An Optimized N-Dimensional Hough Filter for
Detecting Spherical Image Objects

Release 0.00
Kishore Mosaliganti, Arnaud Gelas, Paul Cowgill and Sean Megason

September 30, 2009
Department of Systems Biology, Harvard Medical School, Boston, MA-02139, USA

Abstract

An Insight Toolkit (ITK) algorithm for detection of spherical objects using Hough methods with voting
is presented in this paper. Currently, the usage of Hough methods for detecting linear and circular
elements exists for 2D images in ITK. The current work extends those filters in several ways. Firstly,
the new filters operate on N-dimensional images. Secondly, they work in physical coordinates which
is quite essential in medical imaging modalities. Thirdly, they are optimized (multi-threaded execution,
stratified sampling etc.) for usage on large datasets and show a significant speedup even in 2D and on
small images. Our implementation follows the same underlying mathematics of Hough transforms (as
implemented by the 2D filters) but with some minor variations. The main variation lies in the pattern
of voting that involves selecting voting regions easily and efficiently accessible to region iterators rather
than cones that are difficult to generalize in higher dimensions. We include 2D example code, parameter
settings and show the results generated on embryonic images of the zebrafish from optical microscopy.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1]
Distributed under Creative Commons Attribution License

Contents

1 Introduction 1
2 Implementation 2
3 Usage 3

4 Results 6

1 Introduction

In image analysis, we are often interested in segmenting spherical objects in images. Examples of spherical
objects include cells, nuclei, embryos or virus particles, astronomical objects like stars or other point pro-
cesses etc. Therefore, there is considerable interest in segmenting using geometric attributes. Often, these
objects are occluded by overlapping objects but fit a spherical geometry on the non-occluded boundaries.
Other common problem with fitting a parametric geometric shape is the variations in the object shape and
noise in the images. The Hough transform provides a mathematical framework for easily detecting partially
occluded but simple geometry by looking at the parameter space of the geometry. Robustness from image
noise is achieved by using a voting framework where individual voxels vote on the likelihood of parameters
based on their location and intensity information.

In the current ITK framework, there are two filters utilizing the Hough methods namelly,
itkHoughTransform2DLinesImageFilter and itkHoughTransform2DCirclesImageFilter. Both
these filters are inadequate to our needs and need to be fundamentally re-worked. Firstly, most images
acquired are high-dimensional and these filters do not fully make use of ITK’s templated mechanism in their
coding style and hence, restricted to 2D processing alone. They assume unit spacing among pixels which is
not justified in current modalities where the image spacing depends on the modality and can be anisotropic.
Finally, they are poorly optimized with multiple iterations over the same image domain. The bulk of the
computational resources is spent in voting on image regions that are shaped irregularly.

In our current submission, we introduce a new filter itkHoughTransformRadialVotingImageFilter that
solves the above problems. We essentially re-implemented the Hough transform in N-dimensions for de-
tecting spherical objects. Our coding allows us to work in physical coordinates and be efficient in the com-
putation of the voting regions. Our voting regions are regularly-shaped that allow region iterators to quickly
run through them. We also save on costly iterations on the image domain by using already multithreaded
ITK filters.

2 Implementation

This filter derives from the base class itkImageToImageFilter. The filter identified appropriate voxels,
computes the local gradient at this point and votes on a small region defined using the minimum and max-
imum radius given by the user, and fill in the array of radii. The input is an image, and the output consists
of the accumulator image that shows the voting result on the image domain. This shows the probability of
the centers. The other output consists of a radius image which has the average radius of the circle. We also
output a list of spherical objects with center and radii using the itkSphericalObject class. We now de-
scribe each of the parameters, their range and typical values. There is no typical limit that can be set on most
parameters but depends on experimentation. Note that except for the first three, the remaining constitute
weights to the different energy terms. Depending on their contribution to the overall energy, these weights
need to be modified so that all the terms have an influence.

e m_Threshold - Pixels above some conservative intensity threshold are considered during the process.
Usually set conservatively in the range [0,255] for a 8-bit image. Typical value depends on the inten-
sity of the foreground object that can be decided from a histogram of intensity values. The default
setting is 0.

e m_GradientThreshold - Boundary pixels above some conservative gradient magnitude threshold

are considered during the process. Usually set conservatively in the range [0,255] for a 8-bit image.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1]
Distributed under Creative Commons Attribution License

Typical, its value can be decided from a histogram of gradient magnitude values that has a bimodal
distribution. One can also inspect the boundaries of foreground objects and note the change in inten-
sity values and set a conservative estimate. This greatly improves the processing time. The default
setting is 0.

m_OutputThreshold - In the output accumulator image, only select spherical objects that have been
voted beyond a threshold number of times. Once again, this is set on a trial-error basis. It depends on
the number of pixels lying on the boundary of objects and helps detecting large objects compared to
smaller ones that may result from noise. A lower value may help in the detection of partially occluded
objects. The default setting is 0.

m_MinimumRadius - Defines the minimum radius of the objects being detected. It is specified as a
fraction of the maximum value found in the accumulator.

m_MaximumRadius - Defines the maximum radius of the objects being detected.

m_SigmaGradient - The standard deviation in physical distances of the derivative of Gaussian (doG)
filter used in computing image gradients.

m_Variance - The variance in physical distances for smoothing the accumulator image prior to iden-
tifying the center locations. This is important for robustly smoothing out local maxima points.

m_VotingRadiusRatio - The small rectangular region near the center around which voting takes
place. The dimensions of the region are specified as a fractional ratio of the m_MinimumRadius value.
Its range is [0, 1]. Typically, it is between 0.1-0.5.

m_SphereRadiusRatio - After identifying the centers, a region of the accumulator is filled with Os
to prevent multiple detections of local maxima regions. The dimensions of the region are specified as
a fractional ratio of the m_MinimumRadius value. Its range is [0, 1]. Typically, it is between 0.4-0.7.

m_SamplingRatio - A sampling is applied on the boundary pixels to speed up the calculations. This
ratio is a value in the range of [0, 1].

m_NbOfThreads - The voting procedure is multithreaded. The number of threads can be set by the
user depending on the available processing units available.

Our implementation makes use of CMake 2.6 version for compilation and has been tested using ITK 3.16
release.

3 Usage

We begin by including the appropriate header files for the filter.

#include "itkHoughTransformRadialVotingImageFilter.h"

int main(int argc, char *argv[])

{

const unsigned int Dimension = 2;

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1]
Distributed under Creative Commons Attribution License

typedef unsigned char InputPixelType;
typedef float InternalPixelType;

typedef itk::Image< InputPixelType, Dimension > FeatureImageType;
InputImageType: :IndexType locallndex;

InputImageType: :SpacingType spacing;

typedef itk::Image< InternalPixelType, Dimension > InternallmageType;

The following typedef for the filter is required.

typedef itk::HoughTransformRadialVotingImageFilter< InputImageType,
InternalImageType > HoughTransformFilterType;

After initialization, it is imperative that the user specify the number of circles and minimum and maximum
radii for the spherical objects. All other parameters have default settings that can be adjusted optionally.

HoughTransformFilterType: :Pointer houghFilter = HoughTransformFilterType: :New();
houghFilter->SetInput (reader->GetOutput ());
houghFilter->SetNumberOfSpheres(atoi(argv([3]));
houghFilter->SetMinimumRadius (atof (argv([4]));
houghFilter->SetMaximumRadius (atof (argv[5]));

if(arge > 7))
{
houghFilter->SetSigmaGradient (atof (argv[7]));
}
if(argc > 8)
{
houghFilter->SetVariance(atof (argv([8]));
}
if(argec > 9)
{
houghFilter->SetSphereRadiusRatio(atof (argv[9]));
}
if(argc > 10)
{
houghFilter->SetVotingRadiusRatio(atof (argv[10]));
}
if(arge > 11)
{
houghFilter->SetThreshold(atof (argv[11l]));
}
if(argec > 12)
{
houghFilter->SetOutputThreshold(atof (argv[12]));
}
if(argc > 13)
{
houghFilter->SetGradientThreshold(atof (argv[13]));

}
if(argc > 14)

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1]
Distributed under Creative Commons Attribution License

{
houghFilter->SetNbOfThreads (atoi(argv[14]));
}
if(argec > 15)
{
houghFilter->SetSamplingRatio(atof (argv[15]));
}

The output consists of the accumulator image that probabilistically stores the center information and the
radius image. The centers are detected as local maxima regions in the accumulator. The radius is obtained
at the corresponding voxel location in the radius image.

houghFilter->Update () ;
InternalImageType::Pointer localAccumulator = houghFilter->GetOutput();
InternalImageType::Pointer radiusImage = houghFilter->GetOutput ();

The detected circles are identified as follows:

HoughTransformFilterType: :SpheresListType circles;
circles = houghFilter->GetSpheres();
std::cout << "Found " << circles.size() << " circle(s)." << std::endl;

Note that although a user specifies the number of spherical objects to be identified, it only serves as an
upper-limit. Depending on the maxima in the accumulator image, the code outputs a list that may contain
fewer circles.

The corresponding circle image can be filled up by first allocating an image whose pixels are initialized to 0
and then setting the boundary pixels to 1.

OutputImageType: :RegionType region;

region.SetSize(localImage->GetLargestPossibleRegion().GetSize());
region.SetIndex (localImage->GetLargestPossibleRegion().GetIndex());
localOutputImage->SetRegions(region);

localOutputImage->SetOrigin (localImage->GetOrigin());
localOutputImage->SetSpacing (localImage->GetSpacing());
localOutputImage->Allocate();

localOutputImage->FillBuffer (0);

typedef HoughTransformFilterType::SpheresListType SpheresListType;
SpheresListType::const_iterator itSpheres = circles.begin();

while(itSpheres != circles.end())
{
std::cout << "Center: ";
std::cout << (*itSpheres)->GetObjectToParentTransform()->GetOffset ()
<< std::endl;
std::cout << "Radius: " << (*itSpheres)->GetRadius () [0] << std::endl;

for (double angle = 0;angle <= 2*vnl_math::pi; angle += vnl_math::pi/60.0)
{
locallndex[0] =

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1]
Distributed under Creative Commons Attribution License

4

(long int) ((*itSpheres)->GetObjectToParentTransform()->GetOffset () [0]
+ ((*1tSpheres)->GetRadius () [0]*vcl_cos (angle))/spacing[0]);
localIndex[1l] =
(long int) ((*itSpheres)->GetObjectToParentTransform()->GetOffset () [1]
+ ((*itSpheres)->GetRadius () [1]*vcl_sin(angle))/spacing[l]);
OutputImageType: :RegionType outputRegion =
localOutputImage->GetLargestPossibleRegion () ;

if(outputRegion.IsInside(locallndex))

{
localOutputImage->SetPixel (localIndex, 255);
}
}
itSpheres++;
}

Results

The results in this example can be obtained by using HoughTransformRadialVotingImageFilter2D.cxx
on the input image input.png. In this example, spherical embryos of the zebrafish are detected in the
optical microscopy image. The image several circular regions with a lot of inhomogenous intensities inside.
Hence, this image serves as a good example of the robustness of our filter. The output consisting of circles
is written out to the image output . png. The parameters to the filter are set at the command line to facilitate
easy modification and exploration by the user. The command to run this particular executable is as follows:

Usage: ./hough2D

inputImage

outputImage

accumulatorImage

numberOfSpheres

radius Min

radius Max

SigmaGradient (default = 1)

variance of the accumulator blurring (default = 1)
radius ratio of the disk to remove from the accumulator (default = 1)
voting radius ratio (default = 0.5)

input threshold

output threshold

gradient threshold

number of threads

sampling ratio

./hough2D input.tif output.png accumulator.mha 50 6 7.5 1 1 0.5 0.15 100 0.5 1 1 1

We

also compare the time performance of our implementation with

respect

to

itkHoughTransform2DCirclesImageFilter in ITK for the image example shown in Figure 1.

The figure has dimensions 1K x 1K. The following execution times were obtained:

e ITK:5.7s

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1]

Distributed under Creative Commons Attribution License

e Single-thread execution: 3.3s

To be fair, we used only one thread and similar parameters in both the implementations yet obtained an
almost 2X speedup on a small image. However, note that this implementation is multi-threaded. For larger
images and circles, the running time of the Hough transform scales up in a non-linear manner and the per-
formance advantages of the newer implementation will be quite significant. On a 3D image with dimensions
1K x 1K x 58, with anisotropic pixel spacing and containing 1000 circles, the following running times were
obtained:

e Single-thread execution: 286s

e Dual-thread execution: 164s

The results of the input and the voting are shown graphically in Figure 2.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1]
Distributed under Creative Commons Attribution License

(a) (b)

Figure 1: Hough segmentation example on a zebrafish embryo image (1K x 1K): (a) Input image, (b) Accumulator
and (c) Circles image

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1]
Distributed under Creative Commons Attribution License

(a) (b)

Figure 2: Hough segmentation example on a zebrafish nuclei image (1K x 1K x 58): (a) Input image (b) Voting
accumulator image for detecting centers.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1]
Distributed under Creative Commons Attribution License

