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Abstract

Treatment planning for high precision radiotherapy of head and neck (H&N) cancer patients requires
accurate delineation of critical structures. Manual contouring is tedious and often suffers from large inter-
and intra-rater variability. In this paper, we present a fully automated, atlas-based segmentation method
and apply it to tackle the H&N CT image segmentation problem in the MICCAI 2009 3D Segmentation
Grand Challenge. The proposed method employs a multiple atlas fusion strategy and a hierarchical
atlas registration approach. We also exploit recent advancements in GPU technology to accelerate the
deformable atlas registration and to make multi-atlas segmentation computationally feasible in practice.
Validation results on the eight clinical datasets distributed by the MICCAI workshop showed that the
proposed method gave very accurate segmentation of the mandible and the brainstem, with a volume
overlap close to or above 90% for most subjects. These results suggest that our method is clinically
applicable, accurate, and may significantly reduce manual labor and improve contouring efficiency.

1 Introduction

Head and neck (H&N) cancer is the sixth most common cancer in the world and accounts for more than
40,000 new cases annually in the United States and about half a million cases worldwide. Due to the
complex geometry of the various target volumes and organs at risk (OARs), it is desirable to apply intensity-
modulated radiotherapy (IMRT) for their treatment. The successful implementation of IMRT, however,
requires accurate delineation of target volumes and OARs on planning computed tomography (CT) images.
Manual contouring, although still the common standard for high quality segmentation in clinics, is tedious,
time-consuming, and suffers from large intra- and inter- rater variability. Tools for automated segmentation
are thus needed.

Fully automated segmentation of CT images has been proven to be a very challenging problem due to
image noise and other artifacts, as well as limited image contrast for most soft-tissue structures. Among
the few existing methods proposed in the literature for the automated segmentation of H&N CT images,
atlas-based techniques have been the most popular choice largely due to their ability to incorporate prior
anatomical knowledge about structure shapes and their geometric relationship into the segmentation process
[1, 2, 3, 4, 5, 6]. In such a method, a novel subject image is first aligned to an atlas image – an image that has
the structures of interest already labeled – through image registration and the atlas labels are then mapped
to the subject image using the computed image transformation. This approach has two critical components
that determine the quality of the segmentation results, namely the atlas registration method and the atlas
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Figure 1: Overall workflow of H&N CT image segmentation using multi-atlas fusion.

selection or construction strategy. Different atlas-based methods most often differ by the registration method
they apply and the type of atlases used.

The method we propose in this paper follows a similar framework as we developed earlier [5], which consists
of a hierarchical atlas registration method and a multiple atlas fusion strategy. We introduce here a few
modifications to the previous method to further improve computation speed and accuracy, and to adapt it to
the specific data of this MICCAI workshop. In particular, we have added an extra atlas registration step to
account for head-pose differences among different patients. We also proposed using a deformable model
method to further improve the segmentation accuracy of the mandible. In addition, we have implemented
the dense atlas registration on commodity graphics cards (GPUs) in order to take advantage of the superb
computation power of modern GPUs and to make multi-atlas segmentation computationally feasible in
practice. The GPU-acceleration can easily offer a speed-up of more than 25×, thus allowing segmentation
using multiple atlases be finished within the time-frame of a single atlas segmentation on high-speed CPU.

In the following, we first briefly summarize the proposed multi-atlas segmentation framework and then
describe our atlas registration method in more details. Finally, we present the validation results based on the
test datasets distributed by the MICCAI 2009 Head and Neck Auto-Segmentation Challenge workshop.

2 Method

2.1 Overview

The overall framework of our proposed method is summarized in Fig.1, where the segmentation of a new
subject is computed by applying multiple atlases separately and then combining the individual segmentation
results. As demonstrated in our previous work [5], this multi-atlas fusion strategy usually provides much
better accuracy than using a single atlas due to the high anatomical variability among different subjects in the
head and neck region. Another popular strategy to make use of multiple atlases is to first compile an average
atlas from the multiple training data and then apply it as a single atlas [4]. But from our experience and as
also observed by others [7], an average atlas usually lacks of detailed anatomical information due to cross-



subject averaging, thus limiting the segmentation accuracy that can be achieved. In this work, we apply
the multiple individual atlases independently in the beginning to get multiple segmentations of the same
subject, which are then combined in a multi-classifier framework to get a final unique segmentation [8, 7].
Following [7], we use the STAPLE (Simultaneous Truth And Performance Level Evaluation) algorithm
introduced by Warfield et al. [8] as the segmentation fusion method. The STAPLE method was originally
proposed for the estimation of the unknown ground truth from multiple manual segmentations of the same
image, but the same principle can be applied to the fusion of multiple auto-segmentation results.

The multi-atlas fusion strategy still requires a reliable atlas registration method in order to get good seg-
mentation result for each individual atlas. In our previous work [5], we have developed a hierarchical atlas
registration method for accurate and robust atlas registration. A major consideration in the previous design
is to gradually increase the degrees-of-freedom of the image transformation model in order to handle large
inter-subject anatomical variations more robustly. We adopt a similar strategy in this work but introduce
some modifications. Most importantly, we add an extra step to explicitly correct for head-pose differences
between the atlas and the subject after the initial linear registration. We also add a postprocessing step to
refine the mapped atlas structures using a deformable surface model method. Due to computation speed and
memory considerations, we replace the local correlation coefficients (LCC) image similarity metric used
in the previous work with a mutual information-based metric. We note that since only two structures (the
mandible and the brain-stem) are involved in this study, the poly-smooth non-linear registration step in the
previous method is no longer necessary and is skipped for all experiments reported in this paper. The final
single-atlas registration and structure mapping method consists of four major steps, as described in more
details in the following subsections.

2.2 Linear Registration

The first linear registration step aims to correct for global differences in position, orientation, and size be-
tween an atlas and a subject image. We use a 9 degrees of freedom linear registration model where the free
parameters include three translation, three rotation, and three scaling factors. To find the optimal transfor-
mation parameters, we maximize the global mutual information (MI) between the atlas and subject images
using a multi-resolution stochastic gradient-descent optimization scheme [9]. This scheme exploits the fact
that the linear registration is an over-constrained problem since the number of transformation parameters is
far less than the number of voxels in the image domain. Thus, at each iteration, the stochastic scheme uses
only a very small subset (100 in our experiments) of random image samples to estimate the image similarity
metric and the transformation parameters, which leads to a highly efficient algorithm that usually takes only
a few seconds even without GPU-acceleration.

2.3 Head-pose Correction

The previous linear registration step aligns two images (the atlas and the subject) globally. Unfortunately,
it cannot account for head-pose differences between different subjects caused by the articulated motion of
the head with respect to the body, as illustrated in Fig. 2. The head-pose differences typically lead to large
misalignment of structures in the head region (e.g., the brainstem and the skull) even after the initial linear
registration and cause difficulty for subsequent non-linear atlas registration. Thus, we propose to address
this problem explicitly by designing an algorithm to correct for head-pose differences between the atlas and
the subject images.

For typical H&N CT images, the head pose differences appear mainly as a front-back rotation of the head
within the mid-sagittal plane. We thus propose to model the head-pose alignment using a two-component
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Figure 2: Illustration of head-pose alignment: (a) atlas image; (b) subject image after global linear registra-
tion; and (c) subject image after head-pose alignment.

poly-rigid transformation model (cf. [10]) defined within the mid-sagittal plane of the atlas image, as illus-
trated in Fig. 2(a). In this model, the image transformation T is parameterized by two rigid components:

T (x) =
2

∑
i=1

wi(x)Ai(x), (1)

where Ai(x) denotes either one of the two rigid transformation components, and wi is the corresponding
weighting function. The value of wi at each image point x is chosen to be inversely proportional to the
distance of x to the center or anchor point of each transformation component. Following [10], a smooth and
invertible approximation of T can be computed using a Log-Euclidean framework.

In this work, the anchor points for the two rigid components are chosen automatically based on the location
of the labeled brainstem in the atlas image. In particular, the anchor point for the first component is set at
the bottom of the brainstem in the mid-sagittal plane, whereas the anchor point for the second component is
chosen by shifting the first anchor point vertically in the mid-sagittal plane towards the bottom of the image
(cf. Fig. 2(a)). In all experiments presented later, we empirically set the second anchor point to be 10 cm
away from the first one. We note that the mid-sagittal plane location can be easily estimated based on the
labeled brainstem.

The main parameters to estimate for the head-pose model are the rotation angle and the translation param-
eters for the first rigid component. We estimate these parameters based on the matching of image points
belonging to boundaries of bones in the head region, in particular the skull and the mandible. Voxels be-
longing to the skull boundary can be detected using simple intensity thresholding. We note that a complete
segmentation of the skull is not necessary at this step. We also assume that the mandible is already labeled
in the atlas image. The reason that we only use boundary voxels of bones for matching at this step is because
these points have good contrast in CT images and their correspondences are thus easier and more robust to
compute.

For each chosen atlas point, its correspondence in the subject image is found using a block-matching proce-
dure, where a block-wise mutual information is used as the local point-wise image similarity measure [11, 5].
We then apply a least-square fit to estimate the rotation angle and the translation parameters. We emphasize
again that the computation is performed in 2D within the mid-sagittal plane (the same transformation is then
applied to each sagittal plane of the 3D volume). Thus, the computation is fast and usually takes only about
a couple seconds.



After parameters of the first rigid component are estimated, parameters of the second component are as-
signed correspondingly. In particular, the translation parameters are set equal to that of the first component,
and the rotation angle is simply set to zero, since the goal of this step is to model the relative rotation of the
head with respect to the neck and the body regions. An example result is shown in Fig.2(c). As can be seen,
after the head-pose alignment, the subject image resembles more closely to the atlas image, which makes
the following non-linear atlas registration a lot easier.

2.4 Dense Mutual-Information Deformable Registration

In the final atlas registration step, we aim to compute a dense deformable registration to align detailed
structures of the atlas and the subject images. We adopt the MI as the image similarity measure due to
its ability to handle inter-subject intensity and contrast variations. MI is also faster to compute than the
LCC metric we previously used in [5]. The MI of two images I and J measures the degrees of dependence
between I and J and can be approximated as (cf. [9]):

MI(I,J) =
1
N ∑

x
log

[
pI,J(I(x),J(T (x)))

pI(I(x))pJ(J(T (x)))

]
, (2)

where N denotes the total number of image points within the overlapped region of the two images and
T denotes the image transformation model. The functions pI,J(·, ·) and pI(·), pJ(·) denote the joint and
marginal image intensity distributions respectively.

We adopt a non-parametric transformation model at this step where the image transformation is modeled
directly as a vectorial displacement field U, such that T (x) = x + U(x) for every image point x (cf. [12]).
Such a dense deformation field model is more flexible than a parameterized model, and can take into account
all image information and allow detecting fine anatomical differences.

The solution for the optimal deformation field can be found using a compositive, explicit local search scheme
that we recently introduced in [13]. In particular, the deformation field U is updated iteratively according to
the following equation:

Un = Un−1 ◦ (Id+un)+un, (3)

where Id denotes the identity transformation and “◦” denotes transformation composition. un is a local
update field that maximizes the MI between the original atlas image I and the deformed subject image
Jn = J ◦ (Id+Un) at each iteration, in particular,

MI(I,Jn ◦ (Id+un))

=
1
N ∑

x
log

[
pI,Jn(I(x),Jn(x+un(x)))

pI(I(x))pJn(Jn(x+un(x)))

]

�
=

1
N ∑

x
SMI(I(x),Jn(x+un(x))). (4)

In the above equation, SMI(·, ·) denotes a point-wise MI measure, a notation initially introduced in [14].

As proposed in [13], the optimal update un(x) at each atlas image location x can be found by searching
the local neighbors of x in the deformed subject image J n and finding the neighbor x′ that maximizes
SMI(I(x),Jn(x′ = x + un(x))). This simple explicit neighbor search scheme avoids the difficulty in deter-
mining the optimal time step size as needed for a traditional gradient-descent optimization approach. It
also eliminates the need to compute derivatives of either the images or the image intensity distributions. A



symmetric version of the local update scheme was designed in [13] that further improves the convergence
rate of the registration method.

This dense deformable registration is the most time-consuming part of the whole atlas-based segmentation
method. To improve the computation efficiency and make multi-atlas segmentation feasible in practice, we
have implemented the above proposed method on NVIDIA GPUs using the NVIDIA CUDA programming
model [15]. As we have observed, the GPU-based implementation easily offers a speed-up of more than
25× comparing against a modern CPU [13]. Details of the GPU implementation can be found in [13].

2.5 Refinement of Mandible Segmentation using Deformable Surface Model

Although model-based segmentation is usually considered as an alternative approach with respect to atlas-
based methods, combining the strengths of both can lead to much improved accuracy. For example, with
proper initialization, a deformable model method can easily produce accurate segmentation for structures
with good contrast and well-defined boundaries, whereas a pure atlas-based method may be hindered by
large shape differences between the subject image and a given atlas. Of all the structures in the head and
neck region, the mandible is a structure well suited for model-based segmentation due to its high contrast
against surrounding soft tissues. We thus designed a refinement step that applies a deformable surface model
method to further improve the initial mandible segmentation as produced by atlas registration and structure
mapping. At this refinement step, the atlas image is ignored and the initial mandible surface is deformed to
align better with high image gradient points in the subject image that are likely to be boundary points of the
mandible.

Mathematically, we denote the initial mandible boundary surface by a vector-valued parametric function
x0(r,s) = [x0(r,s),y0(r,s),z0(r,s)], which gives the position of each surface point (indexed by (r,s)) in the
subject image’s coordinate system. We model the surface deformation using a surface deformation field
d(r,s), such that x(r,s) = x0(r,s)+d(r,s) gives the final location of each surface point. The surface refine-
ment is then formulated as finding the optimal solution, dopt, of the following energy minimization problem
problem:

dopt = argmin
d

E(d) = argmin
d

∫ ∫
exp(−‖∇J(x(r,s))‖2)drds+

∫ ∫
‖∇d(r,s)‖2drds. (5)

In the above equation, the first term drives the surface to image locations with high intensity gradients and
the second term enforces the regularity or smoothness of the surface displacement field. Regularizing the
surface deformation instead of the surface itself allows capturing fine details of the object shape whereas at
the same time enforcing the deformed surface to stay close to the initial shape. The solution is computed
iteratively with a gradient-descent scheme. In general, only local refinement is necessary and this step
usually takes less than ten seconds. Fig. 3 shows one example for the mandible refinement.

3 Results

To evaluate accuracy of the proposed method, we applied it to the 8 test datasets provided by the Princess
Margaret Hospital for the MICCAI 2009 Head and Neck Auto-Segmentation Challenge workshop. The
datasets contain non-contrast-enhanced CT scans with a typical resolution of 1×1×2 mm3.

We used the 10 training datasets also distributed by the workshop as the atlases, for which expert manual
segmentations of the mandible and the brainstem were made available. As described in Section2, for each
test dataset, 10 individual segmentation results were first computed using each of the 10 atlases, and the



Figure 3: Illustration of deformable model based refinement of mandible segmentation. The images show
three axial cross-sections for one subject. The blue curves are the initial results before refinement and the
red curves are the final results.

results are then fused using the STAPLE algorithm to get the final auto-segmentation result. The fusion was
performed independently for the mandible and the brainstem. The final auto-segmentation results for all test
subjects were submitted to the organizers of the workshop and evaluated independently by the organizers
against manual expert segmentation.

The experiments were carried out on a HP xw8400 desktop computer equipped with an Intel Xeon Quad-
core 2.66 GHz CPU and a NVIDIA GTX 280 graphics card. The computation time was about 1 minute for
each dataset if a single atlas is used and the total computation time was about 10 minutes when all 10 atlases
were used.

Figs. 4 and 5 illustrate the segmentation results for the mandible and the brainstem respectively for one test
dataset. The figures were generated by an independent reviewer (an organizer of the workshop). As we
can see from the figures, the auto-segmentation results match the manual segmentation very well for both
structures.

For quantitative evaluation, the auto- and manual- segmentations were compared in a slice-by-slice fashion
for each dataset and the following quantitative measures were computed for each slice: the symmetric
Hausdorff distance (HD) and the Dice similarity coefficient. A volumetric Dice similarity coefficient was
also computed for each dataset to assess the overall volume overlap. Details of these evaluation criteria and
their computation can be found in [16].

The overall statistics of the quantitative measures are summarized in Tables 1-2 for the mandible results and
Tables 3-4 for the brainstem. From these tables, it can be seen that the median slice-wise Hausdorff distance
is mostly less than 3 mm for the mandible and less than 3.6 mm for the brainstem. The median slice-wise
Dice coefficient is mostly above 0.88 for the mandible and above 0.87 for the brainstem. The total volume
overlap for most subjects is close to or above 0.9 for both the mandible and the brainstem. Thus, our method
provided very accurate segmentation for both structures.



Figure 4: Snapshots of the mandible segmentation result for one test subject. Red curves indicate the auto-
segmentation result and green curves are the corresponding manual segmentation.



Figure 5: Snapshots of the brainstem segmentation result for one test subject. Red curves indicate the
auto-segmentation result and green curves are the corresponding manual segmentation.



Dataset No. Mean HD Median HD No. of slices ( HD > 3 mm )

11 10.81 2.76 39 (18)
12 7.01 2.18 40 (14)
13 6.18 2.76 35 (14)
14 13.20 3.09 34 (18)
15 10.00 1.97 37 (12)
16 5.17 2.47 35 (12)
17 3.87 2.93 43 (20)
18 8.29 3.54 37 (21)

Table 1: Hausdorff distance (HD) statistics for mandible segmentation in the testing datasets.

Dataset No. Average slice OV Median slice OV Total volume OV

11 83.5 % 89.3 % 88.3 %
12 87.4 % 89.8 % 90.6 %
13 88.4 % 92.3 % 91.5 %
14 81.4 % 86.3 % 89.4 %
15 87.2 % 91.4 % 91.3 %
16 88.1 % 88.8 % 91.9 %
17 88.9 % 90.4 % 91.4 %
18 84.1 % 88.7 % 88.2 %

Table 2: Overlap (OV) statistics for mandible segmentation in testing datasets.

Dataset No. Mean HD Median HD No. of slices ( HD > 3 mm )

11 3.73 3.52 28 (22)
12 3.31 2.93 29 (13)
13 - - -
14 3.67 3.52 30 (18)
15 2.48 2.49 18 (5)
16 3.05 2.93 27 (13)
17 3.71 2.93 27 (12)
18 3.90 3.34 29 (21)

Table 3: Hausdorff distance (HD) statistics for brainstem segmentation in the testing datasets.

The last column in Table 1 and Table 3 shows the number of slices with a Hausdorff distance greater than
3 mm for the mandible and the brainstem auto-segmentation results respectively. These numbers directly
reflect the proportion of manual contouring time that can be saved when the proposed auto-segmentation
method is applied, since a Hausdorff distance less than 3 mm is often considered as acceptable by clini-
cians [16]. In total, it was found that 171 out of 300 (∼57%) mandible slices have a Hausdorff distance
less than 3 mm and 84 out of 188 (∼45%) brainstem slices are less than 3 mm. Although manual editing
is considered necessary for the remaining slices, extra time-saving is expected since editing normally takes



Dataset No. Average slice OV Median slice OV Total volume OV

11 86.3 % 86.8 % 87.3 %
12 90.7 % 90.7 % 92.1 %
13 - - -
14 87.0 % 87.4 % 89.6 %
15 90.8 % 90.9 % 91.0 %
16 89.1 % 90.6 % 90.9 %
17 89.2 % 89.6 % 89.7 %
18 85.7 % 85.6 % 85.3 %

Table 4: Overlap (OV) statistics for brainstem segmentation in testing datasets.

much less time than drawing contours from scratch.

4 Conclusion

In this work, we have developed an atlas-based method for fully automatic segmentation of H&N CT images
that employs a hierarchical atlas registration and a multi-atlas fusion strategy. From the experimental results
generated for the MICCAI H&N Auto-segmentation Challenge workshop, it was shown that the method
gave very accurate segmentation of the mandible and the brainstem on real clinical data, as indicated by
a mean volume Dice coefficient above 0.89 for both structures. We also showed that GPUs offer a cost-
effective way to improve the computational performance and make multi-atlas segmentation feasible in
practice. Future work will study the dependency of segmentation accuracy with the number of atlases used
and investigate efficient and effective atlas selection methods.
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[2] Isambert, A., Grégoire, V., Bidault, F., et al.: Atlas-based automatic segmentation (ABAS) of head
and neck (H&N) structures in conformal radiotherapy: Atlas development and preliminary results in
clinical context. In: ESTRO 2007. (2007) 1

[3] Zhang, T., Chi, Y., Meldolesi, E., Yan, D.: Automatic delineation of on-line head-and-neck computed
tomography images: Towards on-line adaptive radiotherapy. Int. J. Radiation Oncology Biol. Phys.
68(2) (2007) 522–530 1
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