Using and Visualizing Projective Cameras in
VTK

Release 0.00
David Doria

February 17, 2010

Rensselaer Polytechnic Institute, Troy NY

Abstract

This document presents a set of classes (vtkPhysicalCamera, vtkImageCamera) to enable a camera and
an image acquired by that camera to be visualized in a 3D scene. Two situations where one would want
to visualize camaras with associated images are range data analysis and 3D scene reconstruction from
images (structure from motion). The classes presented in this paper are implemented using tools from
VTK.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3152]
Distributed under Creative Commons Attribution License

Contents
1 Introduction 2

2 A Data Structure for Storing, Using, and Visualizing Camera Calibration Parameters - vtkPhysicalCamera

3 Demonstrations 2
3.1 Forward Projection L 2
Octave code e e e e e e 3

Code Snippet e e e 4

3.2 Backward Projection e 5
Octave code e e e 6

Code Snippet e e e e e 6

3.3 Visualizing Camera Position and Orientation 7

4 Displaying a 2D Image in a Meaningful 3D Position - vtkImageCamera 8
4.1 Code Snippet e e 8

4.2 Back-projected Rays 9

5 Conclusion and Future Work 9

1 Introduction

Two increasingly popular technologies require dealing with 3D data and associated images simultaneously.
LiDAR scanners produce a 3D point cloud of a scene, while at the same time taking several images of the
scene. 3D reconstruction algorithms such as Structure From Motion (SFM) and Multi View Stereo (MVS)
take a set of images as input and produce 3D point clouds. In both cases, it is useful to be able to visualize
the images relative to the 3D scene. We propose a set of classes as an addition to VTK which allow the user
to visualize a camera and an image associated with that camera in 3D space.

2 A Data Structure for Storing, Using, and Visualizing Camera Calibration Param-
eters - vtkPhysicalCamera

vtkPhysicalCamera is a class for storing intrinsic (focal length, image center) and extrinic (rotation matrix,
translation vector) camera parameters. It provides a function, Pro jectPoint to project a 3D point on to an
image (forward projection). It also provides a function, GetRay, to compute the 3D ray from the camera
center through a pixel given in image coordinates (backward projection).

Looking at the image from the camera center (which is looking down the +z axis), the coordinate system is
shown in Figure 1 where w is the image width, / is the image height, and coordinate pairs are specified as

(x,¥)-

(+w/2,+h/2) (-w/2,+h/2)

(+w/2, -h/2) (-w/2,-h/2)

Figure 1: Coordinate system of camera and image.

3 Demonstrations

3.1 Forward Projection
Consider the following camera:

Rotation: 45 degrees around the y axis (rotates the z axis toward the x axis):

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3152]
Distributed under Creative Commons Attribution License

3.1 Forward Projection

cosd(45) 0 sind(45) 707 0 707
R= 0 1 0 = 0 1 0
—sind(45) 0 cosd(45) -.707 0 .707
1
Translation: C = | 2
3

Focal length: f =200

Principal point: <8)

The intrinsic parameter matrix is therefore:

f 00 200 0 O
K=|0 f O0]=| 0 200 O
0 0 1 0 0 1

From the simple projective camera model, we know:

14142 0 14142 —565.6854
P=KR[l|-C|=[KR|—KRC]=(0 200 0 —400
-707 0 707 —1.4142

Consider a point
10.0
X =120.0
30.0

The projection of this point by the camera is:

5091.169
x=PX = 3600
12.728

400
X_RX_(%ZM)

Dividing by the third component,

Octave code

The octave code to reproduce the above calculations is below:

R=[cosd (45) 0 sind(45); 0 1 0; —sind(45) 0 cosd(45)]
C=[1;2;3]

=200

K=[200 0 0; 0 200 0; 0 O 1]

P=[K«R —KxRxC]

P=[KxR —K*Rx*C]

X=[10;20;30;1]

p=P*X

p=p/p(3)

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3152]
Distributed under Creative Commons Attribution License

3.1 Forward Projection 4

Code Snippet

The same operation (projecting the point (1,2,3) with the camera defined above) is computed using vtk-
PhysicalCamera.

#include <vtkSmartPointer.h>
#include <vtkMatrix3x3 .h>
#include <vtkPointSource .h>
#include <vtkMath.h>

#include ”vtkPhysicalCamera.h”
void CreateRotationY (double degree, vtkSmartPointer<vtkMatrix3x3> R);

int main (int argc, char xargv][])

{
// create a point to project
vtkSmartPointer <vtkPointSource> pointSource =

vtkSmartPointer <vtkPointSource >::New();

pointSource —>SetNumberOfPoints (1);
pointSource —>SetCenter (1.0, 2.0, 3.0);
pointSource —SetRadius (0);
pointSource —>Update ();

vtkPolyDatax polydata = pointSource —>GetOutput ();

// Setup camera parameters

// Create a rotation matrix

vtkSmartPointer <vtkMatrix3x3> r =
vtkSmartPointer <vtkMatrix3x3 >::New();

CreateRotationY (45, r);

double cameraCenter[3] = {10.0, 20.0, 30.0};

// Create a camera

vtkSmartPointer <vtkPhysicalCamera> camera =
vtkSmartPointer <vtkPhysicalCamera >::New();

camera—>SetR (r);

camera—>SetCameraCenter (cameraCenter);

camera—>SetFocalLength (200.0);

// projection

double p[3];

polydata—GetPoint (0,p);

double pixel[2];

camera—>ProjectPoint(p, pixel);

cout << ”The projection of (” << cameraCenter[0] << 7, 7 << cameraCenter[1] <<

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3152]
Distributed under Creative Commons Attribution License

3.2 Backward Projection 5

return EXIT_SUCCESS;

}

void CreateRotationY (double degree, vtkSmartPointer <vtkMatrix3x3> R)
{
//Rx rotates the y—axis towards the z—axis
//Ry rotates the z—axis towards the x—axis
//Rz rotates the x—axis towards the y—axis
R—Identity ();
double ang = vtkMath :: RadiansFromDegrees (degree);
R—SetElement (0,0, cos(ang));
R—SetElement (0,2, sin(ang));
R—>SetElement (2,0, —sin(ang));
R—SetElement (2,2, cos(ang));

3.2 Backward Projection
If P = [M|P4], then the ray through a pixel x = <§> is

X
C+oM'[y
1

where o is a positive constant (to ensure the ray is pointing “toward the scene”).

To demonstrate this, we use the inverse of the forward projection demonstration described above. We wish

. 400
to find the ray through pixel <28)3 4> .

M, the first 3x3 block of P, is

141.42 0 14142
M =KR= 0 200 0
=707 0 707

The ray through the pixel is then:

1 400 1 707
2l +om 128284 =2+l 1414
3 1 3 2.121

Normalizing the direction to unit magnitude, we have

1 0.26726
2| +a| 0.53452
3 0.80178

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3152]
Distributed under Creative Commons Attribution License

3.2 Backward Projection 6

Octave code

The octave code to reproduce this calculation is simply

M=P(1:3, 1:3)
inv(M)xp %the direction of the ray

Code Snippet

The same operation (projecting the point (1,2,3) with the camera defined above) is computed using vtk-
PhysicalCamera.

#include <vtkSmartPointer.h>

#include <vtkMatrix3x3 .h>

#include <vtkRenderWindow .h>

#include <vtkRenderer.h>

#include <vtkPolyData.h>

#include <vtkPolyDataMapper.h>

#include <vtkXMLPolyDataReader.h>
#include <vtkAxesActor.h>

#include <vtkImageData.h>

#include <vtkOrientationMarkerWidget.h>
#include <vtkRenderWindowlInteractor.h>
#include <vtkInteractorStyleTrackballCamera.h>
#include <vtkJPEGWriter.h>

#include <vtkCellArray .h>

#include <vtkMath.h>

#include <vtkPointSource .h>

#include <vtkCameraActor.h>

#include <vtkCamera.h>

#include “vtkPhysicalCamera.h”
void CreateRotationY (double degree, vtkSmartPointer <vtkMatrix3x3> R);
int main (int argc, char =xargv[])
{

// Setup camera parameters

// Create a rotation matrix

vtkSmartPointer <vtkMatrix3x3> r =

vtkSmartPointer <vtkMatrix3x3 >::New();
CreateRotationY (45, r);

double cameraCenter[3] = {0.0, 0.0, 0.0};

// Create a camera
vtkSmartPointer <vtkPhysicalCamera> camera =

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3152]
Distributed under Creative Commons Attribution License

3.3 Visualizing Camera Position and Orientation

vtkSmartPointer <vtkPhysicalCamera >::New ();
camera—>SetR (r);
camera—>SetCameraCenter (cameraCenter);
camera—>SetFocalLength (200.0);

double pix[2] = {400.0, 282.84};
double ray[3];
camera—>GetRay (pix , ray);

cout << ”The ray through pixel (7 << pix[0] << 7,” << pix[1] << ”

return EXIT_SUCCESS;

}

void CreateRotationY (double degree, vtkSmartPointer <vtkMatrix3x3> R)
{
//Rx rotates the y—axis towards the z—axis
//Ry rotates the z—axis towards the x—axis
//Rz rotates the x—axis towards the y—axis
R—Identity ();
double ang = vtkMath:: RadiansFromDegrees (degree);
R—SetElement (0,0, cos(ang));
R—SetElement (0,2, sin(ang));
R—SetElement (2,0, —sin(ang));
R—SetElement (2,2, cos(ang));

3.3 Visualizing Camera Position and Orientation

is (7 << raj

Figure 2 shows the camera (Large X,Y,Z) relative to the world coordinate frame (X,,Y,,Z,). (The axes in
the lower left corner is an orientation widget and is there only to help when the world coordinate axes are

not drawn).

Figure 2: Camera location and orientation relative to the world coordinate system.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3152]
Distributed under Creative Commons Attribution License

To enable the camera to be displayed in the scene, you must simply call:

camera—>UpdateCameraActor ();
renderer —>AddActor(camera—>GetAxesActor ());

4 Displaying a 2D Image in a Meaningful 3D Position - vikimageCamera

vtkImageCamera is derived from vtkPhysicalCamera. It serves as a camera with an associated image. The
image can be drawn on any slice of the camera frustum, specified by the DistanceFromCamera member
variable. A quad is created by casting rays through the corner pixels and finding the coordinates of the
points DistanceFromCamera from the camera center along each ray. The image stored in the class is then
texture mapped onto this quad. We provide an example with a slider to control the slice of the view frustum
that is displayed (how far the image is from the camera). A screenshot of this demonstration is shown in
Figure 3. We use a capital 'R’ as the image because it is completely asymmetric, so orientation correctness
is easy to spot.

251

Distance from Camera

Figure 3: An example camera and its associated image.

4.1 Code Snippet

Since vtkImageCamera derives from vtkPhysicalCamera, most of the functionality (setting the camera pa-
rameters, etc) is identical. The main additional feature is setting the image. This is demonstrated below:

vtkSmartPointer <vtkJPEGReader> reader =
vtkSmartPointer <vtkJPEGReader >::New ();

reader —>SetFileName (filename .c_str ());

reader —>Update ();

camera—>SetTexturelmage (reader —GetOutput ());

vtkSmartPointer <vtkRenderer> renderer =
vtkSmartPointer <vtkRenderer >::New();
camera—>SetRenderer(renderer);
camera—>UpdateCameraActor ();
camera—>UpdateIlmageActor ();

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3152]
Distributed under Creative Commons Attribution License

4.2 Back-projected Rays 9

4.2 Back-projected Rays

We provide an interactive demonstration of computing and visualizing the ray through an image pixel. A
screenshot is shown in Figure 4. It was necessary to use Qt for this example as we needed one renderer to
use a 2D interactor style and the other renderer to use a 3D interactor style.

Figure 4: A screenshot of the interactive backprojected rays demonstration.

The image is displayed in the right renderer. When the user moves the red dot (a vtkSphereWidget), the ray
through the selected pixel is displayed in the left renderer.

5 Conclusion and Future Work

We have presented a set of classes for visualizing cameras with associated images. In the future we will
include a derived camera class to remove radial and tangential lens distortion if the distortion coefficients
are provided.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3152]
Distributed under Creative Commons Attribution License

