
 

 

Boolean Operations on Surfaces for VTK  
Release 0.00 

 

Bryn Lloyd1 

 

April 29, 2010 
1Computer Vision Laboratory, ETH Zurich 

 

Abstract 
 

This document describes an implementation of a VTK wrapper for the GNU Triangulated Surface library GTS. 
This paper is accompanied with the source code, and the xml files necessary to create a paraview plugin. 

 

Contents 

1 Methods 1 

2 Results 2 

3 Software Requirements 5 

 

A recurring question on the vtk-users list is the ability to perform Boolean operations (union, intersection 
and difference) with surface meshes. Currently, this is not possible using VTK, except possibly for very 
simple specific cases. 

1 Methods 

Boolean operations are implemented in the GNU Triangulated Surface library http://gts.sourceforge.net/. 
It uses exact geometric predicates adapted from code by Jonathan Shewchuk in order to find exact 
intersections between triangles of different surfaces. 

We provide a new class implemented in the VTK style called vtkSurfaceBooleanOperations. It requires 
two input connections (on the same port), each passing a surface. Internally we convert the surfaces 
(vtkPolyData) into a GTS surface object and back using the functions: 
 
void vtk2gts (vtkPolyData * input, GtsSurface * output); 
void gts2vtk (GtsSurface * input, vtkPolyData * output); 

The actual intersection tests are performed using the GTS surfaces: 



  2 

Latest version available at the Insight Journal link http://hdl.handle.net/10380/xxxx 
Distributed under Creative Commons Attribution License 

  GNode *tree1 = gts_bb_tree_surface(surface1); 
  GNode *tree2 = gts_bb_tree_surface(surface2); 
 
  GtsSurfaceInter* inter = gts_surface_inter_new(gts_surface_inter_class(), 
    surface1, 
    surface2, 
    tree1, 
    tree2, 
    !gts_surface_is_closed(surface1), 
    !gts_surface_is_closed(surface2) 
  ); 
 
  GtsSurface *surface = gts_surface_new(gts_surface_class(), 
                                gts_face_class(), 
                                gts_edge_class(), 
                                gts_vertex_class()); 
 
  if(this->Union) { 
    gts_surface_inter_boolean(inter, surface, GTS_1_OUT_2); 
    gts_surface_inter_boolean(inter, surface, GTS_2_OUT_1); 
  } else if(this->Intersection) { 
    gts_surface_inter_boolean (inter, surface, GTS_1_IN_2); 
    gts_surface_inter_boolean (inter, surface, GTS_2_IN_1); 
  } else if(this->Difference) { 
    gts_surface_inter_boolean (inter, surface, GTS_1_OUT_2); 
    gts_surface_inter_boolean (inter, surface, GTS_2_IN_1); 
    gts_surface_foreach_face (inter->s2,  
  (GtsFunc) gts_triangle_revert, NULL); 
    gts_surface_foreach_face (surface2, (GtsFunc) gts_triangle_revert, NULL); 
  } 

It can be seen that the intersection is done using oriented bounding box trees. It can also be seen that the 
difference operator is not symmetric, i.e. it depends on which surface is surface 1 and which is surface 2. 

2 Results 

An example application is provided (example-usage.cxx). 

 
#include "vtkSurfaceBooleanOperations.h" 
 
#include <vtkPolyData.h> 
#include <vtkSphereSource.h> 
#include <vtkPolyDataWriter.h> 
 
#include <vtkSmartPointer.h> 
#define vtkNew(type,name) \ 
  vtkSmartPointer<type> name = vtkSmartPointer<type>::New() 
 



  3 

Latest version available at the Insight Journal link http://hdl.handle.net/10380/xxxx 
Distributed under Creative Commons Attribution License 

 
int main(int argc, char ** argv) { 
 
  vtkNew(vtkSphereSource,source1); 
  source1->SetCenter(0.0, 0.0, 0.0); 
  source1->SetRadius(1.0); 
 
  vtkNew(vtkSphereSource,source2); 
  source2->SetCenter(0.5, 0.0, 0.0); 
  source2->SetRadius(1.0); 
 
 
  vtkNew(vtkSurfaceBooleanOperations,booleanOperator); 
  booleanOperator->AddInputConnection(source1->GetOutputPort()); 
  booleanOperator->AddInputConnection(source2->GetOutputPort()); 
 
  vtkNew(vtkPolyDataWriter,writer); 
  writer->SetInputConnection(booleanOperator->GetOutputPort()); 
 
  booleanOperator->SetUnionOn(); 
  writer->SetFileName("Union.vtk"); 
  writer->Update(); 
 
  booleanOperator->SetIntersectionOn(); 
  writer->SetFileName("Intersection.vtk"); 
  writer->Update(); 
 
  booleanOperator->SetDifferenceOn(); 
  writer->SetFileName("Difference.vtk"); 
  writer->Update(); 
 
  return 0; 
} 

It performs all three boolean operations and saves the result as VTK legacy files. The input to the filter is 
two overlapping sphere surfaces generated via vtkSphereSource. The results are shown in the figure 
below. 



  4 

Latest version available at the Insight Journal link http://hdl.handle.net/10380/xxxx 
Distributed under Creative Commons Attribution License 

 
Figure 1. This figure shows the union of two spheres  

generated via intersection of two surface meshes. 

 

Figure 2. This figure shows the intersection of two spheres with  
radius 1, and centers at (0,0,0) and (1,0,0). 



  5 

Latest version available at the Insight Journal link http://hdl.handle.net/10380/xxxx 
Distributed under Creative Commons Attribution License 

 

Figure 3. This figure shows the difference between surface 1 and surface 2. 

 

3 Software Requirements 

You need to have the following software installed: 

• VTK 5.2 or newer. 

• CMake 2.6 or newer 

• GTS and GLIB 

We provide a copy of the GTS and GLIB libraries, which are compiled as part of the configuration using 
cmake. This may take a while. We have tested the configuration and compilation process on a Linux 
machine and expect it to work also on Mac OS X (gts is available through the fink project 
http://www.finkproject.org/). GTS and GLIB are available under the GPL license. 

The CMakeLists.txt will perform the compilation each time you configure using cmake. If the 
compilation was successful the first time you configure, then set the cmake variable COMPILE_GTS to 
OFF. 

 

 


