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Abstract

Segmentation forms the onset for image analysis especially for medical images, making any abnormalities in tissues
distinctly visible. Possible application includes the detection of tumor boundary in SPECT, MRI or electron MRI
(EMRI). Nevertheless, tumors being heterogeneous pose a great problem when automatic segmentation is attempted
to accurately detect the region of interest (ROI). Consequently, it is a challenging task to design an automatic segmen-
tation algorithm without the incorporation ofa priori knowledge of an organ being imaged. To meet this challenge,
here we propose an intelligence-based approach integrating evolutionary k-means algorithm within multi-resolution
framework for feature segmentation with higher accuracy and lower user interaction cost. The approach provides
several advantages. First, spherical coordinate transform (SCT) is applied on original RGB data for the identification
of variegated coloring as well as for significant computational overhead reduction. Second the translation invariant
property of the discrete wavelet frames (DWF) is exploited to define the features, color and texture using chromaticity
of LL band and luminance of LH and HL band respectively. Finally, the genetic algorithm based K-means (GKA),
which has the ability to learn intelligently the distribution of different tissue types without any prior knowledge, is
adopted to cluster the feature space with optimized cluster centers. Experimental results of proposed algorithm using
multi-modality images such as MRI, SPECT, and EMRI are presented and analyzed in terms of error measures to
verify its effectiveness and feasibility for medical applications.

Key words: Color image segmentation; Medical image segmentation; Spherical coordinate transform; K-means
clustering; Genetic algorithm; Wavelet features; Wavelet frames.

1. Introduction

Accurate delineation of ROI and extraction of quantita-
tive information plays an instrumental role in medical di-
agnosis and follow-up assessment. Despite numerous ef-
forts by the medical imaging community, accurate and re-
producible segmentation of ROIs and characterization of
abnormalities still pose challenging and difficult task. The
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key problem is no single unified segmentation scheme ex-
ists to yield acceptable results for different types of med-
ical images. Earlier studies have shown that combining
color and texture features would be of significant bene-
fit in distinguishing different classes of pathological tis-
sues [13, 11, 20]. Nonetheless, the effectiveness of texture
characterization is bound by the type of algorithm that is
used to extract meaningful features. Recently, Multi-scale
filtering methods have shown significant potential for tex-
ture description, where advantage of the spatial-frequency
concept is utilized to maximize the simultaneous local-
ization of energy in both spatial and frequency domains
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[1, 2]. Wavelet transform provides good multi-resolution
analytical tool for texture characterization analysis with
high accuracy rate. Most of the previous works on wavelet
transform have focused on dyadic wavelet transform that
are sensitive to translation-variance and may not be de-
sirable in the context of texture characterization [19, 4].
Therefore, the work presented here extracts texture fea-
tures using discrete wavelet frames [22] to provide a
translation-invariant feature description.

Another key problem in clinical medicine is that no
complete automatic segmentation exists to free the physi-
cian from burden of manual labeling and to provide quan-
titative measurements to aid in diagnosis. Different com-
plex models ofa priori information about the expected
contents of the image is widely used [21, 23, 3]. The
applied a priori knowledge consists of a combination
of anatomical/physiological information of the image as
well as information about the image formation process.
The more the contributed model information is verifiable,
the more likely is the success of automation of the seg-
mentation process. Unfortunately, the model information
is often too complex and/or not exact so that a completely
automatic extraction is difficult to realize. To address this
issue, the present approach incorporates GKA [9, 15] into
the segmentation procedure to learn intelligently the fea-
ture image space and identify the optimal cluster centers.
The total within cluster square error (TWCSE) forms the
basis of an objective function to optimize cluster centers
of k-means for successful ROI identification. The feasi-
bility of the proposed approach for medical application is
demonstrated with MRI and SPECT images. Also since
our interest is towards the enhancement of electron MRI
(EMRI), a fast emerging functional imaging modality for
noninvasive imaging of free radicals, as a viable tech-
nology for biomedical research and clinical applications
[6, 7]. The proposed algorithm is evaluated with EMRI of
small animals for pharmacokinetic and tumor studies.

2. Color Space Analysis

The advent of functional imaging techniques has
opened a wide window for color image analysis. In gen-
eral, the red-green-blue (RGB) space is used in image pro-
cessing research, dictated primarily by the availability of
such data as they are produced by most color image cap-
turing devices. Drawbacks in the use of RGB in computer

vision applications are: the high correlation among RGB
channels, the representation of RGB is not very close to
the way humans perceive colors and it is not perceptu-
ally uniform. The analysis of the pixel color distribution
in a color space is not restricted to the RGB space. In-
deed, there exists a large number of color spaces which
can be used to represent the color of the pixels. But, since
the performance of an image segmentation procedure is
known to depend on the choice of the color space. Many
authors have tried to determine the color spaces which
are more appropriate for their specific color image seg-
mentation problems. In this light, SCT have shown good
performance in medical applications such as skin lesion
identification [10] and in tumor detection [6]. Therefore,
the present work, employs SCT on RGB color space of
the input image and decouples the brightness information
from the color information. The equations relating SCT
dimensions to RGB components are given as,

L =
√

R2 + G2 + B2 (1)

a∗(AngleA) = arccos
[B
L

]
(2)

b∗(AngleB) = arccos

[
R

L ∗ sin(a∗)

]
(3)

3. Wavelet Frames for Feature Extraction

The statistical approaches for feature characterization
restrict themselves to the analysis of spatial interactions
over relatively small neighborhoods [8]. As a conse-
quence, their performance is good for the class of so-
called micro-features. Multi-scale approaches try to over-
come the intrinsic limitations of a single-scale analysis of
the texture problem. Gabor transforms is widely used to
extract feature vectors, which have shown significant po-
tential for texture classification and segmentation [12, 5].
These approaches are supported by experiments on mam-
malian visual systems, which indicate a reliance of the
visual system on spatial-frequency analysis. The poten-
tial disadvantage of Gabor filtering is its computational
overhead, especially for the evaluation of low-frequency
components. In addition, the outputs of Gabor filter banks
are not mutually orthogonal, which may result in a signifi-
cant correlation between features. Most of these problems
can be avoided using wavelet transform, which provides a
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precise and unifying framework for the analysis and char-
acterization of a signal at different scales.

The wavelet transform downsamples the signal and the
length of the decomposed signal is reduced. Therefore
the intra-scale and inter-scale fusion schemes for unsuper-
vised texture segmentation, should be taken into account
to attain the satisfactory results. In order to overcome this
and to obtain more complete characteristic of the analyzed
signal, an overcomplete wavelet decomposition is needed
in which the output of the filter banks is not subsam-
pled. Unser [22] proposed the overcomplete wavelet rep-
resentation, DWF by incorporating redundant information
to yield a translation-invariant description of texture fea-
tures. The main advantages of the wavelet frames are that
it focuses on scale and orientation texture features and it
decomposes the image into orthogonal components. This
property yields a better estimation of texture statistics and
more detailed characterization at region boundaries. DWF
decompositions are calculated by successive 1D process-
ing along the rows and columns of the image with two-
scale relation defined as,

hi+1(k) = [h]↑2i ∗ hi(k) (4)

gi+1(k) = [g]↑2i ∗ hi(k) (5)

where notation [.]↑m denotes the upsampling by a factor of
m. The factor of one iteration is more or less to dilate the
filtershi andgi . Each step involves a convolution with the
basic filters h and g, which are expanded by inserting ap-
propriate number of zeros between taps. The complexity
of this algorithm is same to all iterations and proportional
to the number of samples.

si+1(k) = [h]↑2i ∗ si(k) (6)

di+1(k) = [g]↑2i ∗ si(k) (7)

3.1. Color Feature Extraction

Most of the existing color extraction techniques are
based on the color image histogram [16, 17]. Even though
such techniques have been quite successful in given set-
tings, they have notable shortcomings. First, the his-
togram does not incorporate any spatial information. Sec-
ond, the color histogram is too finely quantized in color
space, and hence does not take into consideration the fact
that the human visual system can only perceive a few col-
ors at a time. To combat these problems, Ma et al [18]

were the first to propose a compact color representation
in terms of dominant colors for image segmentation and
retrieval. There are number of approaches for extracting
the dominant colors. One such approach is to apply low-
pass filtering on the original image to obtain the average
color within the squared window as well to eliminate the
spurious pixels within uniform regions. To this fact, the
work presented here adopts DWF to obtain the similar re-
sult with less computational complexity and uses the chro-
maticity channels (a, b) of LL band to define the color
features as follows,

chroma=
√

a2 + b2 (8)

3.2. Texture Feature Extraction

Texture is the discriminating information that differen-
tiates normal from abnormal lesions. Since texture is es-
sentially a multi-scale phenomenon, multi-resolution ap-
proaches perform well for texture analysis. A charac-
terization of texture is usually based on the local infor-
mation that appears within a neighborhood distribution.
Recent studies have come to the conclusion that a spa-
tial/frequency representation, which preserves both global
and local information, is adequate for the characterization
of texture. Since wavelet transform offers a tool for spa-
tial/frequency representation, wavelet frame representa-
tion of wavelet transform are employed for spatial texture
feature extraction [14, 22, 17]. Such representations is
also proposed in the present study because they are more
robust, sparse, and can have greater flexibility in repre-
senting the structure of the input data.

The most commonly used features for texture analysis
in the context of multi-scale frequency decompositions is
the energy of the subband coefficients [17]. The coeffi-
cients are quite sparse. Therefore, it is necessary to per-
form some type of window operation to obtain a more
uniform characterization of texture. Here, we use local
median energy, where the energy is defined as the square
of the coefficients as given in Eqn. 9.

energy=
1
M

ΣM
m=1ΣM

n=1|x(m,n)|2 (9)

The advantage of using median filter is that it preserves
the energy associated with texture between regions. Fur-
ther the low-frequency image produced by the wavelet
transform does not contain major texture information,
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and the most significant information of a texture often
appears in the middle-frequency channels. Considering
these facts, the present work extracts texture features us-
ing the luminance channel of the coefficients in LH and
HL decompositions. Finally feature vector generated for
every pixel in the image is 3-dimensional that includes
color value (chroma) and texture information in the form
energy values in LH and HL subbands (Elh,Ehl).

4. Genetic K-Means Clustering

Clustering has been effectively applied in a variety of
engineering and scientific disciplines. Cluster analysis or-
ganizes data (pattern) by abstracting underlying structure.
The grouping is done such that patterns within a group
(cluster) are more similar to each other than patterns be-
longing to different groups. Thus, organization of data
using cluster analysis employs some dissimilarity mea-
sure among the set of patterns. The dissimilarity mea-
sure is defined based on the data under analysis and the
purpose of the analysis. Various types of clustering algo-
rithms have been proposed to suit different requirements
and are broadly classified into hierarchical and partitional
algorithms based on the structure of abstraction [24, 9].
Hierarchical clustering algorithms construct a hierarchy
of partitions, represented as a dendrogram in which each
partition is nested within the partition at the next level in
the hierarchy. Partitional clustering algorithms generate
a single partition, with a specified or estimated number
of non overlapping clusters, of the data in an attempt to
recover natural groups present in the data. The simplest
and most popular partitional clustering algorithm is the
K-means algorithm (KMA). KMA is an appropriate tool
under the assumption that the clusters are hyperspheroidal
since distance measures are employed. However, real
data sets seldom approach this hyperspheroidal idealiza-
tion and the algorithm may converge to a suboptimal par-
tition with random initialization of centroids. The basic
idea of applying GA to clustering is to simulate the evolu-
tion process in nature and evolve clustering solutions from
one generation to the next. In contrast to the KMA, which
might converge to a local optimum, the genetic cluster-
ing algorithm is insensitive to the initial assignment and
mostly converges to the global optimum eventually [15].
Hence this work attempts to apply the GKA to cluster the

Figure 1: Chromosome Encoding for GA-based Wavelet Segmentation

feature vector of the medical image data, with the expec-
tation of global optimal clustering solution with higher
detection accuracy.

4.1. Chromosome Encoding

Fundamental to all GA’s is the encoding scheme for
representing the solutions of the corresponding optimiza-
tion problems. Normally, the method used to encode the
solutions depends not only on the problem to which the
GA is applied but also on the genetic operations used. In
the present study, the numerical feature values of all clus-
ter centers are encoded into a real-coded chromosome.
Each chromosome represents a clustering solution con-
sisting of centers for the given number of K clusters. An
example of chromosome representation is depicted in Fig.
1, in which the clustering solution has 5 cluster centers
with feature vector of three values. Each feature value
is randomly initialized and limited within lower and up-
per boundary of its possible values. For large and high-
dimensional data, this encoding is more scalable than the
encoding using the number of data patterns.

4.2. Fitness Function

The global searching ability of GA is utilized in the
present work to appropriately determine a fixed number
K of cluster centers in 2D Euclidean space. The TWCSE,
adopted as a clustering metric is defined as the sum of
the Euclidean distances of the pixels from their respective
cluster centers and can be given as follow for K clusters
Cl ,C2,C3, · · · ,Ck,

TWCS E(δ) = Σk
k=1ΣXiεCk‖Xi − Zk‖2
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Table 1: Optimization parameters for GA-based Wavelet Segmentation

Genetic operator Optimization Parameter
Initial Population 100 Chromosomes
Encoding Real Coded String
Fitness Function Minimize TCWSE
Selection Roulette Wheel Selection
Crossover K-point crossover with probability of 0.8
Mutation Three-point mutation with probability of 0.6

Zk =
ΣXiεCk Xi

|Ck| (10)

where |Ck| denotes the number of pixels inCk,
(Z1,Z2,Z3, · · · ,Zk) denotes the target cluster centers. In
this context, the objective of the proposed algorithm is
to find K optimal cluster centers to partition the N pat-
terns into user-defined K groups, such that this partition
minimizes the total within cluster square error (TWCSE)
defined as

O jective f unction(δ) = min(TWCS E(δ)) (11)

4.3. Crossover and Mutation
In the present study, 100 individual solutions (chromo-

somes) were selected for reproduction after intensive ex-
periments. The probability of selecting a particular solu-
tion increases with its fitness value, defined by Eqn. 11.
The cluster centers of the selected solutions are perturbed
to reduce the possibility of trapping in local optima. New
chromosomes are generated from these perturbed chro-
mosomes using crossover and mutation of genes. In
crossover, solutions (chromosomes) are paired according
to their similarity in fitness and within each solution pair,
the cluster centers are paired based on their closeness
in Euclidean distance. Then, a segment of one of the
three genes (either of the feature) of a cluster center is
swapped with the corresponding gene segment from the
paired cluster center. The same procedure is done for all
paired cluster centers. In genetic terms, this is called K-
point crossover. Mutation is achieved by perturbing each
of the three feature gene values within the allowed range
with high mutation rate of 0.6.

4.4. Convergence
The goal of employing a GA for optimizing cluster cen-

ters of k-means is to converge on a global optimal solution

for each feature through the possible genes for which the
TCWSE is minimized. The convergence criterion is thus
the minimum TCWSE, but since it is not knowna pri-
ori, it cannot be used to test whether the algorithm has
converged. Hence the common practice is to terminate
the GA after a pre-specified number of generations, and
then test the quality of the best members of the popula-
tion against the problem definition. In the present work
the maximum number of generations of 150. The genetic
parameters that were found to give optimal performance
are listed in Table 1.

Table 2: Pseudocode of GA-based Wavelet Segmentation

1. Apply DWF on image
2. Define 3D feature vector for each image pixel by

extracting the color feature from LL subband and texture
feature from HL and LH subband

3. Initialize genetic parameter and population with randomly
generated cluster centers

4. While ((TWCSE is not optimized){
for i = 1 to popSize do
Calculate the fitness value using Eqn (11)
Calculate the selection probability
Select parents and
Apply crossover & create offspring
Mutate offspring
end for
Replace the old population by the new one}

5. Cluster the feature space using the GA optimized centers
6. Find the edge map for the clustered image and superimpose

on the original image to determine the accuracy of the
proposed system

5. Results and Discussion

The potency of the proposed algorithm which is tabu-
lated in Table 2 was first investigated with functional MRI
data to determine its accuracy for brain tumor segmenta-
tion, as they are not discriminative enough when the ap-
pearance of tumor and normal tissue overlap. The promis-
ing results on fMRI encouraged the application of the pro-
posed algorithm for SPECT andin vivo EMR images. In
all these experiments, 9/7 biorthogonal wavelet decom-
position with the energy median in a window of size 9x9
were employed for feature characterization. Also, certain
colors were used to represent significant features in EMR

5



images. For example, the spin probe distribution is nor-
mally mapped to red in color.

5.1. Application to fMRI
This section evaluates the performance of the proposed

system for brain tumor segmentation on fMRI data. The
reference fMRI with metastatic brain tumor depicted in
column (A) of Fig. 2 was obtained from the open source
database. The image was collected using a 1.5 Tesla
Siemens Vision MRI scanner (Siemens AG, Erlangen,
Germany) while the patient was subjected to the task of
information storage and retrieval, thought, emotions, and
initiation of behavior. A total of 256 EPI volumes were
acquired using a T2 weighted gradient single-shot EPI se-
quence with TR= 1648ms, TE= 45ms, Flip Angle= 90
and FOV= 250 x 250 mm2. Each volume covered the
tumor and potential surgical corridors, consisting of 15
transverse slices of size 64 x 64 with a pixel size of ap-
proximately 3.91 x 3.91 mm2 and a slice thickness of 6
mm with no gaps.

Figure 2: Application to MR images for tumor studies

From visual inspection of Fig. 2, it is interesting to
notice that the proposed method produces better segmen-
tation results than the standard Kmeans-based method by
obviously discriminating the tumor and normal brain area
without using prior knowledge of anatomical structures.
On other hand, the inefficiency of the standard approach
can be evidenced by the misclassification of healthy tis-
sues as tumor region (shown in green). These advan-
tages of the proposed system are due to fact that the se-
lection of cluster centers is based on the optimization of
TWCSE. These results enabled the application of the pro-
posed GKA-based algorithm for SPECT brain perfusion
images to assess the cerebrovascular reserve and are de-
scribed in next section.

5.2. Application to SPECT images
This section assesses the performance of the proposed

system with images from brain perfusion SPECT to spot

out the region with prominent, normal and decreased ac-
tivity. The set of axial images of cerebral perfusion used
for evaluation were collected from Dartmouth-Hitchcock
medical center website [63] and are shown in column
(A) of Fig 3. The reference test images had been ac-
quired from a patient with left sided cerebrovascular ac-
cident (CVA) after the intravenous administration of ac-
etazolamide (Diamox) using Tc-99m ECD. For sake of
comparison, the performance of Kmeans-based segmen-
tation (column B) is depicted along with the response of
the proposed GA-based Kmeans segmentation (column
C) in Fig. 3. In these results the more prominent, nor-
mal and decreased region of brain perfusion is depicted
in red, green and blue color respectively. Also, the result
of binarization of edge map obtained by applying canny
operator on the segmented image (column C) is given in
column D. The column E shows the results of superim-
posing the contours (column C) over the corresponding
reference input image (column A). From visual inspec-

Figure 3: Application to SPECT brain perfusion images

tion of Fig. 3, it is interesting to notice that the proposed
method accurately discriminates the decreased perfusion
region to the left cortical hemisphere, including frontal,
parietal, temporal and occipital regions. Also it clearly
marks out the area of severe hypoperfusion in the right
parietal and superior temporal regions (reflects infracted
tissue). On other hand, the broad area of decreased per-
fusion shown in blue color in column B shows the limita-
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tion of the Kmeans-based approach. The advantage of the
proposed system is due to fact that the selection of clus-
ter centers is based on the optimization of TWCSE. Based
on these encouraging results application of the GA-based
Kmeans algorithm for feature identification in EMR to-
mograms is described in the next section.

5.3. Application to EMRI

One of the principal objectives of the development of
the proposed system was to study the time profile of up-
take and clearance of EMR imaging agents in mice tumor
models. Hence the integrated ROI identification system
was evaluated for its performance using in vivo murine
EMR images. Two different sets of images were used
for the validation. The first set consisting of a sequence
of temporal images depicting the renal clearance of the
imaging agent OXo63 and the other showing the uptake
and clearance of the imaging agent AMCPy in RIF tu-
mor present in one of the legs of a mouse. The details of
whole body and tumor imaging experiments are described
in [6, 7].

5.3.1. Renal Imaging
The input EMR images used to evaluate the perfor-

mance of the proposed ROI identification system are
shown in column A of Fig. 4. These images show the pro-
gressive accumulation of the spin probe in left and right
kidneys and the bladder of a C3H mouse after the injec-
tion of Oxo63 solution at 2.8, 9.0, and 18.0 min, respec-
tively. The results of the proposed algorithm for EMR
renal images are presented in Fig. 4 and aligned as in Fig.
3. It can be readily seen from Fig. 4 that the proposed
method taking the advantage of the feature values, texture
and color, is able to process the intensities of spin probe
distribution in various mouse organs with the recognized
optimal centers of GKA-based algorithm. On contrary,
the inability of standard k-means to accurately reveal the
spin probe distribution can be noticed especially when
comparing red and green labels in column B. This is due
to the fact that standard k-means is sensitive to selection
of initial partitions and converges to a local minimum of
the criterion function value. Having identified that the op-
timal segmentation results correspond to the images given
in column C, we proceed to use these images to derive the
kinetics of clearance of the imaging agents from the three

Figure 4: Application to EMR images for pharmacokinetic studies

Figure 5: Visualization of the clearance of imaging agent as evaluated
from ROI identified by the proposed system

ROIs identified, viz: the left and right kidneys and the
bladder. Visualization of the renal clearance of the imag-
ing agent is depicted in Fig. 5. The signal intensity corre-
sponds to the average pixel count computed from the three
ROIs, left kidney (A), right kidney (B) and the bladder
(C). The signal intensity corresponds to the average pixel
count computed from the three ROIs, left kidney (——),
right kidney (. . . . . .), and bladder (− · · − ··) .

5.3.2. Uptake and Clearance of Imaging Agent in Tumor
One of the major aims of the present system is to facil-

itate the recognition of features of interest in EMR tomo-
grams. Because of its capability to measure the pO2 and
redox status in tumor of animal models, EMRI is fast be-
coming a functional imaging modality in cancer research.
However, segmentation of tumor in EMR tomograms is
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a difficult task, because the intensity levels vary greatly
across different regions due to the heterogeneity in tu-
mors.

In order to examine the tumor identification by the pro-
posed algorithm, EMR image of a mouse with RIF tumor
in its right hind leg was considered as the input image and
results are summarized in Fig. 6. These images show the
distribution of spin probe AMCPy in the normal and tu-
mor legs of the mouse at 1, 5, and 15 min after the infusion
of the spin probe by tail-vein cannulation. The description
of rows and columns is the same as that for Fig.2.

Figure 6: Application to EMR images for tumor studies

From Fig. 6, it can be observed that the proposed ap-
proach which employs the color and texture features ex-
tracted from wavelet framework has resulted in better seg-
mentation of the tumor (Fig. 6(C)). Further it can be ev-
idenced that the proposed method is able to vividly dis-
criminate the imaging agent distribution in tumor bearing
right hind leg and the normal leg. This clearly demon-
strates the advantages of the proposed approach, which
adopts GA to intelligently determine the optimal cluster
centers for each area of the image and then segment the
image accordingly. Alternatively, it can be noticed from
red and green labels in Fig. 6(B) that the standard ap-
proach is incapable to distinguish various regions of the
image that leads to significant misclassification and mean-
ingless results

5.4. Quality Measures

Accurate segmentation plays an important role in med-
ical image processing, because an error in this process

Table 3: Error measures for SPECT images

Brain MRI Error Value
(in Fig 2) Kmeans-based ROI GKA-based ROI

(in Column B) (in Column C)
Row 1 13.2 0.33

Brain SPECT Kmeans-based ROI GKA-based ROI
(in Fig. 3) (in Column B) (in Column C)
Row 1 5.2 0.14
Row 2 4.7 0.12
Row 3 3.3 0.13
Row 4 2.6 0.12

Renal EMRI Kmeans-based ROI GKA-based ROI
(in Fig. 4) (in Column B) (in Column C)
Row 1 3.4 0.21
Row 2 7.1 0.16
Row 3 11.2 0.13

Tumor EMRI Kmeans-based ROI GKA-based ROI
(in Fig. 6) (in Column B) (in Column C)
Row 1 7.3 0.16
Row 2 11.8 0.12
Row 3 4.2 0.11

can lead to an error in diagnostic as well as treatment
processes. Hence the performance of the proposed algo-
rithm is also evaluated quantitatively using the common
TWCSE measurement. The error factor was computed
using Eqn. 10. The error measurement computed for all
the above experiments are collected in Table. 3.

Thus from visual and quantitative evaluations, it can
be inferred that GKA-based approach performs intelli-
gently well in accurately identifying the ROI for all kinds
of functional medical images. Nonetheless, the GKA-
based method may have less advantage in terms of com-
putational overhead when compared to the conventional
Kmeans-based method. However, this may not be a se-
rious problem, because in many applications the medical
image segmentation is an off-line process. But, this may
pose problem when real time dynamic imaging is per-
formed. Under such circumstances, this problem may be
addressed by taking advantage of the parallel computing
nature of GA.
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6. Conclusion

This paper presents an intelligence-based scheme for
ROI identification incorporating GA and Kmeans within
the multi-resolution framework. The proposed approach
provides a pathway for concise and precise identifica-
tion of ROI in medical image withouta priori knowl-
edge of the anatomic structure of interest. The feasibility
of the proposed scheme was tested with functional med-
ical images for tumor and pharmacokinetic studies. Re-
sults demonstrated the potency of the system in accurately
identifying the pathological tissues with fMRI and regions
of severe hypoperfusion with SPECT perfusion brain im-
ages. Encouraging results, motivated to evaluate the new
approach for newly evolving modality, EMRI. With renal
imaging, the approach accurately outlined the spin den-
sity distribution in bladder and kidney. In murine tumor
imaging, the proposed approach reveals its capability in
marking out the differences in perfusion of the imaging
agent between the normal and tumor legs.
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