An Implementation of Parallel Fast Marching
Using the Message Passing Interface

Release 0.00
Kevin H. Hobbs?

November 23, 2009

Ihobbsk@ohiou.edu
Biological Sciences
Ohio University
Athens Ohio

Abstract

This document introduces a program based on the algorittserithed by Maria Cristina Tugurlatif
The program uses file readers, image filters, and file writera the Insight Toolkit ITKww. i t k. org.
It produces as output an image whose values are the timestdfiival of a wavefront that spreads from
seed points with a speed at every point equal to the inputerirggnsity. It performs the computation in
parallel on distributed memory computers using the Mes®agsing Interface MPI. Each MPI process
reads a small piece of the input image into memory. It compfast marching on its piece. It sends
and receives the values from fast marching at piece bowsldtirecalculates fast marching a number
of times set from the command line using the new boundaregdéach time. Each MPI process writes
only a small piece of the output file.

A substantial difference is seen when the output of MPI faataming is compared to the output of
serial fast marching. This difference may be acceptablsedane uses. The program should be able to
handle input images that are too large to fit in the memory afigis computer.

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3137]
Distributed undeCreative Commons Attribution License

www.itk.org
http://www.insight-journal.org
http://hdl.handle.net/10380/3137
http://creativecommons.org/licenses/by/3.0/us/

Contents 2

Contents

1 Disclaimer 2

2 Introduction 2

3 Detailsof MPI Fast Marching 3
3.1 Command Line Arguments e e e e 3
3.2 ImagePieces. e 3
3.3 MPICommunication. e 4
3.4 Reinitialize Fast Marching. e 4
3.5 Parallel Writing. e e e e 4

4 Serial Fast Marching 4

5 MPI Fast Marching 4

6 Compare MPI to Serial 5

7 Software Used 6

8 Acknowledgements 6

1 Disclaimer

This document and the MPI fast marching program accompgriyshould not be thought of as a faithful
implementation of Tugurlan’s algorithm. They represerg best effort of the author to understand and
reproduce Tugurlan’s work. Since there is a difference betwthe output of MPI fast marching and serial
fast marching there must be an error in this implementat®mggestions to improve this implementation
are encouraged.

2 Introduction

Fast marching is an important algorithm in image processiégong other things, it is used to identify
parts of an image that belong to a particular physical obf@oe specific use of fast marching is to produce
a vector field from confocal images of neurons (Figure 1) taat be used to trace the neuron dendrites
from their tips all the way back to the cell body.

A useful metaphor for what fast marching does is the spreadfioé. The input image gives the amount of

fuel at each point in space. The brighter each pixel of thatinpage is, the more fuel there is at that point

in space, and the faster the fire will spread through thattpnispace. The seed points are the points of
ignition. The output of fast marching is the time the fire t@okeach each point in space.

When run in serial, fast marching maintains lists of poihtst thave already been assigned a time, that will
be assigned a time, and points along the boundary betwese te lists. In the fire metaphor these lists

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3137]
Distributed undeCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3137
http://creativecommons.org/licenses/by/3.0/us/

are the places that have burned, have not burned, and aiaduaow. The list of points along the boundary
is carefully sorted so that the next point that will be assija time is easy to determine.

Maintaining these lists in parallel would be a daunting tesmkd the amount of communication between
MPI processes that would be required would likely limit tipeasd of MPI fast marching. Tugurlan instead

describes an algorithm where each MPI process computed fsestimarching on a piece of the input image.

The image pieces overlap by one pixel. The regions whereidwep overlap are used to restart serial fast
marching on each MPI process. Fast marching needs to be petedifor only some of each piece. The

process repeats until the results converge to be identichktoutput of serial fast marchirig[

3 Details of MPI Fast Marching

This Section describes the implementation of MPI fast magclusing ITK. It follows the source code
almost block by block. It list the information the progranpexts to be provided on the command line. It
briefly describes how the work and the input image are dividetveen the MPI processes. It describes
how the interfaces between the image pieces are passedepetive MPI processes. It describes how
the information from the interfaces between pieces is ugseddtart serial fast marching at each iteration.
Finally, it describes how the results from all of the MPI peses are assembled into a single output image
file.

3.1 Command Line Arguments

The MPI fast marching program takes four parameters froncoinemand line :

e the input file name (should support streamed reading)
¢ the seed file name
e the output file name (must support streamed writing)

e the number of iterations

3.2 Image Pieces

Update() is not called on the input file reader. Instead Uggdatputinformation() is called so that MPI fast
marching can read the input image origin, spacing, and negithout loading the entire input into memory.

The input image is written to the output file on the first MPI aad streamed pieces immediately after it is
read. This is to facilitate writing the output of MPI fast maling to the output file in parallel.

The input image region is split into the same number of piesakere are MPI processes. The split regions
are lengthened by one pixel in the positive direction forhedicnension provided that would not create a
region outside of the input image. This creates paddedmegidgth one pixel of overlap. Each MPI process
stores all of the region splits and padded splits. Each M&dgss calculates the overlap of its padded region
and all of the other padded regions. These overlap regiangharregions of image data that will be sent
to and received from other MPI processes. An image is crdateghch overlap region to accept data from
other MPI processes.

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3137]
Distributed undeCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3137
http://creativecommons.org/licenses/by/3.0/us/

3.3 MPI Communication 4

The padded region is extracted from the input image and skeapeed image for serial fast marching. The
seed points that are within the piece of the image are seeadnittal trial points for serial fast marching.

3.3 MPI Communication

The overlap regions are extracted from the output of seailharching and sent to the MPI processes that
are working on the neighboring pieces. The same overlapmegare received from the output of serial
fast marching on the MPI processes that are working on thghbering pieces. Care is taken to avoid a
dead-lock where both MPI processes are sending or receddtzyat the same time.

3.4 Reinitialize Fast Marching

After all of the overlap regions have been received, all efgbnt and received overlap regions are compared.
If the value at a pixel of the received image is less than tleesponding value of the sent image, then the
position and value of the received pixel is set as a new taadtgor the next iteration of serial fast marching.
The minimum value of these new trial points is recorded.

The minimum value of the new trial points from the overlapioeg is used to set the alive points and
more trial points for the next iteration of serial fast mangh The whole output of serial fast marching is
compared to this minimum value. If the values of a pixel aidfthe pixel's neighbor pixels are below
the minimum value, then the pixel’s position and value ateasalive points (burned) for the next iteration
of serial fast marching. If the value of a pixel is below thenmrium value, and the value of at least one of
the pixel's neighbors is above the minimum value, then theljsi position and value are added to the trial
points (burning now) for the next iteration of serial fastrotang.

3.5 Parallel Writing

Finally, the output of the last iteration of serial fast nfang from all MPI processes is written in parallel

to a single file. Each MPI process extracts its unpadded mdgion the output of serial fast marching. The
extracted region is pasted into the input image. The wrdeset to write only the unpadded region of the
output of the paste.

4 Serial Fast Marching

When run as a single MPI process with no iterations the ouwipMPI fast marching is just the output of
serial fast marching. Figure 2 shows the output of seridlfeerching seeded from three points within two
disconnected dendrites.

5 MPI Fast Marching

Figure 3 shows a reversed volume rendering of the output dffdsdfPmarching run with four MPI processes
for eight iterations. The seeds are the same as those usserialrfast marching (Figure 2). There is little
apparent difference between the output of serial fast nragamd MPI fast marching inside of the dendrites.
Therefore it is likely possible to use MPI fast marching fertain tasks.

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3137]
Distributed undeCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3137
http://creativecommons.org/licenses/by/3.0/us/

6 Compare MPI to Serial

Figure 4 shows the difference between the output of seridlMRI fast marching. The differences are
greatest outside of the dendrites, particularly near piecsdaries. The fast marching images have values
from 0 to about 7000 with values from 0 to about 200 represgrihie dendrites. The image of the difference
between serial and parallel fast marching has values bat&aed 200. The vast majority of the points that
are part of the dendrites have a difference between sedVét fast marching less than 5. The difference
is not decreased with further iterations. One of the testisided with this paper is a direct comparison of
the output of serial and MPI fast marching. This test failsitufe versions of MPI fast marching should
reduce this error.

However, the small difference in the dendrites betweerakarid parallel fast marching suggests that this
implementation is adequate for at least the task of autenteicing of confocal microscopy images of
florescent dye filled neurons.

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3137]
Distributed undeCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3137
http://creativecommons.org/licenses/by/3.0/us/

7 Software Used

These programs were built using :

¢ Insight Toolkit (CVS after November 4 2009)

CMake (CVS)

VTK (CVS)

MPI (openmpi-1.2.4)

Mesa (CVS)

The volume rendering was done off-screen in VTK which wa# boiuse OSMesa.

8 Acknowledgements

This work was done in Scott L. Hooper's lab at Ohio University | t 0: hooper @hi 0. edu.
This work was funded by the Neuroscience Program at OhioeJsity.

The original confocal image of the lobster stomatogastreuran was provided by Jeff Thuma
mai | t o: t huma@hi o. edu.

References

[1] Maria Cristina TugurlanFast Marching Methods - Parallel Implementation and Analysis. PhD thesis,
Louisiana State University, 29 August 20q8ocument)2

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3137]
Distributed undeCreative Commons Attribution License

mailto:hooper@ohio.edu
mailto:thuma@ohio.edu
http://www.insight-journal.org
http://hdl.handle.net/10380/3137
http://creativecommons.org/licenses/by/3.0/us/

References 7

Figure 1:The input image to fast marching is a piece of a confocal image of a lobster stomatogastric neuron. It has
been pre-processed with multi-scale vesselness. It is shown in a volume rendering.

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3137]
Distributed undeCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3137
http://creativecommons.org/licenses/by/3.0/us/

References 8

Figure 2: Serial fast marching from 3 seeds on 2 dendrites. Shown as a reversed volume rendering with low values
bright and opaque, and high values dark and transparent.

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3137]
Distributed undeCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3137
http://creativecommons.org/licenses/by/3.0/us/

References

Figure 3:MPI fast marching run with 4 MPI processes for 8 iterations. Shown as a reversed volume rendering.

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3137]
Distributed undeCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3137
http://creativecommons.org/licenses/by/3.0/us/

References

10

Figure 4:Volume rendering of the difference between MPI and serial fast marching.

Latest version available at thiesight Journa[htt p: // hdl . handl e. net/ 10380/ 3137]
Distributed undeCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3137
http://creativecommons.org/licenses/by/3.0/us/

	Disclaimer
	Introduction
	Details of MPI Fast Marching
	Command Line Arguments
	Image Pieces
	MPI Communication
	Reinitialize Fast Marching
	Parallel Writing

	Serial Fast Marching
	MPI Fast Marching
	Compare MPI to Serial
	Software Used
	Acknowledgements

