Point Set Processing for VTK - Quitlier

Removal, Curvature Estimation, Normal
Estimation, Normal Orientation

Release 0.00
David Doria

December 4, 2009

Rensselaer Polytechnic Institute, Troy NY

Abstract

This document presents a set of classes (vtkPointSetOutlierRemoval ,
vtkPointSetNormal Estimation, vtkPointSetNormalOrientation, vtkPointSetCurvatureE stimation,
vtkEuclideanMinimumSpanningTree, and vtkRiemannianGraphFilter) to enable several basic opera-
tions on point sets. These classes are implemented as VTK filters. Paraview plugin interfaces to the
filters are also provided to allow extremely easy experimentation with the new functionality. We propose
these classes as an addition to the Visualization Toolkit.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3143]
Distributed under Creative Commons Attribution License

Contents
1 Introduction 2
2 Outlier Removal - vtkPointSetOutlierRemoval 2
2.1 Demonstration e e e e e e e 3
2.2 Code Snippet e e e e e 3
3 Normal Estimation - vtkPointSetNormalEstimation 3
3.1 Demonstration e e e e e e e e e e e e e 4
3.2 Code Snippet L e e e e e e 4
4 Normal Orientation - vtkPointSetNormalOrientation 4
4.1 Creating a Euclidean Minimum Spanning Tree 5
Code Snippet e e e e e e e e e e 5
4.2 Creating a Riemannian Graph on a Point Set - vtkRiemannianGraphFilter 5

Code Snippet e e e e e e e 5

4.3 Orientation/Propagation Algorithm L Lo 6
Initialization e e e e e 6
Propagation e e e e 6

4.4 Demonstration e e e e e e e e e 6

4.5 Code Snippet e e e e 6

5 Curvature Estimation - vtkPointSetCurvatureEstimation 7

5.1 Demonstration e e e e e e e e 7

5.2 Code Snippet e e e e 7

6 Future Work 8

1 Introduction

In the last several years, an increasing number of tools produce 3D points as output. Examples include
Light Detection and Ranging (LiDAR) scanners, Structure From Motion (SFM) algorithms, and Multi View
Stereo (MVS) algorithms. These unordered point sets (or point “clouds”) are typically provided simply as a
list of 3D coordinates. There are many factors in all of these processes that lead to many of the points that
are provided being “outliers”. That is, several points do not seem to actually come from the surface that we
expect. This will severely corrupt the results of many algorithms on this type of data. To remove outliers,
we provide vtkQOutlierRemoval.

By definition, point sets do not contain any connectivity information. This makes it impossible to ap-
ply many algorithms for 3D data processing. At the very least, point normals at each point are required.
That is, if there was a surface through the points, what would the normal of the surface be evaluated at
the points in the point set? The vtkPointSetNormalEstimation class performs this estimation. The al-
gorithm we use to compute these normals has no concept of “inside” and “outside” of the object, so the
orientation of the normals from point to point my not be consistent. As many algorithms rely on this
orientation, we must attempt to correct the normals so they are consistently oriented. This is the role of
vtkPointSetNormalOrientation. Necessary for the orientation algorithm are two graph algorithm imple-
mentations, vtkEuclideanMinimumSpanningTree and vtkRiemannianGraphFilter.

An estimate of the curvature of a point set is often a valuable tool. While the exact values of well defined
mathematic quantities can be computed on a mesh, since we do not have connectivity information in a point
set, an estimate will have to suffice. We provide vtkPointSetCurvatureEstimation to compute a heuristic
idea of curvature at each point.

This set of classes provides these basic functionalities as well as a basis for further point set and surface
processing algorithms for VTK.

2 Qutlier Removal - vtkPointSetOutlierRemoval

We take the simple definition of an outlier to be a point that is farther away from its nearest neighbor than
expected. To implement this definition, for every point p in the point set, we compute the distance from p to
the nearest point to p. We sort these distances and keep points whose nearest point is in a certain percentile

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3143]
Distributed under Creative Commons Attribution License

2.1 Demonstration 3

of the entire point set. This parameter is specified by the user as Percent ToRemove.

2.1 Demonstration

To demonstrate outlier removal, we have created a cube of points, shown in Figure 1(a). We have added
to this cube three spurious points (shown in green near the top of the figure). In Figure 1(b), we show the
resulting point set after 1% of points have been removed.

(a) Input Pointset (b) Outliers Removed

Figure 1: Outlier removal demonstration.

In the current implementation, exactly the percentage of the points specified are removed. In future work,
we plan to add a “do not remove” threshold which will not remove points which are “definitely not outliers”
according to a specified criterion.

2.2 Code Snippet

//obtain a polydata object containing the point set
vtkPolyData* Polydata =

//remove the outliers

vtkSmartPointer<vtkOutlierRemoval> OutlierRemoval =
vtkSmartPointer<vtkOutlierRemoval>: :New () ;

OutlierRemoval->SetInput (Polydata);

OutlierRemoval->SetPercentToRemove (.1); //specified as a value from 0 to 1

OutlierRemoval->Update();

vtkPolyData* OutputPolydata = OutlierRemoval->GetOutput ();

3 Normal Estimation - vtkPointSetNormalEstimation

To estimate the normal at a point, we find the k nearest neighbors (specified by a parameter
kNearestNeighbors). We find the best fit (least squares) plane through these points. The normal of this
plane is taken to be the normal of the point.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3143]
Distributed under Creative Commons Attribution License

3.1 Demonstration 4

3.1 Demonstration

To demonstrate the algorithm, in Figure 2 we show points on a sphere and their estimated normals.

(a) Points on a sphere (b) Estimated normals

Figure 2: Normal estimation demonstration.

Please note the inconsistency of the normal orientation. This is addressed in Section 4 by
vtkPointSetNormal Orientation.

3.2 Code Snippet

//obtain a polydata object containing the point set
vtkPolyData* Polydata =

vtkSmartPointer<vtkPointSetNormalEstimation> NormalEstimation =

vtkSmartPointer<vtkPointSetNormalEstimation>: :New();
NormalEstimation->SetInput (Polydata);
NormalEstimation->Update();

vtkPolyData* OutputPolydata = NormalEstimation->GetOutput ();

4 Normal Orientation - vtkPointSetNormalOrientation

There are two valid consistent orientations of surface normals - all normals facing “inside” the object, or
all normals facing “outside” the object. As a good guess at “outside”, this method finds the point with the
largest z value and adjusts that point’s normal to point more toward the positive z direction. This initial
normal direction is then propagated over the point set using the graph based technique described in the
following.

We implement the technique described by Hoppe et al. in “Surface reconstruction from unorganized points”.
The details are described in 4.1 and 4.2, but the overview is

e Create a Euclidean Minimum Spanning Tree (EMST) on the points.
e Add edges to the EMST to create a Riemannian graph on the points.
e Find the Minimum Spanning Tree (MST) of the Riemannian graph where the edges are weighted to

promote propagation to vertices with similar normals.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3143]
Distributed under Creative Commons Attribution License

4.1 Creating a Euclidean Minimum Spanning Tree 5

e Use a heuristic to determine the “correct” orientation of a seed point and propagate this direction over
the MST flipping normals that are “incorrectly” oriented.

4.1 Creating a Euclidean Minimum Spanning Tree (EMST) on a Point Set - vtkEuclideanMini-
mumSpanningTree

We have implemented the most naive EMST algorithm. We first create a graph with every possible edge
on the points. That is, connect each point to all of the other points in the set. Set the weight of each edge
equal to the distance between the two points it joins. The minimum spanning tree of this graph is called
the EMST. Clearly, since n” edges are created, this algorithm is not scalable to large data sets. We plan to
implement a more sophisticated EMST in future work.

This class is used internally by vtkPointSetNormal Orientation. However, it can certainly be used for other
applications. The following is a simple demonstration of how to use the class.

Code Snippet
vtkPolyData* InputPolydata = Reader->GetOutput();

vtkSmartPointer<vtkEuclideanMinimumSpanningTree> EMSTFilter =
vtkSmartPointer<vtkEuclideanMinimumSpanningTree>: :New () ;

EMSTFilter->SetInput (InputPolydata);

EMSTFilter->Update();

vtkTree* EMST = EMSTFilter->GetOutput();

4.2 Creating a Riemannian Graph on a Point Set - vtkRiemannianGraphFilter

From the EMST, we create edges from each point to its KNearestNeighbors neighbors. The resulting graph
is called a Riemannian graph on the points.

This class is used internally by vtkPointSetNormalOrientation. However, it can certainly be used for other
applications. The following is a simple demonstration of how to use the class.

Code Snippet

//get the input points
vtkPolyData* input = ...

//find the Riemannian graph
vtkSmartPointer<vtkRiemannianGraphFilter> RiemannianGraphFilter =

vtkSmartPointer<vtkRiemannianGraphFilter>::New();
RiemannianGraphFilter->SetInput (input);
RiemannianGraphFilter->SetKNearestNeighbors (5);
RiemannianGraphFilter->Update();

//get the connected graph

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3143]
Distributed under Creative Commons Attribution License

4.3 Orientation/Propagation Algorithm 6

vtkGraph* RiemannianGraph = RiemannianGraphFilter->GetOutput ();

4.3 Orientation/Propagation Algorithm

Once we have the Riemannian graph on the points, we set the edge weights to w = 1 —|n; - n;| where n; and
n; are the normals of the two points joined by the edge. We then compute the MST on this graph.

Initialization

To determine the correct orientation of the normals, the point with the largest z value is found. If the dot
product of the normal at this point with (0,0, 1) is negative, we flip the normal at this point. That is, we
make the “highest” points normal point “up”. This is a reasonable way to heuristically find the outside of
the surface.

Propagation

We traverse the tree in a depth first fashion (when a breadth first iterator becomes available for VTK, we
think this may improve the results). At each step of the traversal, consider moving from vertex i to vertex j.
If n;-n; <0 (i.e. the normal of the point we are moving to is facing “away” the normal of the current point),
we set n; = —n;j. That is, we flip the normal to be consistently oriented.

4.4 Demonstration

To demonstrate the algorithm, Figure 3 shows an input point set, the normals produced by the normal
estimation algorithm, and the correctly oriented normals.

(a) Points on a sphere (b) Estimated normals (c) Oriented normals

Figure 3: Normal orientation demonstration.

4.5 Code Snippet

//obtain a polydata object containing the point set
vtkPolyData* Polydata =

vtkSmartPointer<vtkPointSetNormalOrientation> NormalOrientation =
vtkSmartPointer<vtkPointSetNormalOrientation>: :New();

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3143]
Distributed under Creative Commons Attribution License

NormalOrientation->SetInput (Reader->GetOutput ());
NormalOrientation->Update();

vtkPolyData* OutputPolydata = NormalOrientation->GetOutput ();

5 Curvature Estimation - vtkPointSetCurvatureEstimation

It is often useful to know something about the “curvature” or “flatness” of a region of a point set. A
reasonable indication of this idea can be produced by computing the average distance to the best fit plane of
the set of points in a sphere with a chosen radius around each point. The curvature values that are computed
are normalized so that the maximum value is 1. Note: This filter is not intended to approximate either
Gaussian or mean curvature.

5.1 Demonstration

We show the computed curvature estimates of the points of the Stanford bunny.

Figure 4: Curvature of the Stanford Bunny

5.2 Code Snippet

vtkPolyData* InputPolyData = Reader->GetOutput();

//estimate the curvature

vtkSmartPointer<vtkPointSetCurvatureEstimation> CurvatureEstimationFilter =
vtkSmartPointer<vtkPointSetCurvatureEstimation>: :New();

CurvatureEstimationFilter->SetInput (InputPolyData);

CurvatureEstimationFilter->Update();

vtkPolyData* CurvatureEstimate = CurvatureEstimationFilter->GetOutput ();

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3143]
Distributed under Creative Commons Attribution License

6 Future Work

It is often necessary to compute a surface that fits the points. There are several algorithms which compute a
surface given a point set. Of these, Poisson surface reconstruction is probably the most common. We intend
to implement this surface reconstruction algorithm for VTK.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3143]
Distributed under Creative Commons Attribution License

