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Abstract

In this paper, we present a semi-automatic method for segmenting carotid arteries in contrast enhanced
(CE)-CT angiography (CTA) scans. The segmentation algorithm extracts the lumen of carotid arteries
between user specified locations. Specifically, the algorithm first detects the centerline representations
between the user placed seed points. This centerline extraction algorithm is based on a minimal path
detection algorithm which operates on a medialness map. The lumen of carotid arteries is extracted
by using the global optimal graph-cuts algorithm [ 4] using centerlines as input. The distance from the
centerline representation is used to normalize the gradient based weights of the graph. It is shown that
this algorithm can sucessfully segment the carotid arteries without including calcified and non-calcified
plagues in the segmentation results.
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Segmentation of carotid arteriesin CTA is often anecessary task for obtaining stenosis measurements, stent
planning and advanced visualization. There are numerous segmentation agorithms ranging from simple
thresholding and region growing to more complex deformable models techniques starting from centerline
models obtained directly from images, etc, eg., [7, 18, 16, 1, 8, 13, 10, 22, 3, 2, 21, 6]. In general, the timely
and robust segmentation of carotid arteries is still a difficult task due to the existence of plaques (calcified
and non-calcified) on the vessel wall and the presence of nearby veins and bones.

In this paper, we present a semi-automatic segmentation agorithm for extracting the lumen of carotid ar-
teries in CE-CTA data. This agorithm requires three seed placement to select the vessel of the interest?
The proposed algorithm is based on the global graph-cut optimization algorithm J] using vessel centerlines

1Single click carotid segmentation is also possible with the modified version of the algorithm [11].



extracted between the user placed seed pointsvia[ll]. In general, the graph-cuts algorithms are not suitable
for segmenting elongated shapes such as blood vessals since the minimum energy surfaces often do not co-
incide with the boundaries of vessels. In this paper, we show that the integration of vessel centerlines makes
the graph-cuts algorithm to be sucessfully used for the segmentation of vessels. Specifically, centerlines are
important for three main reasons: (i) foreground seeds required by the graph-cuts algorithm are obtained
from the location of centerlines. (ii) the weights of discrete graph edges are normalized by the distance
from the centerline representations. (iii) the globa optimization is limited to the vicinity of centerline by
constructing a tubular graph for computational reasons and robustness. This algorithm is implemented by
using the “max-flow” algorithm [5].

This paper is organized as follows as: In Section 1, we describe the centerline extraction algorithm which is
based on minimal path detection. Specifically, wefirst explain the multi-scale medialnessfilters (Sectionl.1)
which are used in the centerline tracking algorithm. The centerline extraction algorithm is described for a
centerline segment between source and sink seedsin Sectionl.2. In Section 2, we describe the global graph-
cuts algorithm using centerlines for extracting carotid lumens. Finaly, Section3 presents some results.

1 Centerline Extraction of Carotid Arteries

Wefirst summarize the framework for the extraction of center-axis representation of vessels from CTA which
isalso applicable to vessels found in MRA and 3D-X ray. Specificaly, first, a medialness measure based on
2D multi-scale cross-sectional models is introduced. This measure is contrast and scale independent and it
works well in the presence of nearby bright structures such as bones or other vessels. Second, we present
aminimal path detection method working on a discrete grid where the cost of graph edges are computed
from multi-scale medialness filters. This algorithm can be used to extract the the full vessel centerline tree
from a single seed by a post-processing algorithm which uses the length and scale of vessel centerlines. In
general, the proposed method can produce centerline model (s) for avessel segment and the full vessel tree.
In addition, it is capable of capturing different size of vessel branches, crossing over stenosis. Moreover, it
is computationally efficient. Let us now describe the algorithm in more detail:

1.1 Medialness Measure From 2D Cross-Sectional Models

We describe a technique for computing medialness measure which is based on multi-scale cross-sectional
vessel modeling. Blood vesselsin CTA/MRA havetypically circular/elliptic shapesin cross-sectional views
even though local variations on them are not too uncommon due to the presence of nearby vessels or pathol o-
gies. ldedly, a 2D cross-sectional vessel profile consists of a circular/élliptic bright disk and darker ring
around it. Our medialness measure uses this circularity assumption and edge responses obtained from
multi-scale filters. Specifically, our medialness response, m(%) at Xp, is computed from a circle C(%, R)
centered at Xp, with radius R, and is given by

N-1 .
M%) = mex( 3, E(f-+ Ru(zsi/N))} ®

where T(o.) = sin(ot)th + cos(a)tz and Uy and Up defines a 2D plane. E measures the normalized edge
response which is described below. Krissian et. al., [14] proposed a similar medialness measure where the
cross-sectional plane is computed from the eigenvectors of Hessian matrix.

Let usconsider a1-D intensity profile | (x) along aray , on across-sectional plane of avessel starting from
the location Xy. Suppose that X isthe center of the vessel with aradius R. Then the cross-sectional boundary
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1.2 Centerline Extraction Betwen Seed Points 3

of the vessel along the ray should occur at (% + RU,,) where the gradient of | (x) has amaximaand the second

derivative of | (x) has a zero-crossing. We propose to use the gradient, Vil (x) for measuring responses at

vessel boundaries, in which ¢ corresponds to the spatial scale of the vessel boundary. In generadl, filter sizes
are often selected from the size of vessels for computing gradient responses [l4], i.e., larger spatia filters

for large vessels. It should be noted that vessel scale, namely R and boundary scale, ¢ are not always related.
For example, the boundary of alarge vessel can be detected better with small size filters when such vessels
are surrounded by other bright structures. Similarly, it is possible that small scale vessels can have long
diffused boundaries which cannot be accurately detected via small scale filters.

Let us now define the boundary measure along aray W, at the location X,
b(x) = max{(|Vsl (x)[)}sign(Vs! (x)) )

where sign(x) is used to distinguish the rising (dark to bright changes) and falling edges (bright to dark
changes). Observe that this boundary measure, Vgl is contrast dependent, i.e., it obtains higher values from
high contrast vessels and lower values from low contrast vessels, respectively. Unfortunately, vessels may
have significant intensity variations on them - especially vessels in MRA and small size vesselsin CTA. In
addition, boundaries of bones, calcifications in CTA and vessels next to airways can have strong gradients
which usually effect the response of medialness filters. We, in fact, believe that medialness responses
should be contrast independent, which can be accomplished by normalizing the boundary measure via the
highest gradient obtained for different R values aong the ray. Mathematically, we define a normalized
boundary measure asb(x) = b(X) /Brax Where by is the maximum falling edge response along I (x) for x =
{X0 + RinUg, -, X0 + RmaxUg, } @d Ryin and Ryax are the minimum and maximum vessel scales, respectively.

Since the size of vessels to be modeled is not known a priori, our method searches for strong edge responses
at the different locations aong the ray u, with different R, R € [Ryin, Rmax]. However, observe that for large
values of R this produces strong boundary responses at locations which are outside the vessel. In general,
there should not be any strong rising edge between % and Xy + RU,, where the boundary is searched. If
there exists such astrong rising edge, it probably means that the point x is outside the vessel, thusit should
have alower medialness measure. This is accomplished by first computing the maximum rising boundary
response up to the location %)+ RUp, along the ray and then subtracting this value from the response obtained
at Xp + RU,. Based on these modifications, the final edge response along a ray, §, starting from at X,
E (X + RUy) isgiven as

max (—b(Xo + RUy,) — MiNye (% x+Rru,} (P(X), 0),0)

E(X + RU) =
( ) M@y (% -+ Rt %o-+ Rmactly) (—0(X) 5 1)

3)

The proposed medial ness measure gives strong responses at the center of avessel and responses drop rapidly
towards vessel boundaries and very small responses are obtained in non-vascular areas, Figurel. Also, the
presence of bright structures does not have strong impact on the responses.

1.2 Centerline Extraction Betwen Seed Points

In this section, we describe a method for extracting local center axis representations by integrating the
medialness map in a discrete optimization framework. Specifically, we seek to obtain a curve C(s) (center
axis) between points py and py which travel sthrough the center of avessel. This problem can be successfully
solved by the minimum-cost path detection algorithms [8, 15, 20]: Let E(C) be the total energy along acurve
C

E(C) = /Q (P(C(s)) +w)ds 4
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1.2 Centerline Extraction Betwen Seed Points
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Figure 1. This figure illustrates the medialness responses along a ray on two different examples obtained from our
method (middle column) and the Hessian-based method (right column). Observe that unlike Hessian based methods,
our technique gives low responses between two nearby vessels.

where P(C) is called potential, w is the regularization term and s is the arch length, i.e,, ||C(s)|f = 1. In

vessel centerline extraction methods, potential P(x) at X corresponds to the inverse of a medialness measure
at that location, namely, P(x) = ﬁ Let Ay, p, represents the set of all curves between p and p;. Thecurve

with total minimum energy can be computed from the minimum-accumulative cost, ¢(p) which measures
the minimal energy at p integrated along a curve starting from the point p:

o(p) = inf {E(C)} (5)
Po:P1

Thistype of minimization problems has been studied extensively in computer vision for different problems,

e.g., segmentation. They are usually solved by either Dijkstra’s algorithm [B] or Fast Marching methods [17].

In this paper, we propose to use Dijkstra’s algorithm for solving equation 6) in a discrete domain. Specif-

icaly, let G = (N,E) be a discrete graph where N and E represent nodes and edges, respectively. The

minimum-accumulative cost at the node R; for afour connected 2D graph is then given by

0(Rj) = min(0(R-1j) +Cl_y )1 0(Pii1)) +Cl, 1), 0(Rj 1) + G, _1),0(Rjs1) +Cli y) )

where, for example, C'(Ll) j corresponds to the cost of propagation from point B;_1); to Rj which is obtained

from the inverse of medialness measure. This above algorithm can be easily implemented by first setting
minimum-accumulative cost of all nodes to infinity (or a large value) and then using an explicit discrete
front propagation method where propagation aways takes places from the minimum value to its neighbor-
ing nodes. In our implementation, we use 26-connected lattice in 3D, i.e., diagonal propagations are also
included for better accuracy. In addition, the medialness measure is computed orthogonal to the direction
of propagation instead of computing at nodes. The discrete path (curve) from a point B, to source Py can

then be easily obtained by traversing (backtracking) along the propagation. This algorithm works well even
in the presence of nearby vessels, strong calcification and strong contrast change along a vessel and it is
computationally efficient. Figure 2 illustrates some results obtained from this algorithm.
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Figure 2: This figure illustrates the centerlines extracted betwen user placed seed points by the proposed algorithm.
2 Graph-Cuts Using Centerlines for Lumen Extraction

In this section, we propose a novel method for extracting the lumen of carotid arteries in CTA by using
the centerlines detected between the user placed seed points. Specifically, we propose to use the global
optimal graph-cuts algorithm [4] to extract the vessel boundaries given the detected foreground seed-points
from the centerlines. In general, graph-cuts typically does not perform well in segmenting elongated shapes
such as blood vessels because it often tends to be biased towards shorter boundaries. Our proposed method,
however, solves the shrinking problem for the case of blood vessels by using the centerlines as input to the
graph-cut algorithm and adjusting the weights of the graph via centerlines.

Let us now summarize the graph-cuts algorithm: Let G = (P, N) be a graph with a set of nodes P and
undirected edges N that connect these nodes. In this graph, each edge is assigned with a nonnegative weight
(cost) we. The graph-cuts generally minimizes a global energy function

E(f) =AY Ro(Ap)+ Y, Bpqv(Ap,Ag) (7)
peP (p,a)eN
where "
VAo Ag) = { g o7 ©

where A, specifies assignments to pixelsin P. Specifically, each pixel piseither assigned to be “background”
or “foreground”. The first term in the global energy function, E(f) defines the regional properties of the
segmentation. Similarly, the second term comprises the boundary properties of the segmentation. In our
carotid segmentation problem, we do not use the regional term, i.e.,, A = 0, Then, the boundary of carotid
arteries can be viewed as a surface where the total boundary energy is minimal. However, the direct appli-
cation of this graph cuts segmentation algorithm to our problem may not be appropriate since the minimum
energy surface can consist of few voxels which then may not correspond to the carotid boundaries. In other
words, the minimum energy surface is size dependent and incorrect alignment of small number of voxels
can produce a surface with the minimum energy.
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Figure 3: This figure illustrates the results of carotid artery segmentation from our algorithm.

Thus, we propose the following modifications to the graph-cuts a gorithm to make it more suitable for blood
vessel segmentation. (1) A tubular graph construction in the vicinity of centerlines is proposed. This allows
the global minimization algorithm converge faster and provide more robust results since it includes the
minimum amount of nearby structures such as bones or veins. (2) Extracted centerline points are marked
as the source and similarly, the outer surface voxels of the tubular mask are marked as the sinks. (3) The
image gradients that are used in the weights of the graph edges are computed orthogonal to the centerline.
This makes gradients are more robust to noise. In addition, the notion of rising and faling gradients are
integrated to the algorithm by using rays connecting graph edges to the closest points on the centerline.
Specifically, significant rising edge before any falling edge signals the presence of an edge from a calcified
plague. In this case, the falling gradients is set to small value since lumen cannot include calcified plagues.
Moreover, advanced gradient computations such as mean-shift based edge detection [L9] are possible along

aray starting from the centerline and intersecting edges of the graph. (4) The weights of the edges are
normalized by the distance from the centerlines to assign higher weights to the edges that are closer to the
centerlines and lower weights to the edges that are away from the centerlines since surface closer to the
centerline contain fewer number of voxels. Thus, this new weight computation allows the algorithm to be
more independent from the size of resulting surface.

The centerline based graph cuts algorithm is then implemented by using the “max-flow” agorithm intro-
duced by Boykov [5]. We first detect the centerline between common carotid artery (CCA) and internal
carotid artery (ICA) and the lumen is extracted with the proposed graph-cut agorithm. Similarly, the same
approach is taken between CCA and the external carotid artery (ECA). The final carotid artery mask is ob-
tained by taking the union of these maks. This independent segmentation of each branch was important to
obtain smooth segmentation in the vicinity of the branch. Figure3 illustrates some of the results obtained
from this algorithm.
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Table 1. Summary lumen

Measure % / mm rank
min. | max. | avg. min. | max. | avg.
L_dice 80.4% 95.5% 92.3% 3 4 3.97
L_msd 0.08mm  0.48mm  0.17mm 3 4 3.97
L _rmssd 0.11mm 0.77mm  0.24mm 3 4 3.97
L _max 0.44mm  3.37mm  1.09mm 3 4 3.81
Total (lumen) 3 4 3.93
Table 2: Averages lumen
Team Total dice msd rmssd max Total
name success | % | rank | mm | rank | mm | rank | mm | rank | rank
SCR_Gulsun_Tek 31 92.3 4.0 0.17 4.0 0.24 4.0 1.09 3.8 39
ObserverA 31 95.4 15 0.10 15 0.13 16 0.56 19 16
ObserverB 31 94.8 24 0.11 24 0.15 2.3 0.59 18 2.2
ObserverC 31 94.7 22 0.11 22 0.15 2.1 0.71 25 2.2

3 Results

The method was evaluated on the 31 CTA datasets of the Testing set of the challenge [L12]. Quantitative
results are given in Tables1 and 2.

The quality of results are visualy inspected by overlaying them on the original images. We have observed
that calcified plaques are often successfully removed from the plaques. However, our results still require
some improvements around branch points. Thisis especialy true when smaller branches are not modeled
by centerlines. Specifically, we observed that small amount of region from the other branches are included
in the carotid mask. These errors often result in large maximum errors.

We emphasize the computational efficiency of our approach. Such a criterion is absent from the challenge
evaluation but is, in our opinion, essential for the clinical applicability of the method. Semi-automatic
segmentation of carotid lumen can be achieved in less than 50 seconds where centerline extraction part
takes less than 20 seconds and surface modeling part takes less than 30 seconds. In addition, the lumen
of carotid arteries can be easily detected with a single seed placement instead of three seeds provided to be
used in the challenge since our centerline extraction algorithm can detect vessel centerline tree. Furthermore,
our framework provides the user with simple tools for correcting and extending results at nearly interactive
speeds.
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