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Abstract

Segmentation forms the onset for image analysis especially for medical images, making any abnormalities in tissues
distinctly visible. Possible application includes the detection of tumor boundary in SPECT, MRI or electron MRI
(EMRI). Nevertheless, tumors being heterogeneous pose a great problem when automatic segmentation is attempted
to accurately detect the region of interest (ROI). Consequently, it is a challenging task to design an automatic segmen-
tation algorithm without the incorporation afpriori knowledge of an organ being imaged. To meet this challenge,
here we propose an intelligence-based approach integrating evolutionary k-means algorithm within multi-resolution
framework for feature segmentation with higher accuracy and lower user interaction cost. The approach provides
several advantages. First, spherical coordinate transform (SCT) is applied on original RGB data for the identification
of variegated coloring as well as for significant computational overhead reduction. Second the translation invariant
property of the discrete wavelet frames (DWF) is exploited to define the features, color and texture using chromaticity
of LL band and luminance of LH and HL band respectively. Finally, the genetic algorithm based K-means (GKA),
which has the ability to learn intelligently the distribution offdrent tissue types without any prior knowledge, is
adopted to cluster the feature space with optimized cluster centers. Experimental results of proposed algorithm using
multi-modality images such as MRI, SPECT, and EMRI are presented and analyzed in terms of error measures to
verify its effectiveness and feasibility for medical applications.

Key words: Color image segmentation; Medical image segmentation; Spherical coordinate transform; K-means
clustering; Genetic algorithm; Wavelet features; Wavelet frames.

1. Introduction key problem is no single unified segmentation scheme ex-
ists to yield acceptable results forfldgirent types of med-
Accurate delineation of ROI and extraction of quantitgeal images. Earlier studies have shown that combining
tive information plays an instrumental role in medical dieolor and texture features would be of significant bene-
agnosis and follow-up assessment. Despite numerousfigfin distinguishing diferent classes of pathological tis-
forts by the medical imaging community, accurate and redes [13, 11, 20]. Nonetheless, tieetiveness of texture
producible segmentation of ROIs and characterizationgfaracterization is bound by the type of algorithm that is
abnormalities still pose challenging andfdiult task. The used to extract meaningful features. Recently, Multi-scale
filtering methods have shown significant potential for tex-
ture description, where advantage of the spatial-frequency
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[1, 2]. Wavelet transform provides good multi-resolutionision applications are: the high correlation among RGB
analytical tool for texture characterization analysis witthannels, the representation of RGB is not very close to
high accuracy rate. Most of the previous works on waveléie way humans perceive colors and it is not perceptu-
transform have focused on dyadic wavelet transform thadly uniform. The analysis of the pixel color distribution
are sensitive to translation-variance and may not be @e-a color space is not restricted to the RGB space. In-
sirable in the context of texture characterization [19, 4)eed, there exists a large number of color spaces which
Therefore, the work presented here extracts texture fean be used to represent the color of the pixels. But, since
tures using discrete wavelet frames [22] to providethe performance of an image segmentation procedure is
translation-invariant feature description. known to depend on the choice of the color space. Many
Another key problem in clinical medicine is that nauthors have tried to determine the color spaces which
complete automatic segmentation exists to free the phyaie more appropriate for their specific color image seg-
cian from burden of manual labeling and to provide quamentation problems. In this light, SCT have shown good
titative measurements to aid in diagnosisft&ient com- performance in medical applications such as skin lesion
plex models ofa priori information about the expecteddentification [10] and in tumor detection [6]. Therefore,
contents of the image is widely used [21, 23, 3]. Thee present work, employs SCT on RGB color space of
applied a priori knowledge consists of a combinationthe input image and decouples the brightness information
of anatomicgphysiological information of the image adrom the color information. The equations relating SCT
well as information about the image formation processimensions to RGB components are given as,
The more the contributed model information is verifiable,

the more likely is the success of automation of the seg- L = VRR+G2+PB? 1)
mentation process. Unfortunately, the model information . B

is often too complex aridr not exact so that a completely d(Angleh = arccos[t] @)
automatic extraction is tficult to realize. To address this . R

issue, the present approach incorporates GKA [9, 15] into b*(AngleB = arccos{m (3)

the segmentation procedure to learn intelligently the fea-
ture image space and identify the optimal cluster centers.
The total within cluster square error (TWCSE) forms th& Wavelet Frames for Feature Extraction
basis of an objective function to optimize cluster centers
of k-means for successful ROI identification. The feasi- The statistical approaches for feature characterization
bility of the proposed approach for medical application igstrict themselves to the analysis of spatial interactions
demonstrated with MRI and SPECT images. Also sincger relatively small neighborhoods [8]. As a conse-
our interest is towards the enhancement of electron M@lence, their performance is good for the class of so-
(EMRI), a fast emerging functional imaging modality focalled micro-features. Multi-scale approaches try to over-
noninvasive imaging of free radicals, as a viable tecbeme the intrinsic limitations of a single-scale analysis of
nology for biomedical research and clinical applicatioriee texture problem. Gabor transforms is widely used to
[6, 7]. The proposed algorithm is evaluated with EMRI aéxtract feature vectors, which have shown significant po-
small animals for pharmacokinetic and tumor studies. tential for texture classification and segmentation [12, 5].
These approaches are supported by experiments on mam-
malian visual systems, which indicate a reliance of the
visual system on spatial-frequency analysis. The poten-
The advent of functional imaging techniques hdml disadvantage of Gabor filtering is its computational
opened a wide window for color image analysis. In genverhead, especially for the evaluation of low-frequency
eral, the red-green-blue (RGB) space is used in image ptomponents. In addition, the outputs of Gabor filter banks
cessing research, dictated primarily by the availability afe not mutually orthogonal, which may result in a signifi-
such data as they are produced by most color image cegat correlation between features. Most of these problems
turing devices. Drawbacks in the use of RGB in computean be avoided using wavelet transform, which provides a

2. Color Space Analysis



precise and unifying framework for the analysis and charere the first to propose a compact color representation
acterization of a signal at flierent scales. in terms of dominant colors for image segmentation and
The wavelet transform downsamples the signal and tietrieval. There are number of approaches for extracting
length of the decomposed signal is reduced. Thereftihe dominant colors. One such approach is to apply low-
the intra-scale and inter-scale fusion schemes for unsugmss filtering on the original image to obtain the average
vised texture segmentation, should be taken into accouaator within the squared window as well to eliminate the
to attain the satisfactory results. In order to overcome tlsisurious pixels within uniform regions. To this fact, the
and to obtain more complete characteristic of the analyagdrk presented here adopts DWF to obtain the similar re-
signal, an overcomplete wavelet decomposition is needrdt with less computational complexity and uses the chro-
in which the output of the filter banks is not subsanmaticity channels (a, b) of LL band to define the color
pled. Unser [22] proposed the overcomplete wavelet rdpatures as follows,
resentation, DWF by incorporating redundant information
to yield a translation-invariant description of texture fea- chroma= Va® + b? (8)
tures. The main advantages of the wavelet frames are that ]
it focuses on scale and orientation texture features and-#- Texture Feature Extraction
decomposes the image into orthogonal components. Thigexture is the discriminating information thatidiren-
property yields a better estimation of texture statistics atidtes normal from abnormal lesions. Since texture is es-
more detailed characterization at region boundaries. DWéntially a multi-scale phenomenon, multi-resolution ap-
decompositions are calculated by successive 1D procg¥eaches perform well for texture analysis. A charac-
ing along the rows and columns of the image with twderization of texture is usually based on the local infor-

scale relation defined as, mation that appears within a neighborhood distribution.
Recent studies have come to the conclusion that a spa-

hisa(K) = [hly2 = hi(k) (4) tial/frequency representation, which preserves both global

gi1(k) = [dly2 = hi(K) (5) and local information, is adequate for the characterization

of texture. Since wavelet transfornffers a tool for spa-
where notation.];, denotes the upsampling by a factor afal/frequency representation, wavelet frame representa-
m. The factor of one iteration is more or less to dilate thidn of wavelet transform are employed for spatial texture
filtersh; andg;. Each step involves a convolution with thgeature extraction [14, 22, 17]. Such representations is
basic filters h and g, which are expanded by inserting aflso proposed in the present study because they are more
propriate number of zeros between taps. The complexigbust, sparse, and can have greater flexibility in repre-
of this algorithm is same to all iterations and proportiongknting the structure of the input data.

to the number of samples. The most commonly used features for texture analysis
in the context of multi-scale frequency decompositions is
Sea(k) = [hlyz2 = si(k) (6) the energy of the subband dheients [17]. The cof-
dii(K) = [dl2 *s(K) (7) cients are quite sparse. Therefore, it is necessary to per-
form some type of window operation to obtain a more
3.1. Color Feature Extraction uniform characterization of texture. Here, we use local

Most of the existing color extraction techniques af@edian energy, where the energy is defined as the square
based on the color image histogram [16, 17]. Even thoughthe codficients as given in Eqn. 9.
such techniques have been quite successful in given set- 1
tings, they have notable shortcomings. First, the his- energy= Mzr’}"hlzr'\]":ﬂx(m, n)|? 9)
togram does not incorporate any spatial information. Sec-
ond, the color histogram is too finely quantized in coldrhe advantage of using median filter is that it preserves
space, and hence does not take into consideration the faetenergy associated with texture between regions. Fur-
that the human visual system can only perceive a few ctiler the low-frequency image produced by the wavelet
ors at a time. To combat these problems, Ma et al [18hnsform does not contain major texture information,



and the most significant information of a texture ofte Gentes for Slster 2 Canter for luster<5
. . S s I
appears in the middle-frequency channels. Consider || e =
these facts, the present work extracts texture features [ ] ] ] [TT] LTI T ]
ing the luminance channel of the dheients in LH and : ’
HL decompositions. Finally feature vector generated fi
every pixel in the image is 3-dimensional that include
color value (chroma) and texture information in the forr
energy values in LH and HL subbantﬁrﬁ Ehl)- Z5,-Center for feature 1 (color from LL band) in cluster 5 gene

Zs,-Center for feature 2 (texture from LH band) in cluster 5 Zsy

Zs3-Center for feature 2 (texture from HL band) in cluster 5

Center for cluster -1 Center for cluster - 4

Center for cluster -3

4. Genetic K-Means Clustering _ _ _
Figure 1: Chromosome Encoding for GA-based Wavelet Segmentation

Clustering has beenffectively applied in a variety of

engineering and scientific disciplines. Cluster analysis @gature vector of the medical image data, with the expec-

ganizes data (pattern) by abstracting underlying structuggion of global optimal clustering solution with higher
The grouping is done such that patterns within a grodetection accuracy.

(cluster) are more similar to each other than patterns be-

longing to diferent groups. Thus, organization of datg 1. chromosome Encoding

using cluster analysis employs some dissimilarity mea- L )

sure among the set of patterns. The dissimilarity meaFUndamental to all GAs is the encoding scheme for
sure is defined based on the data under analysis andrmtgesentmg the solutions of the corresponding optimiza-
purpose of the analysis. Various types of clustering algi2" Problems. Normally, the method used to encode the
rithms have been proposed to suiffeient requirementsSOIU_t'ons erends not only on the problem .to which the
and are broadly classified into hierarchical and partitionﬁfo‘ is applied but also on thg genetic operations used. In
algorithms based on the structure of abstraction [24, g]g present study, the numencal feature values of all clus-
Hierarchical clustering algorithms construct a hierarch§’ Centers are encoded into a real-coded chromosome.
of partitions, represented as a dendrogram in which edcfich chromosome represents a clustering solution con-
partition is nested within the partition at the next level ifiStng of centers for the given number of K clusters. An
the hierarchy. Partitional clustering algorithms genera%"?lmple, of chromosome represgntaﬂon is depicted in Fig.
a single partition, with a specified or estimated numb\]er_ in which the clustering solution has 5 cluster centers
of non overlapping clusters, of the data in an attempt%th feature _v_e(_:tqr of three_ values._ Each feature value
recover natural groups present in the data. The simplisfandomly initialized and limited within lower and up-
and most popular partitional clustering algorithm is tHET Poundary of its possible values. For large and high-

K-means algorithm (KMA). KMA is an appropriate too|dimensional data, this encoding is more scalable than the

under the assumption that the clusters are hyperspheroﬁf}ﬁOding using the number of data patterns.

since distance measures are employed. However, real )
data sets seldom approach this hyperspheroidal ideali2e- Fitness Function

tion and the algorithm may converge to a suboptimal par-The global searching ability of GA is utilized in the

tition with random initialization of centroids. The basigresent work to appropriately determine a fixed number
idea of applying GA to clustering is to simulate the evolu of cluster centers in 2D Euclidean space. The TWCSE,
tion process in nature and evolve clustering solutions fragflopted as a clustering metric is defined as the sum of
one generation to the next. In contrast to the KMA, whidhe Euclidean distances of the pixels from their respective

might converge to a local optimum, the genetic clustetuster centers and can be given as follow for K clusters
ing algorithm is insensitive to the initial assignment ang,,C,,Cs, - -, Cy,

mostly converges to the global optimum eventually [15].
Hence this work attempts to apply the GKA to cluster the TWCSHES) = I Zxec X —ZdP



Table 1: Optimization parameters for GA-based Wavelet Segmentat'for each featlflr.e t.hrOUQh the pOSSIble geneg fo.r WhICh the
WSE is minimized. The convergence criterion is thus

Genetic operator _ Optimization Parameter the minimum TCWSE, but since it is not knovenpri-
Initial Population 100 Chromosomes ori, it cannot be used to test whether the algorithm has
Encoding Real Coded String converged. Hence the common practice is to terminate
Fitness Function Minimize TCWSE the GA aft ified b ; ti d
Selection Roulette Wheel Selection e arer a pre_—speC| Ied number of generations, an
Crossover K-point crossover with probability of 0.8 then test the quality of the best members of the popula-
Mutation Three-point mutation with probability of 0.6  tion against the problem definition. In the present work
the maximum number of generations of 150. The genetic
parameters that were found to give optimal performance
Txec, XK are listed in Table 1.
Z = —— (20)
ICxl
where |C,| denotes the number of pixels i€y Table 2: Pseudocode of GA-based Wavelet Segmentation

(Z.1, 25,73, , Z) de.not.es the target cluster centgrs. [n T Apply DWF on image

this context, the objective of the proposed algorithm iS 2. Define 3D feature vector for each image pixel by

to find K optimal cluster centers to partition the N pat extracting the color feature from LL subband and texture
terns into user-defined K groups, such that this partitiol feature from HL and LH subband

. L 3. Initialize genetic parameter and population with randomly
minimizes the total within cluster square error (TWCSE generated cluster centers

>

defined as 4. While (TWCSE is not optimized)
L . . fori =1 to popSize do
Ojective functiofy) = min(TWCS K9)) (11) Calculate the fitness value using Eqn (11)
Calculate the selection probability
4.3. Crossover and Mutation Select parents and

In the present study, 100 individual solutions (chromo Apply crossover & createftspring
Mutate dfspring

somes) were selected for reproduction after intensive eX-  enq for

periments. The probability of selecting a particular solu Replace the old population by the new gne
tion increases with its fitness value, defined by Eqn. 11.5-  Cluster the feature space using the GA optimized centes
The cluster centers of the selected solutions are perturbe ;']”tc:];hsr%?r?ael %agg?{;Z‘Ziﬁﬁffh'énzgfu?;fys;ﬂﬁ:m pose
to reduce the possibility of trapping in local optima. New proposed system

chromosomes are generated from these perturbed chro-

mosomes using crossover and mutation of genes. In

crossover, solutions (chromosomes) are paired according

to their similarity in fithess and within each solution pair,

the cluster centers are paired based on their closerfesfesults and Discussion

in Euclidean distance. Then, a segment of one of the

three genes (either of the feature) of a cluster center isThe potency of the proposed algorithm which is tabu-
swapped with the corresponding gene segment from thted in Table 2 was first investigated with functional MRI
paired cluster center. The same procedure is done fordgfa to determine its accuracy for brain tumor segmenta-
paired cluster centers. In genetic terms, this is called #en, as they are not discriminative enough when the ap-
point crossover. Mutation is achieved by perturbing eapkarance of tumor and normal tissue overlap. The promis-
of the three feature gene values within the allowed ranigg results on fMRI encouraged the application of the pro-

with high mutation rate of 0.6. posed algorithm for SPECT arial vivo EMR images. In
all these experiments,/B biorthogonal wavelet decom-
4.4. Convergence position with the energy median in a window of size 9x9

The goal of employing a GA for optimizing cluster cenwere employed for feature characterization. Also, certain
ters of k-means is to converge on a global optimal solutiaolors were used to represent significant features in EMR



images. For example, the spin probe distribution is namut the region with prominent, normal and decreased ac-

mally mapped to red in color. tivity. The set of axial images of cerebral perfusion used
o for evaluation were collected from Dartmouth-Hitchcock
5.1. Application to fMRI medical center website [63] and are shown in column

This section evaluates the performance of the propog@d of Fig 3. The reference test images had been ac-
system for brain tumor segmentation on fMRI data. Thgiired from a patient with left sided cerebrovascular ac-
reference fMRI with metastatic brain tumor depicted icident (CVA) after the intravenous administration of ac-
column (A) of Fig. 2 was obtained from the open souragazolamide (Diamox) using Tc-99m ECD. For sake of
database. The image was collected using a 1.5 Testenparison, the performance of Kmeans-based segmen-
Siemens Vision MRI scanner (Siemens AG, Erlangetation (column B) is depicted along with the response of
Germany) while the patient was subjected to the tasktbe proposed GA-based Kmeans segmentation (column
information storage and retrieval, thought, emotions, a@j in Fig. 3. In these results the more prominent, nor-
initiation of behavior. A total of 256 EPI volumes werenal and decreased region of brain perfusion is depicted
acquired using a T2 weighted gradient single-shot EPI $e+ed, green and blue color respectively. Also, the result
guence with TR= 1648ms, TE= 45ms, Flip Angle= 90 of binarization of edge map obtained by applying canny
and FOV= 250 x 250 mm2. Each volume covered theperator on the segmented image (column C) is given in
tumor and potential surgical corridors, consisting of I&®lumn D. The column E shows the results of superim-
transverse slices of size 64 x 64 with a pixel size of apesing the contours (column C) over the corresponding
proximately 3.91 x 3.91 mm2 and a slice thickness ofréference input image (column A). From visual inspec-
mm with no gaps.

Figure 2: Application to MR images for tumor studies

From visual inspection of Fig. 2, it is interesting tc
notice that the proposed method produces better segn
tation results than the standard Kmeans-based methoc
obviously discriminating the tumor and normal brain are
without using prior knowledge of anatomical structure:,
On other hand, the ifigciency of the standard approact
can be evidenced by the misclassification of healthy ti
sues as tumor region (shown in green). These advan-
tages of the proposed system are due to fact that the se- Figure 3: Application to SPECT brain perfusion images
lection of cluster centers is based on the optimization of
TWCSE. These results enabled the application of the ptimn of Fig. 3, it is interesting to notice that the proposed
posed GKA-based algorithm for SPECT brain perfusionethod accurately discriminates the decreased perfusion
images to assess the cerebrovascular reserve and areeggen to the left cortical hemisphere, including frontal,

¢§°.

A

B C D E

scribed in next section. parietal, temporal and occipital regions. Also it clearly
_ marks out the area of severe hypoperfusion in the right
5.2. Application to SPECT images parietal and superior temporal regions (reflects infracted

This section assesses the performance of the propaseslie). On other hand, the broad area of decreased per-
system with images from brain perfusion SPECT to spiision shown in blue color in column B shows the limita-



tion of the Kmeans-based approach. The advantage of

proposed system is due to fact that the selection of clt | Q

ter centers is based on the optimization of TWCSE. Bas
on these encouraging results application of the GA-bas
Kmeans algorithm for feature identification in EMR to:

mograms is described in the next section. 2 m @‘} C) i
5.3. Application to EMRI

One of the principal objectives of the development ¢3 C @ @
B

the proposed system was to study the time profile of u
take and clearance of EMR imaging agents in mice tum A
models. Hence the integrated ROI identification system
was evaluated for its performance using in vivo murineFigure 4: Application to EMR images for pharmacokinetic studies
EMR images. Two dferent sets of images were used
for the validation. The first set consisting of a sequen
of temporal images depicting the renal clearance of t
imaging agent OXo063 and the other showing the upta
and clearance of the imaging agent AMCPy in RIF tt
mor present in one of the legs of a mouse. The details
whole body and tumor imaging experiments are describ
in [6, 7].

C D E

5.3.1. Renal Imaging a :
The input EMR images used to evaluate the perfc 8 5 7 8 11 13 16 17

mance of the proposed ROI identification system a— Tmelibi

shown in column A of Fig. 4. These images show the pro- o o

gressive accumulation of the spin probe in left and.rigﬁfr‘:;gi igg‘iﬁ:ggﬁ?’lﬁé g:f)pcclgzaagjgtec’;'mag'”g agent as evaluated

kidneys and the bladder of a C3H mouse after the injec-

tion of Ox063 solution at 2.8, 9.0, and 18.0 min, respec-

tively. The results of the proposed algorithm for EMROIs identified, viz: the left and right kidneys and the

renal images are presented in Fig. 4 and aligned as in Fatpdder. Visualization of the renal clearance of the imag-

3. It can be readily seen from Fig. 4 that the proposé#ty agent is depicted in Fig. 5. The signal intensity corre-

method taking the advantage of the feature values, textap®nds to the average pixel count computed from the three

and color, is able to process the intensities of spin proB®ls, left kidney (A), right kidney (B) and the bladder

distribution in various mouse organs with the recogniz€@). The signal intensity corresponds to the average pixel

optimal centers of GKA-based algorithm. On contrargount computed from the three ROIs, left kidney (—),

the inability of standard k-means to accurately reveal thight kidney (... .. ), and bladder< - - - ) .

spin probe distribution can be noticed especially when

comparing red and green labels in column B. This is dbe3.2. Uptake and Clearance of Imaging Agent in Tumor

to the fact that standard k-means is sensitive to selectiorOne of the major aims of the present system is to facil-

of initial partitions and converges to a local minimum dfate the recognition of features of interest in EMR tomo-

the criterion function value. Having identified that the oggrams. Because of its capability to measure the pO2 and

timal segmentation results correspond to the images givedox status in tumor of animal models, EMRI is fast be-

in column C, we proceed to use these images to derive tmening a functional imaging modality in cancer research.

kinetics of clearance of the imaging agents from the threlwever, segmentation of tumor in EMR tomograms is




a difficult task, because the intensity levels vary greatly
across dterent regions due to the heterogeneity in tu-

Table 3:

Error measures for SPECT images

mors. Brain MRI Error Value
In order to examine the tumor identification by the pro-  (inFig 2) Kmeans-based RO| GKA-based ROI
posed algorithm, EMR image of a mouse with RIF tumor (in Column B) (in Column C)
A ) . . . Row 1 13.2 0.33
in its right hind leg was considered as the input image and
results are summarized in Fig. 6. These images show the ~Brain SPECT| Kmeans-based RO| GKA-based ROI
distribution of spin probe AMCPy in the normal and tu- _(in Fig. 3) (in Column B) (in Column C)
mor legs of the mouse at 1, 5, and 15 min after the infusion ~ Row1 52 0.14
of the spin probe by tail-vein cannulation. The description 2% 2 ar 0.12
pinp yla - _ p Row 3 3.3 0.13
of rows and columns is the same as that for Fig.2. Row 4 26 0.12
Renal EMRI Kmeans-based RO| GKA-based ROI
(in Fig. 4) (in Column B) (in Column C)
Row 1 3.4 0.21
Row 2 7.1 0.16
Row 3 11.2 0.13
Tumor EMRI | Kmeans-based RO| GKA-based ROI
(in Fig. 6) (in Column B) (in Column C)
Row 1 7.3 0.16
Row 2 11.8 0.12
Row 3 4.2 0.11

Figure 6: Application to EMR images for tumor studies

can lead to an error in diagnostic as well as treatment

From Fig. 6, it can be observed that the proposed ap-
; rocesses. Hence the performance of the proposed algo-
proach which employs the color and texture features ex- "~ o :
rithm is also evaluated quantitatively using the common

tracted from wavelet framework has resulted in betterseﬂNCSE measurement. The error factor was computed

mentation of the tumor (Fig. 6(C)). Further it can be eYIsing Egn. 10. The error measurement computed for all

idenced that the proposed method is able to vividly d'ﬁ{e above experiments are collected in Table. 3
criminate the imaging agent distribution in tumor bearing P T

right hind leg and the normal leg. This clearly demon-
strates the advantages of the proposed approach, wty’

adopts ?A 0 w;}telhgent;yr(]det.ermme th; Eptlmal clust ntly well in accurately identifying the ROI for all kinds
centers for each area of the image and then segment functional medical images. Nonetheless, the GKA-

image accordingly. Alternatively, it can be noticed frorBased method may have less advantage in terms of com-

red ar;]d_ green Iatk))lels ";.F'.g' 6.(?]) thé.lt the stgndarc: jtational overhead when compared to the conventional
proach Is incapable to distinguish various regions of t eans-based method. However, this may not be a se-

image that leads to significant misclassification and meai,s problem, because in many applications the medical
ingless results

image segmentation is aifdine process. But, this may
pose problem when real time dynamic imaging is per-
formed. Under such circumstances, this problem may be

Accurate segmentation plays an important role in megddressed by taking advantage of the parallel computing
ical image processing, because an error in this processure of GA.

hus from visual and quantitative evaluations, it can
Enferred that GKA-based approach performs intelli-

5.4. Quality Measures



6. Conclusion

[6]

This paper presents an intelligence-based scheme for
ROI identification incorporating GA and Kmeans within
the multi-resolution framework. The proposed approach
provides a pathway for concise and precise identifica-
tion of ROI in medical image withouh priori knowl- 7
edge of the anatomic structure of interest. The feasibility
of the proposed scheme was tested with functional med-
ical images for tumor and pharmacokinetic studies. Re-
sults demonstrated the potency of the system in accurately
identifying the pathological tissues with fMRI and regions[g]
of severe hypoperfusion with SPECT perfusion brain im-
ages. Encouraging results, motivated to evaluate the new
approach for newly evolving modality, EMRI. With renal
imaging, the approach accurately outlined the spin derj9]
sity distribution in bladder and kidney. In murine tumor
imaging, the proposed approach reveals its capability in
marking out the dierences in perfusion of the imaging

agent between the normal and tumor legs.

[10]

References

[1]

[2]

3]

[4]

[5]

K. W. Abyoto, S. J. Wirdjosoedirdjo, and T. Watan-
abe. Unsupervised texture segmentation using mi#i]
tiresolution analysis for feature extractiod. Tokyo
Univ. Inform. Sci. 2:49-61, 1998.

G. Boccignonea, P. Napoletano, V. Caggiano, and
M. Ferraro. A multiresolution diused expectation-[12]
maximization algorithm for medical image segmen-
tation. Computers in Biology and Medicin87:83—

96, 2007.

13]

O. Colliot, O. Camara, and I. Bloch. Integration o[f
fuzzy spatial relations in deformable modelsapplica-
tion to brain mri segmentatiofPattern Recognition
39:1401-1414, 2006.

G. Van deWouwer, P. Scheunders, S. Livens, and
D. Van Dyck. Wavelet correlation signatures fokL
color texture characterizatiorRattern Recognition
32:443-451, 1999.

D. Dun, W. Higgins, and J. Wakeley. Texture seg-
mentation using 2-D gabor elementary functionfl5]
IEEE Trans. Patt. Anal. Mach. Intell16:130-149,
1994,

D. C. Durairaj, M. C. Krishna, and R. Murugesan.
Integration of color and boundary information for
improved region of interest identification in elec-
tron magnetic resonance imag€amputerized Med
Imaging and Graphics28:445-452, 2004.

D. C. Durairaj, M. C. Krishna, and R. Murugesan. A
neural network approach for image reconstruction in
electron magnetic resonance tomograp@pmput.
Biol. Med, 37:1492-1501, 2007.

L. Ganesan and P. Bhattacharyya. A new statisti-
cal approach for micro texture descriptioRattern
Recognition Lettersl6:471-478, 1995.

O. Hall, I. Barak, and J. C. Bezdek. Clustering with
a genetically optimized approackEE Trans. Evo.
Comput, 3:103-112, 1999.

G. A. Hance, S. E. Umbaugh, R. H. Moss, and W. V.
Stoeckers. Unsupervised color image segmentation
with application to skin tumor borderdEEE Eng.
Med. Biol 15:104-111, 1996.

H. Handels and T. Ross. Feature selection for op-
timized skin tumor recognition using genetic algo-
rithms. Artificial Intelligence in Medicing16:283—
297, 1999.

A. K. Jain and F. Farrokhnia. Unsupervised texture
segmentation using gabor filter®attern Recogni-
tion, 24:1167-1186, 1991.

S. A. Karkanis, D. K. lakovidis, D. E. Maroulis,
D. A. Karras, and M. Tzivras. Computer-aided
tumor detection in endoscopic video using color
wavelet featuredEEE Trans. Inf. Technol. Biomed.
7:141-152, 2003.

4] S. C. Kimand T. J. Kang. Texture classification and

segmentation using wavelet packet frame and gaus-
sian mixture modelPattern Recognition40:1207—
1221, 2007.

K. Krishna and M. N. Murty. Genetic k-means al-
gorithm. IEEE Trans. on Systems, Man, and Cyber-
netics - Part B: Cybernetic®29:433-439, 1999.



[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

N. Lian, V. Zagorodnov, and Y. Tan. Color image
denoising using wavelets and minimum cut analysis.
IEEE Signal Processing Lettet2:741-744, 2005.

S. Liapis and G. Tziritas. Color and texture image
retrieval using chromaticity histograms and wavelet
frames. IEEE Trans. on Multimedia6:676—-686,
2004.

W. Y. Ma, Y. Deng, and B. S. Manjunath. Tools for
texturgcolor based search of imagd$uman Vision
and Electronic Imaging Il,Proc. SPIE3016:496—
507, 1997.

A. Sengur. Wavelet transform and adaptive neuro-
fuzzy inference system for color texture classifica-
tion. Expert Systems with Applicatign34:2120—
2128, 2008.

A. B. Tosuna, M. Kandemira, C. Sokmensuerb, and
C. Gunduz-Demira. Object-oriented texture analysis
for the unsupervised segmentation of biopsy images
for cancer detectiorPattern Recognitiond2:1104—
1112, 2009.

A. Tsai, A. Yezzi, W. Wells, C. Tempany, D. Tucker,
A. Fan, W. E. Grimson, and A. Willsky. A shape-
based approach to the segmentation of medical im-
agery using level sets.IEEE Trans. Med. Imag.
22:137-154, 2003.

M. Unser. Texture classification and segmentation
using wavelet framedEEE Trans. Image Process.
4:1549-1560, 1995.

Wang and W. G. Wee. Deformable contour method:
A constrained optimization approacint. J. Com-
put. Vision 59:87-108, 2004.

R. Xu and D. Wunsch. Survey of clustering algo-
rithms. IEEE Trans. on Neural Network46:645—
678, 2005.

10



