment the left ventricle myocardium
from cine MR images. The method combines automatic localization through Fourier



Detect | Good EF (%) LV mass (g) |Dist (mm)| Dice [|Visual
patient endo| epilendo| epi| autojmanual| auto/manuallendo| epilendo| epi|| exam
SC-HF-1-05 | 100|100 100{100|28.51| 33.03|148.56| 115.45| 1.36| 1.59| 0.94|0.96 3
SC-HF-1-06 | 100|100| 100{100{19.89| 25.78|170.17| 147.34| 1.74| 1.60| 0.93|0.95 1
SC-HF-1-07 | 100/100| 88|100|29.07| 28.18|139.33| 114.12| 3.02| 1.89| 0.85/0.95 1
SC-HF-1I-08 | 100|100 100{100|19.76| 21.42|187.01| 124.40| 3.07| 2.17| 0.87|0.93 3
SC-HF-NI-07| 100|100 96| 92|19.26] 12.91|182.85| 130.54| 3.68| 1.60| 0.84|0.95 3
SC-HF-NI-11| 100|100 100{100|13.76| 14.84|195.81| 158.25| 2.21| 1.95| 0.91|0.94 1
SC-HF-NI-31| 100|100 100{100|30.26| 35.59|157.39| 127.38| 2.13| 1.93| 0.91|0.93 1
SC-HF-NI-33| 100|100| 100| 90|46.12| 58.35|137.62| 130.78| 2.32| 3.22| 0.87|0.94 1
SC-HYP-06 | 100|100| 92|100|49.18| 60.43|116.27| 91.59| 2.38| 3.29| 0.87|0.93 1
SC-HYP-07 | 100|100| 94|100]|55.68| 62.27|192.61| 133.55| 2.68| 2.28| 0.84/0.90 3
SC-HYP-08 | 100|100 89| 80|44.57| 58.69|240.43| 278.17| 3.16| 2.14| 0.86(0.91 2
SC-HYP-37 | 100|100| 62| 86(58.06] 71.68| 92.60| 125.38| 1.83| 1.28| 0.90|0.93 1
SC-N-05 100{100| 100{100|48.83| 62.81| 74.47| 73.50| 1.99| 1.81| 0.87|0.91 2
SC-N-06 100{100| 100| 86|47.67| 54.59| 83.66| 64.02| 2.21| 1.49| 0.87/0.95 2
SC-N-07 100{100| 94(100|38.14| 59.06/109.54| 102.34| 2.77| 2.57| 0.85/0.92 2

Table 2. Results on the MICCAI challenge validation dataset.

Detect Good |Dist (mm)| Dice ||Visual
endo| epi| endo| epi|endo| epilendo| epi|| exam
min 100{100{ 62| 80| 1.35 1.20| 0.75|0.90 1
max 100/100{ 100| 100| 3.68| 3.29| 0.95|0.96 3
average| 100{100{95.62(97.29| 2.26| 1.97| 0.88|0.93 1.8
std dev 0| 0] 8.83| 5.76| 0.59| 0.48| 0.04|0.02 -

Table 3. Summarized results over all 30 datasets (15 validation datasets for the visual
examination).

analysis and isoperimetric clustering, and segmentation through deformable regis-
tration, shortest paths, and minimal surfaces. We demonstrated on 30 datasets
from the MICCALI challenge that the results look very good and the errors are small
enough that the system can be used in clinical settings.
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