Boolean Operations on Surfaces for VTK

Release 0.00
Bryn Lloyd*
April 29, 2010

'Computer Vision Laboratory, ETH Zurich

Abstract

This document describes an implementation of a VTK wrapper for the GNU Triangulated Surface library GTS.
This paper is accompanied with the source code, and the xml files necessary to create a paraview plugin.

Contents

1 Methods 1
2 Results 2
3 Software Requirements 5

A recurring question on the vtk-users list is the ability to perform Boolean operations (union, intersection
and difference) with surface meshes. Currently, this is not possible using VTK, except possibly for very
simple specific cases.

1 Methods

Boolean operations are implemented in the GNU Triangulated Surface library http://gts.sourceforge.net/.
It uses exact geometric predicates adapted from code by Jonathan Shewchuk in order to find exact
intersections between triangles of different surfaces.

We provide a new class implemented in the VTK style called vtkSurfaceBooleanOperations. It requires
two input connections (on the same port), each passing a surface. Internally we convert the surfaces
(vtkPolyData) into a GTS surface object and back using the functions:

void vtk2gts (vtkPolyData * input, GtsSurface * output);
void gts2vtk (GtsSurface * input, vtkPolyData * output);

The actual intersection tests are performed using the GTS surfaces:

GNode *treel
GNode *tree2

gts _bb_tree surface(surfacel);
gts_bb_tree_ surface(surface2);

GtsSurfacelnter* inter = gts_surface_inter_new(gts_surface_inter_class(),
surfacel,
surface2,
treel,
tree2,
Igts_surface_is_closed(surfacel),
Igts _surface_is_closed(surface?2)

)

GtsSurface *surface = gts_surface_new(gts_surface_class(),
gts_face _class(Q),
gts_edge class(Q),
gts_vertex_class());

if(this->Union) {
gts_surface_inter_boolean(inter, surface, GTS_ 1 OUT_2);
gts_surface_inter_boolean(inter, surface, GTS 2 OUT_1);
} else if(this->Intersection) {
gts_surface_inter_boolean (inter, surface, GTS_ 1 IN 2);
gts_surface_inter_boolean (inter, surface, GTS_2 IN_1);
} else if(this->Difference) {
gts_surface_inter_boolean (inter, surface, GTS_1 OUT 2);
gts_surface_inter_boolean (inter, surface, GTS 2 IN _1);
gts_surface_ foreach_face (inter->s2,
(GtsFunc) gts_triangle_revert, NULL);
gts_surface_ foreach_face (surface2, (GtsFunc) gts_triangle _revert, NULL);

}

It can be seen that the intersection is done using oriented bounding box trees. It can also be seen that the
difference operator is not symmetric, i.e. it depends on which surface is surface 1 and which is surface 2.

2 Results

An example application is provided (example-usage.cxx).

#include "vtkSurfaceBooleanOperations.h"

#include <vtkPolyData.h>
#include <vtkSphereSource.h>
#include <vtkPolyDataWriter._h>

#include <vtkSmartPointer.h>
#define vtkNew(type,name) \
vtkSmartPointer<type> name = vtkSmartPointer<type>::New()

Latest version available at the Insight Journal link http://hdl.handle.net/10380/xxxx
Distributed under Creative Commons Attribution License

int main(int argc, char ** argv) {

}

It performs all three boolean operations and saves the result as VTK legacy files. The input to the filter is
two overlapping sphere surfaces generated via vtkSphereSource. The results are shown in the figure

vtkNew(vtkSphereSource,sourcel);
sourcel->SetCenter(0.0, 0.0, 0.0);
sourcel->SetRadius(1.0);

vtkNew(vtkSphereSource,source?);
source2->SetCenter(0.5, 0.0, 0.0);
source2->SetRadius(1.0);

vtkNew(vtkSurfaceBooleanOperations,booleanOperator);
booleanOperator->AddInputConnection(sourcel->GetOutputPort());
booleanOperator->AddInputConnection(source2->GetOutputPort());

vtkNew(vtkPolyDataWriter,writer);
writer->SetlnputConnection(booleanOperator->GetOutputPort());

booleanOperator->SetUnionOn();
writer->SetFileName(*'Union.vtk'™);
writer->Update();

booleanOperator->SetintersectionOn();
writer->SetFileName("Intersection.vtk');
writer->Update();

booleanOperator->SetDifferenceOn();
writer->SetFileName(*"'Difference.vtk™);
writer->Update();

return O;

below.

Latest version available at the Insight Journal link http://hdl.handle.net/10380/xxxx

Distributed under Creative Commons Attribution License

Figure 1. This figure shows the union of two spheres
generated via intersection of two surface meshes.

Figure 2. This figure shows the intersection of two spheres with
radius 1, and centers at (0,0,0) and (1,0,0).

Latest version available at the Insight Journal link http://hdl.handle.net/10380/xxxx
Distributed under Creative Commons Attribution License

Figure 3. This figure shows the difference between surface 1 and surface 2.

3 Software Requirements

You need to have the following software installed:
* VTK 5.2 or newer.
» CMake 2.6 or newer
* GTS and GLIB

We provide a copy of the GTS and GLIB libraries, which are compiled as part of the configuration using
cmake. This may take a while. We have tested the configuration and compilation process on a Linux
machine and expect it to work also on Mac OS X (gts is available through the fink project
http://www.finkproject.org/). GTS and GLIB are available under the GPL license.

The CMakeLists.txt will perform the compilation each time you configure using cmake. If the

compilation was successful the first time you configure, then set the cmake variable COMPILE_GTS to
OFF.

Latest version available at the Insight Journal link http://hdl.handle.net/10380/xxxx
Distributed under Creative Commons Attribution License

