
A Streaming IO Base Class and Support for
Streaming the MRC and VTK File Formats

Release 1.00

Bradley C. Lowekamp1 and David T. Chen1

June 9, 2010

1National Library Of Medicine

Abstract

This paper describes our contribution of three new classes to the Insight Toolkit community. We
present a newImageIO base class for streaming image file, along with two derivedImageIO classes for
the VTK and the MRC file formats.

Latest version available at theInsight Journal[http://hdl.handle.net/1926/3171]
Distributed underCreative Commons Attribution License

Contents

1 Introduction 1

2 Implementation 2
2.1 MRCImageIO. 3
2.2 VTKImageIO . 4

3 Future Work 5

4 Software Requirements and Usage 5

5 Acknowledgement 6

1 Introduction

We have created a new file reader for MRC image files, a base class of extracted reusable streaming code,
and improvements to the VTK file reader that reuses our new streaming base class. We wrote an ImageIO

http://www.insight-journal.org
http://hdl.handle.net/1926/3171
http://creativecommons.org/licenses/by/3.0/us/

2

class to natively read yet another format to have access to information in the extended header such as
acquisition parameters of the microscope and to be able to stream the data for out-of-core processing. The
result is a robust reader and writer for ITK that can take advantage of many of the toolkits powerful features.
The MRCImageIO class is derived from a base class which overrides common I/Omethods to implement
streaming and provide addition low level I/O methods. To demonstrate the utility and flexibility of the
StreamingImageIOBase class, we derived a newVTKImageIO class from it. Thus ourVTKImageIO class
utilizes the base class’s streaming methods.

Streaming is the process of sequentially processing sub-regions part of the largest possible region) of an
image through the pipeline. At any moment only a sub-region of an image is processed by each filter. Then
the entire image is reassembled from the sub-regions into memory or on the file system. To perform out-of-
core processing, theImageIO classes involved in the pipeline must support streamed reading and streamed
writing or the entire image will be buffered in memory.

2 Implementation

At the core of our work is a new class from which new streamingImageIO classes should be de-
rived. Currently, the itk::ImageIOBase class contains a large number of methods, many of which
need to be repetitively overridden for common features implemented in derivedImageIO classes. The
purpose of theStreamingImageIOBase is to overload the methods needed for streaming when used by
itk::ImageFileReader and itk::ImageFileWriter. These include:

bool CanStreamWrite(void);
bool CanStreamRead(void);
ImageIORegion GenerateStreamableReadRegionFromRequestedRegion(const ImageIORegion & requested) const;
unsigned int GetActualNumberOfSplitsForWriting(unsigned int numberOfRequestedSplits,

const ImageIORegion &pasteRegion,
const ImageIORegion &largestPossibleRegion);

The CanStreamWrite andCanStreamRead methods simply returntrue to indicate the derivedImageIO
class supports this feature.

The StreamingImageIOBase class is designed to directly support the streaming of ar-
bitrary regions for both reading and writing. To facilitatethe use ofregions, the
GenerateStreamableReadRegionFromRequestedRegion method returns the requested region passed as
an argument.

The implementation ofGetActualNumberOfSplitsForWriting similarly supports derivedImageIO
classes to allow writing and pasting of arbitrary regions toa file. However, pasting to existing files adds
the problem of compatibility between the image file and the format requested by anImageIO object. There-
fore this method must verify that an existing file image contains the same pixel type and image information.
If this check fails, an exception will be generated.

These methods should work for a large number ofImageIO classes. However, if additional restriction
are needed, those tests could be made in an overridden method, followed by a call to the super-class’s
(StreamingImageIOBase) implementation of the method.

There is one protected utility method provided in this class:

virtual bool RequestedToStream(void) const;

Latest version available at theInsight Journal[http://hdl.handle.net/1926/3171]
Distributed underCreative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1ImageIOBase.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.insight-journal.org
http://hdl.handle.net/1926/3171
http://creativecommons.org/licenses/by/3.0/us/

2.1 MRCImageIO 3

This method performs the surprisingly complicated and error prone comparison of theIORegion to the
image file’s size. The complication arises from the fact thattheIORegion may not have the same number
of dimensions as the file’s image. When the dimensions are different yet theIORegion references all the
pixels in the image, the request is interpreted as non-streaming. The situation where theIORegion object
has not been set, only an issue ifitk::ImageFileReader or itk::ImageFileWriter are not used, is
not considered. IfRequestedToStream returnstrue, the entire image (the largest possible region) is not
requested and therefore streaming functionality is required.

A large number of image file formats are simply a header followed by the raw binary data. To facilitate these
ImageIO types the following methods are provided:

virtual SizeType GetDataPosition(void);
virtual bool StreamReadBufferAsBinary(std::istream& os, void *buffer);
virtual bool StreamWriteBufferAsBinary(std::ostream& os, const void *buffer);
void OpenFileForReading(std::ifstream& os, const char* filename);
void OpenFileForWriting(std::ofstream& os, const char* filename, bool truncate);

TheGetDataPosition method should return the data position in a file where the raw image data begins.
The typeSizeType was carefully chosen because it is currently defined asstd::streamoff. However the
name may be confusing since it is overused across ITK.

Utilizing the IORegion and the other image information (set in theImageIO), the streaming read and write
methods can perform the random access andstd::iostream operations needed. These methods are the
heart of streaming input and output operations, and if they can be reused in derivedImageIO classes, it is a
big win!

2.1 MRCImageIO

The MRC file type is a popular file format which is arguably becoming the standard for electron microscopy.
It is supported by such applications as Boulder Laboratory’s IMOD, UCSF’s Chimera, 3D Visual’s Amira
and is among the formats included in LOCI’s Bio-Formats. While ITK does not need to support every
image format, the lack of streaming supported by many otherImageIO formats, the additional information
available in the extended header, along with the prevalenceof the format and common support in existing
electron microscopy software are sufficient motivations tous for natively supporting this extension in ITK.

The format appears to have originated with a software package for crystallography from the
MRC Laboratory of Molecular Biology [1]. While the original FORTRAN software is ei-
ther no longer available or not open source, documentation about the original format still exists:
http://www2.mrc-lmb.cam.ac.uk/image2000.html. Boulder Laboratory’s IMOD is a currently lead-
ing software package for reconstruction and registration of 3D electron microscopy data. Their documen-
tation provides some additional header fields which shall beregarded as options for our implementation:
http://bio3d.colorado.edu/imod/doc/mrc_format.txt. These documents provide the working stan-
dard for the MRC file format.

The structure of the file format is not novel as it simply a header and an optional extended header, followed
by the raw data. This file structure allowed us to create the previously describedStreamingImageIOBase
class with modular reading and writing methods. The implementation of MRCImageIO::Write and
MRCImageIO::Read are good examples of how to use the base class to implement thestreaming process.
These methods illustrate the details of when to stream, readthe entire image, erase the file and write the
header. These details must be implemented correctly for paste streaming to operate correcly.

Latest version available at theInsight Journal[http://hdl.handle.net/1926/3171]
Distributed underCreative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www2.mrc-lmb.cam.ac.uk/image2000.html
http://bio3d.colorado.edu/imod/doc/mrc_format.txt
http://www.insight-journal.org
http://hdl.handle.net/1926/3171
http://creativecommons.org/licenses/by/3.0/us/

2.2 VTKImageIO 4

The MRC file format supports 3D images with the following pixel types:

• unsigned 8-bit integers

• signed 16-bit integers

• 32-bit floats

• 2 16-bit for complex data (not supported by ITK)

• 2 float for complex data

• unsigned 16-bit (semi-standard format)

• 3 unsigned 8-bit integer for RGB (semi-standard format)

One of the difficulties in handling an image format is ensuring that the geometric information including
orientation is imported and exported correctly. As illustrated in section 4.1.4 of the ITK Software Guide[2],
ITK uses a right handed 2-D image view, along with a right handed 3-D view of the world space coordinate
system. The MRC world coordinates are similarly right-handed, so no corrections in the orientation matrix
are needed. Unfortunately, the details of creating a image-to-world transformation matrix from the MRC
header information is neither well specified nor consistentacross applications. Utilizing the header member
names from IMOD’s implementation we use the following calculations for computing pixel spacing and
origin:

Porigin =





xorg

yorg

zorg





Vspacing=





xlen/mx
ylen/my
zlen/mz





(1)

The variablePorigin andVspacing are ITK’s definition. SpecificallyPorigin is the world coordinates for the
center of the pixel at the zero index. The origin is importantto note because there currently exists discrep-
ancies in how these attributes are interpreted among different applications. The units ofVspacingspacing are
usually angstroms (10−10 meters) for MRC files, as opposed to 10−4 meters, which is the convention for
DICOM. Other fields not needed in the header maybe verified forsanity, or ignored. Additional fields which
anMRCImageIO object does not use but have expected values may create a warning if important information
is not handled correctly, such as thenstart fields.

During image acquisition additional per slice informationcan be recorded in the optional extended header.
This information may include geometric information about the stage, magnification, exposure, etc. The
MRCHeaderObject class contains public members to access data structures that contain this information.
Correctly handling all extended headers is an area that willrequire future development for more types and
formats. The header object is placed into theMetaDataDictionary of theImageIO object and then copied
to the output image ofitk::ImageFileReader.

2.2 VTKImageIO

The VTK extension is a popular visualization file format, andpart of the file specification is im-
age data (or structured points)[3]. Our work converted the existingVTKImageIO class to utilize the

Latest version available at theInsight Journal[http://hdl.handle.net/1926/3171]
Distributed underCreative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.insight-journal.org
http://hdl.handle.net/1926/3171
http://creativecommons.org/licenses/by/3.0/us/

5

StreamingImageIOBase base class, enabling streaming, and fixed a few known bugs along the way. In
this revision we paid special attention to matching the VTK file format specification. The VTK format
differs from the canonical view of aStreamingImageIOBase derived class because the VTK format can
have binary and ASCII data. Because ASCII numbers can vary incharacter length, random access is not
efficient and prevents streaming. Therefore theGenerateStreamableReadRegionFromRequestedRegion
andGetActualNumberOfSplitsForWriting methods were overloaded to exclude streaming in this case.
To show the utility ofStreamingImageIOBase here is an excerpt fromVTKImageIO::Read:

std::ifstream file;

if(this->RequestedToStream())
{

itkAssertOrThrowMacro(m_FileType != ASCII, "Can not stream with ASCII type files");

// open and stream read
this->OpenFileForReading(file, this->m_FileName.c_str());

itkAssertOrThrowMacro(this->GetHeaderSize() != 0, "Header size is unknown...");
this->StreamReadBufferAsBinary(file, buffer);

}
else
...

3 Future Work

Our work provides the needed structure for future streamingImageIO classes by separating the implementa-
tion of methods initk::ImageIOBase that do not support streamingImageIOs from those that do. In our
opinion this separation should be take further. While theitk::ImageIOBase class must provide the stream-
ing I/O interface, its implementation should only directlysupport the non-streamingImageIO methods. The
streaming implementation should be moved to theStreamingImageIOBase class.

In the future, moreImageIO classes should enable streaming through theStreamingImageIOBase class.
Such revisions will help to ensure that theStreamingImageIOBase streaming methods have a robust inter-
face suitable for a variety of purposes. The easiestImageIO class to upgrade would beRawImageIO through
the new stream enabled binary read and write methods. However, upgrading theitk::TiffImageIO class
would be the most useful because of its popularity as an intermediate format and because the implementa-
tion utilizes a library different from the classes presented here. Additionally, theitk::MetaImageIO class
should change its parent class.

4 Software Requirements and Usage

The latest bug fixes and features of ITK are needed for these classes to run correctly.

• Insight Toolkit 3.18

• CMake 2.2

Latest version available at theInsight Journal[http://hdl.handle.net/1926/3171]
Distributed underCreative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1ImageIOBase.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageIOBase.html
http://www.itk.org/Doxygen/html/classitk_1_1TiffImageIO.html
http://www.itk.org/Doxygen/html/classitk_1_1MetaImageIO.html
http://www.insight-journal.org
http://hdl.handle.net/1926/3171
http://creativecommons.org/licenses/by/3.0/us/

6

For the itk::ImageFileReader and itk::ImageFileWriter classes to utilize the newImageIO classes
they must be registered with theitk::ImageIOFactory. Included with the distributed source code is
a LocalFactory which can be used to override and register the factory functions of VTKImageIO and
MRCImageIO. Here is how to manually registering the factory:

itk::Local::LocalFactory::RegisterOneFactory();

5 Acknowledgement

The authors would like to thank the on going collaboration with Dr. Sriram Subramaniam’s High Resolution
Electron Microscopy Laboratory of Cell Biology at the National Cancer Institute. Our work was performed
at the National Library of Medicine’s Office of High Performance Computing and Communications under
the supervision of Dr. Terry S. Yoo and Dr. Michael J. Ackerman.

References

[1] R. A. Crowther, R. Henderson, and J. M. Smith. Mrc image processing programs.Journal of Structureal
Biology, 116:9–16, 1996.2.1

[2] L. Ibanez, W. Schroeder, L. Ng, and J. Cates.The ITK Software Guide. Kitware, Inc. ISBN 1-930934-
15-7, http://www.itk.org/ItkSoftwareGuide.pdf, secondedition, 2005.2.1

[3] Kitware Inc. The VTK User’s Guide Updated for version 4.4”, 2004.2.2

Latest version available at theInsight Journal[http://hdl.handle.net/1926/3171]
Distributed underCreative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageIOFactory.html
http://www.insight-journal.org
http://hdl.handle.net/1926/3171
http://creativecommons.org/licenses/by/3.0/us/

	Introduction
	Implementation
	MRCImageIO
	VTKImageIO

	Future Work
	Software Requirements and Usage
	Acknowledgement

