
Noise simulation

Gaëtan Lehmann

March 19, 2010

Abstract

Several kind of noise can be found in real images, mostly depending on the modality of acquisition. It
is often useful to be able to simulate that noise, for exampleto test the behavior of an algorithm in the
presence of a known amount of noise.

This contribution provides the filters to generate four kindof noise – additive gaussian, shot, speckle
and salt and pepper – as well as a PSNR calculator.

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3158]
Distributed underCreative Commons Attribution License

Contents

1 Noise types 2
1.1 Additive gaussian noise. 2
1.2 Shot noise. 2
1.3 Speckle noise. 4
1.4 Salt and pepper noise. 5

2 Peak signal-to-noise ratio 5

3 Wrapping 6

4 Development details 6

5 Conclusion 7

6 Acknowledgments 7

7 References 7

http://www.insight-journal.org
http://hdl.handle.net/10380/3158
http://creativecommons.org/licenses/by/3.0/us/

2

1 Noise types

1.1 Additive gaussian noise

This is the most frequent kind of noise. It can be modeled as:

I = I0 +N (1)

whereI is the observed image,I0 is the non-noisy image andN is a normally distributed random variable of
meanµ and varianceσ2. The noise is independant of the pixel intensities.

N∼ N (µ,σ2) (2)

µ is generally 0.

Additive gaussian noise can be simulated withitk::AdditiveGaussianNoiseImageFilter . The mean
can be specified withSetMean() and the standard deviation withSetStandardDeviation() . The mean
defaults to 0 and the standard deviation to 1.

(a) Input image (b) Noisy image (c) Generated noise

Figure 1: (a) the input image. (b) image altered with additive gaussian noise withµ = 0 andσ = 22.8. (c)
the generated noise extracted by computing the absolute difference between (a) and (b). Note that the noise
is almostindependant of the pixel intensities – the dark zones show less noise because of the clipping of the
negative values applied to the pixel intensities during thesimulation. The command line used was./gauss
../images/cthead1.tif gauss.png 22.8.

1.2 Shot noise

Shot noise, also called Poisson noise or photon noise can be modeled as:

I = N(I0) (3)

whereN(I0) is a poisson distributed random variable of meanI0. The noise is thus dependant on the pixel
intensities in the image.

Shot noise can be simulated withitk::ShotNoiseImageFilter . The intensities in the image can be scaled
by a user provided value to map the pixel value to the actual number of photon. The scaling can be seen as

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3158]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3158
http://creativecommons.org/licenses/by/3.0/us/

1.2 Shot noise 3

the inverse of the gain used during the acquisition. The noisy signal is then scaled back to its input intensity
range.

I =
N(I0×s)

s
(4)

wheres is the scale factor.

The scale factor can be set withSetScale() .

(a) Input image (b) Noisy image (c) Generated noise

Figure 2: (a) the input image. (b) image altered with shot noise withs = 0.15. (c) the generated noise
extracted by computing the absolute difference between (a)and (b). Note that the noise is dependant of the
pixel intensities – a strong signal leads to a strong noise. The command line used was./shot ../images/ct-
head1.tif shot.png 0.15.

The poisson distributed variable is computed by using the code

Algorithm 1.1: POISSONDISTRIBUTEDVARIABLE (λ)

k← 0
p← 1
repeat
{

k← k+1
p← p∗U()

until p > e−λ

return (k)

whereU() provides a uniformly distributed random variable in the interval [0,1].

This algorithm is very inefficient for large value ofλ though. Fortunately, the poisson distribution can be
accurately approximated by a Gaussian distributionλ of mean and varianceλ whenλ is large enough. This
leads to this faster algorithm:

Algorithm 1.2: APPROXIMATEDPOISSONDISTRIBUTEDVARIABLE (λ)

if λ≤ 50
then return (POISSONDISTRIBUTEDVARIABLE (λ))

else return (λ+
√

λ×N())

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3158]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3158
http://creativecommons.org/licenses/by/3.0/us/

1.3 Speckle noise 4

whereN() produce a normally distribution variable of mean 0 and variance 1.

1.3 Speckle noise

Speckle noise is also called multiplicative noise. It can bemodeled as:

I = I0∗G (5)

where G is a is a gamma distributed random variable of mean 1 and variance proportional to the noise level.

G∼ Γ(
1

σ2 ,σ2) (6)

Speckle noise can be simulated withitk::SpeckleNoiseImageFilter . The standard deviation of the
noise can be set withSetStandardDeviation() and defaults to 1.

(a) Input image (b) Noisy image (c) Generated noise

Figure 3: (a) the input image. (b) image altered with specklenoise withσ = 0.24. (c) the generated
noise extracted by computing the absolute difference between (a) and (b). Note that the noise is dependant
of the pixel intensities – a strong signal leads to a strong noise. The command line used was./speckle
../images/cthead1.tif speckle.png 0.24.

The gamma distributed random variable is a bit more difficultto compute than what is done in the previous

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3158]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3158
http://creativecommons.org/licenses/by/3.0/us/

1.4 Salt and pepper noise 5

cases.

Algorithm 1.3: GAMMA DISTRIBUTEDVARIABLE (k,θ)

δ← k
v0← e

e+δ
repeat


































v1← U(),v2← U(),v3← U()
if v1≤ v0

then

{

ξ← v1/δ
2

ν← v3ξδ−1

else
{

ξ← 1− lnv2

ν← v3e−ξ

until ν > e−ξξδ−1

return (θ

(

ξ−
[k]

∑
i=1

lnU()

)

)

whereU() produce a uniformaly distributed variable on the lower openrange(0,1], [k] is the integral value
of k andk is the decimal value ofk.

1.4 Salt and pepper noise

Salt and pepper noise is a special kind of impulse noise wherethe value of the noise is either the maximum
possible value in the image or its minimum. It can be modeled as:

I =











M, if U < p/2

m, if U > 1− p/2

I0, if p/2≥U ≤ 1− p/2

(7)

wherep is the probability of apparition of the noise,U is a uniformally distributed random variable on the
range[0,1], M is the greatest possible pixel value andm the smallest possible pixel value.

Salt and pepper noise can be simulated withitk::SaltAndPepperNoiseImageFilter . The probability of
the noise can be set withSetProbability() and defaults to 0.01.

2 Peak signal-to-noise ratio

The peak signal-to-noise ratio (PSNR) is a measure of degradation of the image quality. It is computed as

PSNR= 10· log10







M ·N
∑

p∈D
(I0[p]− I [p])2






(8)

whereD is the domain of definition of the imageI0 and I , N is the number of pixel inD, andM is the
maximum possible value inI .

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3158]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3158
http://creativecommons.org/licenses/by/3.0/us/

6

(a) Input image (b) Noisy image (c) Generated noise

Figure 4: (a) the input image. (b) image altered with salt andpepper noise withp= 0.016. (c) the generated
noise extracted by computing the absolute difference between (a) and (b). Note that the noise is independant
of the pixel intensities. The command line used was./sp ../images/cthead1.tif sp.png 0.016.

All the images degraded with noise in this article have a PSNRof 20.

3 Wrapping

All the new filters have been wrapped using WrapITK.

4 Development details

itk::MersenneTwisterRandomVariateGenerator has been modified to produce a thread safe implemen-
tation calleditk::ThreadSafeMersenneTwisterRandomVariateGenerato r . It should be possible to fix
the non thread safety in the original class, but the implication on the testing framework and the backward
compatibility are beyond the scope of this contribution.

The filters arenot implemented as subclasses ofitk::UnaryFunctorImageFilter because each thread
must have its own random generator. They are implemented as subclasses ofitk::InPlaceImageFilter
to be able to run the noise addition in place. All the filters are multithreaded.

Due to the difficulty of testing a random behavior, no test is provided.

A development version is available in a darcs repository athttp://mima2.jouy.inra.fr/darcs/contrib-itk/noise

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3158]
Distributed underCreative Commons Attribution License

http://mima2.jouy.inra.fr/darcs/contrib-itk/noise/
http://www.insight-journal.org
http://hdl.handle.net/10380/3158
http://creativecommons.org/licenses/by/3.0/us/

7

5 Conclusion

6 Acknowledgments

Unlike most of my previous contributions, this work hasnotbeen supported by the french National Institute
for Agricultural Research (INRA) – my employer. I’d like to thanks the INRA anyway, and more specifically
the MIMA2 facility, to have provided the computer ressources used for this work.

7 References

Most of the informations used in this article are coming fromwikipedia.

http://en.wikipedia.org/wiki/Additive_white_Gaussia n_noise

http://en.wikipedia.org/wiki/Shot_noise

http://en.wikipedia.org/wiki/Poisson_distribution

http://en.wikipedia.org/wiki/Speckle_noise

http://en.wikipedia.org/wiki/Gamma_distribution#Gen erating_gamma-distributed_random_variables

http://www.ceremade.dauphine.fr/ ˜ peyre/numerical-tour/tours/denoising_data_dependent

http://en.wikipedia.org/wiki/PSNR

Latest version available at theInsight Journal[http://hdl.handle.net/10380/3158]
Distributed underCreative Commons Attribution License

http://en.wikipedia.org/wiki/Additive_white_Gaussian_noise
http://en.wikipedia.org/wiki/Shot_noise
http://en.wikipedia.org/wiki/Poisson_distribution
http://en.wikipedia.org/wiki/Speckle_noise
http://en.wikipedia.org/wiki/Gamma_distribution#Generating_gamma-distributed_random_variables
http://www.ceremade.dauphine.fr/~peyre/numerical-tour/tours/denoising_data_dependent
http://en.wikipedia.org/wiki/PSNR
http://www.insight-journal.org
http://hdl.handle.net/10380/3158
http://creativecommons.org/licenses/by/3.0/us/

	Noise types
	Additive gaussian noise
	Shot noise
	Speckle noise
	Salt and pepper noise

	Peak signal-to-noise ratio
	Wrapping
	Development details
	Conclusion
	Acknowledgments
	References

