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Abstract. An Insight Toolkit (ITK) filter for image segmentation with
applications to brain MRI scans is presented in this paper. Previously, we
showed how ITK could be used to implement our algorithm. This paper
presents our new ITK filter for Bayesian segmentation along with results
on brain MRI scans. Our algorithm is a refinement of the work of Teo,
Saprio, and Wandall. The basic idea is to incorporate prior knowledge
into the segmentation through Bayes’ rule. Image noise is removed via an
affine invariant anisotropic smoothing of the posteriors as in Haker et. al.
Specifically, we present the implementation of our Bayesian segmentation
algorithm applied to brain MRI scans.

1 Introduction

In this paper, we present an Insight Toolkit (ITK) filter for image segmentation.
Previously, we showed how ITK could be used to implement our algorithm [1].
This paper presents our new ITK filter for Bayesian segmentation along with
results on brain MRI scans.

Our algorithm is a refinement of the work of Teo, Saprio, and Wandall [2]. The
basic idea is to incorporate prior knowledge into the segmentation through Bayes’
rule. Image noise is removed via an affine invariant anisotropic smoothing of the
posteriors as in Haker et. al. [3]. Specifically, we present the implementation of
our Bayesian segmentation algorithm applied to brain MRI scans.

This paper provides details about the inclusion of our Bayesian segmenta-
tion algorithm into ITK. In section 2, we provide a high-level overview of our
algorithm. In section 3, we provide a User’s Guide for our filter. In section 4,
we demonstrate our filter on brain MRI scans. In section 5, we provide some
concluding remarks.

We have submitted data and code in conjunction with this paper so that the
reader may reproduce our results with ease. Section 4 will assist the user in
reproducing our results.



2 Algorithm Detalils

In this section, we provide a high-level description of the Bayesian segmentation
algorithm.

We assume that the value of each voxel intensity in a given class can be con-
sidered as a random variable, independent across pixels. In the following results,
we assume that the voxel intensities are normally distributed. This assumption
may be modified to support other distributions that may better fit the data.
With a large set of training data, the distributions may also be learned a priori.

The application of the statistical distributions to the voxel intensities pro-
duces the membership probabilities, Pr(Vi = v|Ci = ¢). The prior probabilities,
Pr(Ci = ¢), of a pixel belonging to a particular class are either provided by the
user or assumed to be uniform.

Using the membership and prior probabilities, we generate the posterior proba-
bilities via Bayes’ Rule. Finally, using the maximum a posteriori (MAP) estimate
on the posterior probabilities, the final labelmap is produced.

Teo et. al. and Haker et. al. have shown that smoothing the posteriors prior
to applying the MAP estimate can often yield improved segmentations [2,3,4].
Our filter provides the user with the option to smooth the posteriors prior to
applying the MAP estimate.

The following is a concise description of the algorithm:

Algorithm 1 Bayesian Segmentation High-Level Algorithm
Require: User specifies number of classes: N
1: Generate N images of membership probabilities by applying N user-defined
statistical distributions to the raw data
2: User provides N images of prior probabilities or, in the default case, uniform
prior probabilities are assumed
3: Generate N images of posterior probabilities via Bayes’ Rule
4: Smooth the posterior images for several iterations using an anisotropic PDE
and renormalize the posterior images after each smoothing iteration
5: Apply maximum a posteriori rule to achieve final segmented labelmap

3 User’s Guide

In this section, we provide a User’s Guide for this ITK filter. We proceed by
describing the purpose of the accompanying code file by file.

3.1 itkBayesianClassifierInitializationImageFilter

itkBayesianClassifierInitializationImageFilter. (h/txx)



This filter is intended to be used as a helper class to initialize the Bayesian-
ClassifierImageFilter. The goal of this filter is to generate a membership image
that indicates the membership of each pixel to each class. These membership
images are fed as an input to the BayesianClassfierlmageFilter.

Parameters Number of classes: This defines the number of classes, which will
determine the number of membership images that will be generated. The user
must specify this.

Membership functions: The user can optionally plugin in any membership
function. The number of membership functions plugged in should be the same
as the number of classes. If the user does not supply membership functions, the
filter will generate membership functions for you. These functions are Gaussian
density functions centered around N pixel intensity values, Ix. These N values
are obtained by running K-means on the image. In other words, the default
behavior of the filter is to generate a Gaussian mixture model for the input
image.

Inputs and Outputs The filter takes a scalar image as input and generates a
Vectorlmage, each component ¢ of which represents memberships of each pixel
to the class c.

Template parameters This filter is templated over the input image type and
the data type used to represent the probabilities (defaults to float).

3.2 itkBayesianClassifierlmageFilter
itkBayesianClassifierImageFilter. (h/txx)

Inputs and Outputs The input to this filter is an itk::Vectorlmage that rep-
resents pixel memberships to N classes. This image is conveniently generated
by the BayesianClassifierInitializationlmageFilter. You may use that filter to
generate the membership images or specify your own.

The output of the filter is a label map (an image of unsigned char’s is the
default) with pixel values indicating the classes to which they correspond. Pixels
with intensity 0 belong to the Oth class, 1 belong to the 1st class etc... The
classification is done by applying a maximum decision rule to the posterior image.

Parameters The filter optionally allows you to specify a prior image. The
prior image, if specified must be a Vectorlmage with as many components as
the number of classes. The posterior image is then generated by multiplying the
prior image with the membership image. If the prior image is not specified, the
posterior image is the same as the membership image. Another way to look at
it is that the priors default to having a uniform distribution over the number of
classes. Posterior membership of a pixel = Prior * Membership.



The filter optionally accepts a smoothing filter and number of iterations asso-
ciated with the smoothing filter. The philosophy is that the filter allows you to
iteratively smooth the posteriors prior to applying the maximum decision rule.
Thisoffers a convenient approach to removing noise from imagery as in [2]. The
user will need to plug in a smoothing filter with all the parameters set.

Template parameters InputVectorlmage, datatype of the output labelmap,
precision of the posterior image, precision of the prior image.

3.3 Examples for 1 and 2

BayesianClassifierInitializer.cxx BayesianClassifier.cxx
These files are examples for 1 and 2.

3.4 itkBayesianClassificationlmageFilter

itkBayesianClassificationIlmageFilter.(h/txx)

This filter is a wrapper around the itkBayesianClassifierInitializationlmage-
Filter and the itkBayesianClassifierlmageFilter. It provides a minimal blackbox
interface that takes an image (to be classified) as input and produces a label
map.

3.5 itkBayesianClassificationImageFilterTest

itkBayesianClassificationlmageFilterTest.cxx
Test for itkBayesianClassificationlmageFilter. This is the code that we ran to
produce the results described in the following section.

4 Results

In this section, we present results of this code on brain MRI scans. We also
provide enough details to enable the reader to reproduce our results.

4.1 Overview

We present our results on brain MRI scans, comparing the results of the Bayesian
segmentation to manual segmentations on datasets of schizophrenic patients. The
patients’ heads were imaged with a 1.5 T MRI system 2 in the coronal plane and
a postcontrast 3D sagittal spoiled gradient recalled (SPGR) acquisition with
contiguous slices. The resolution is 0.975 x 0.975 x 1.5 mm (256 x 256 x 123
voxels). All segmentations were done on 2D graylevel slices for simplicity in this
publication, though the code can handle higher dimensional data. The Bayesian
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segmentations were obtained with the ITK code and data, which has been sub-
mitted in conjunction with this paper.

We compare the Bayesian segmentation (S) to the ground truth manual seg-

mentation (G) using the DICE coefficient [5]: DSC(S,G) := %7 where
2

Vx is the volume (number of voxels) of segmentation X. DSC values greater
that 0.7 are regarded as good in the literature [5].

4.2 Details

Our results were obtained by running the itkBayesianClassificationlmageFilterTest
on 10 datasets of skull-removed imagery. For each case we picked the coronal slice
immediately anterior to the temporal lobe tip. The itkBayesianClassificationIm-
ageFilterTest requires four command line parameters. For each dataset, we ran
the code with the following parameters: InputlmageFile OutputlmageFile 3 5.
We have included the raw data files along with the resulting segmentations for
the reader to use in verifying the reproduction of this code.

We ran this code with ITK CVS at the time of this paper’s submission. The
reader must use a version of ITK recent enough to properly compile and run
this code.

4.3 DICE Results

The results (white matter mean DSC=0.8840 and gray matter mean DSC=0.8951
for N = 10 cases) show that the Bayesian segmenter gives good results in white
matter and gray matter (see Table 1). The results of a typical Bayesian segmen-

tation compared with the manual-based segmentations for Case 1 are shown in
Figure 1(a),1(b) and for Case 2 in Figure 1(c),1(d).

Case 1|Case 2|Case 3|Case 4| Case 5
Slice 96 99 101 104 98
WM DSC| 0.8991 | 0.8586 | 0.8935 | 0.8830 | 0.8908
GM DSC|0.9051 | 0.8364 | 0.9121 | 0.8962 | 0.9072

Case 6|Case 7|Case 8|Case 9|Case 10
Slice 101 98 97 98 98
‘WM DSC| 0.8910 | 0.8635 | 0.9171 | 0.8877 | 0.8552
GM DSC|0.8921 | 0.8982 | 0.9278 | 0.8981 | 0.8779

Table 1. DICE validation measures for white (WM) and gray (GM) matter
segmentations on 10 datasets



5 Conclusion

We have presented our ITK Bayesian segmentation code and shown positive
results. User details and along with detailed explanations of our results provide
the reader with the information necessary to reproduce these results. This code
may also be found in the ITK CVS repository.
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(a) Raw (Case 1) (b) Manual (Case 1)

(c) Bayesian (Case 1)

(d) Raw (Case 2) (e) Manual (Case 2)

(f) Bayesian (Case 2)

Fig. 1.



