
A Mesh Front Iterator for VTK
Release 0.00

David Doria

April 9, 2010

Rensselaer Polytechnic Institute, Troy NY

Abstract

Region growing is a technique that can be used to propagate information over a mesh. We provide an
iterator that can be used with vtkPointSet subclasses to traverse a mesh in a reasonable fashion. A “front”
is emanated from a selected starting vertex, and the iterator provides the ID of the next vertex on this
front.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3162]
Distributed under Creative Commons Attribution License

Contents

1 Introduction 1

2 Algorithm 2

3 Algorithm Walkthrough 2

4 Demonstration 3

5 Code Snippet 4

1 Introduction

Region growing on a mesh is a technique that can be used to perform segmentation, or propagate information
over a mesh. We provide an iterator that can be used with vtkPointSet subclasses to traverse a mesh in a
reasonable fashion. A “front” is emanated from a selected starting vertex, and the iterator provides the ID
of the next vertex on this front.

2

2 Algorithm

To propagate the front, we perform the following procedure.

Initialization:

• Add the seed vertex to the queue.

Iteration:

• Get the vertex in the front of the queue. Set NextId to this value.

• Add all of the vertices connected to NextId to the back of the queue, unless they have already been
visited or are already in the queue.

• Mark NextId as visited.

• Return NextId.

3 Algorithm Walkthrough

Consider the grid of points shown in Figure 1.

Figure 1: A grid of points

The first level of iterations is shown below:

• Set point 12 as the seed.

• Step to point 12. Add points 7, 13, 17, and 11 to the queue, remove point 12, and mark point 12 as
visited.

• Step to point 7. Add points 6, 8, and 2 to the queue, remove point 7, and mark point 7 as visited.

• Step to point 13. Add points 14, and 18 to the queue, remove point 13, and mark point 13 as visited.

• Step to point 17. Add points 22, and 16 to the queue, remove point 17, and mark point 17 as visited.

• Step to point 11. Add points 16 and 10 to the queue, remove point 11, and mark point 11 as visited.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3162]
Distributed under Creative Commons Attribution License

3

4 Demonstration

Figure 2 shows the iterations of the propagation on a grid, starting in the center. Red indicates not visited,
while blue indicates visited.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Figure 2: Demonstration of front iteration on a grid

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3162]
Distributed under Creative Commons Attribution License

4

5 Code Snippet

vtkSmartPointer<vtkSphereSource> sphereSource =
vtkSmartPointer<vtkSphereSource>::New();
sphereSource->Update();

vtkSmartPointer<vtkExtractEdges> extractEdges =
vtkSmartPointer<vtkExtractEdges>::New();
extractEdges->SetInputConnection(sphereSource->GetOutputPort());
extractEdges->Update();

cout << "There are " << extractEdges->GetOutput()->GetNumberOfPoints() << " points." << endl;

vtkSmartPointer<vtkMeshFrontIterator> meshFrontIterator =
vtkSmartPointer<vtkMeshFrontIterator>::New();
meshFrontIterator->SetMesh(extractEdges->GetOutput());
meshFrontIterator->SetStartVertex(0);
meshFrontIterator->Initialize();

while(meshFrontIterator->HasNext())
{
vtkIdType nextVertex = meshFrontIterator->Next();
cout << "Next vertex: " << nextVertex << endl;
}

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3162]
Distributed under Creative Commons Attribution License

