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Abstract

The Surgical Assistant Workstation (SAW) provides a modular, open-source software framework to
support rapid prototyping of computer-assisted surgery systems, especially those that benefit from
enhanced 3D visualization and user interaction. The framework includes a library of components that can
be used to implement master-slave or collaborative robot control systems with support for complex video
pipelines and a novel interactive surgical visualization environment. SAW includes standardized interface
definitions (e.g., command names and payloads), with the goal of making the framework easily extensible
so that developers can add support for their own robotic devices and associated hardware platforms. This
paper presents an overview of the component-based architecture, followed by applications (use cases) in
the areas of minimally-invasive surgery (MIS), microsurgery, and surgical skill assessment.
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1 Introduction

The Surgical Assistant Workstation (SAW) provides a modular, open-source component-based software
framework to support rapid prototyping of medical robotics and computer-assisted surgery systems. It
utilizes the cisst C++ libraries [4, 8] to provide basic foundation classes (data types such as vectors, matrices,
transformations, and tools such as class and object registries, logging, etc.) and a component-based framework
that supports different execution models, such as periodic threads, callbacks, and event-based programming.
As illustrated in Fig. 1, SAW includes a number of Interface Components (IC), that encapsulate hardware
devices, and software components such as robot motion, collaborative control, speech recognition, 3D
user interface, and video processing. A key aspect is the definition of interface standards, within the SAW
framework, that enable “plug-and-play” configuration of systems. For example, although robots are physically
different, their interfaces (e.g., command names and parameters) have been standardized as much as possible.
SAW also includes an interface component that supports the OpenlGTLink research standard[11] that has
been gaining acceptance in the image-guided therapy (IGT) community.
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Figure 1: Surgical Assistant Workstation (SAW). New application software (blue boxes) can utilize existing
interface components (IC) and software components (yellow boxes) to streamline development.

SAW bears some similarity to component-based frameworks for robotics that have been introduced in other
application domains, such as mobile robots. These include Player[6], OROCOS [3], Orca [2], and ROS[9].
Player is a popular set of tools for mobile robot research. Conceptually, it is a hardware abstraction layer for
mobile robot devices that includes data communication mechanisms between drivers and control programs.
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The Open RObot COntrol Software (OROCOS) was started in 2001 to develop open source robot control
software. It includes real-time C++ libraries for advanced machine-tool and robot control. Orocos components
communicate with each other using interfaces which consist of properties, events, methods, commands and
data flow ports. Branching from the OROCOS project, the Orca Project aims to provide building-blocks
(components) that can be combined together to build arbitrarily complex non-real-time robotic systems.
Willow Garage’s Robot Operating System (ROS) is a more recent entry to the field, but has undergone rapid
development. It is an open-source package that provides operating system types of services, such as hardware
abstraction, low-level device control, and communication between processes, as well as numerous tools to
facilitate development. The intent is to create a common platform upon which researchers can build, and then
share, high-level robotic algorithms in areas such as navigation, localization, planning, and manipulation.

The SAW framework is most similar to OROCOS, as they both define comparable components with features
such as lock-free data exchanges that support hard real-time performance. The key differences, however,
stem from the different application domains. OROCOS is primarily targeted at control of industrial robots
and machine tools, whereas SAW is focused on medical robotics and computer-assisted surgery. Although
the underlying robotics functionality is similar, the set of associated components, such as sensors and user
interface elements, is application-specific.

2 System Architecture

SAW is a component-based system and thus the
architecture is defined by the available compo-
nents and their interconnections. SAW is built on
the component framework provided by the cisst
libraries[4, 8]. In particular, cisst defines a base
component class and a number of derived compo-
nent frameworks that facilitate creation of compo-

nents with active execution models (e.g., periodic Buent Cc::::::;';:e :::':::\‘A'I‘:l e ors
tasks, continuous tasks). All of these component

frameworks contain a list of provided interfaces and
required interfaces. The system defines a component
manager that is used to control components (e.g., start, stop) and to create connections between their provided
and required interfaces. For example, the required interface of one component can be connected to the
provided interface of another component, as shown in Fig. 2. In this context, it is convenient to refer to
first component as the client and the second component as the server, though it should be noted that every
component can have provided and required interfaces and therefore act as both client and server. Each
provided interface contains a number of command objects that encapsulate the available services, which
generally are implemented by class member functions of the server component. The provided interface may
also generate events. The client’s required interface contains a list of function objects that are bound, at
runtime, to the corresponding command objects in the server’s provided interface. Similarly, the required
interface may specify event handlers for events generated by the provided interface. The binding of function
objects (event handlers) to command objects (event generators) is implemented using string comparisons
and occurs when the required interface is connected to a provided interface. Subsequent communication is
efficiently handled by directly invoking the function objects (on the client side) or event generators (on the
server side). The cisst component interfaces also include data stream inputs and outputs, which are provided
to establish real-time image (e.g., video, ultrasound) streams between components.
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Figure 2: cisst component-based framework
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While cisst provides the basic component framework, the SAW architecture further defines the set of
components, interfaces, and interconnections to create an application framework that is suitable for research
in advanced telesurgical and cooperatively controlled robots[12, 7]. Fig. 3 shows a typical data flow in
such a system and indicates some of the key hardware components, such as robots, video input and output
devices, and other sensors and imaging equipment, along with the software components that coordinate
and process the associated information. Because this architecture is intended for research with diverse
hardware platforms, it is important to precisely define the component interfaces, so that similar components
can be substituted. For example, it is necessary to standardize the interface to a robot component, thereby
enabling researchers to construct a platform using da Vinci robots, Phantom haptic devices, or any other robot
arm. Similarly, the video processing pipeline should enable video capture from different imaging devices
and video output, including overlay, on different display devices. The SAW architecture therefore has led
to the definition of standardized command names and data types for robots and other devices. The data
types are defined in the cisstParameterTypes library, which includes all supporting functionality such as
serialization, deserialization, and dynamic creation. These data types are available for use by components.

Robot API

Preoperative

\

Buttons

‘—’M Image/Model
Robot Iaborati
System Collaborative * Volume Viewer
o, 7 Robot
daVinci)

_ Tool Tracking

]
recognltlon

Video Processing/Visualization

Stereo Image | P | Stereo Proc.
Cameras Capture » Rectification > 2D to 3D
| US Image .
Lapus Capture Image Fusion
Display |, B
e Render Overlay

t

Figure 3: Sample SAW Data Flow

Finally, a component-based framework is most useful when it includes a number of implemented components
that can be reused for a new application. Thus, SAW includes a number of components that provide hardware
interfaces — the Interface Components (IC) shown in Fig. 1 — as well as the software components shown in
this, and other, figures such as robot motion, collaborative control, speech recognition, 3D user interface, and
video processing.
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data from the da Vinci surgical system
during operation, and is approved for use
during human clinical cases [5]. The SAW da Vinci read-only API component communicates with the da
Vinci via a TCP/IP protocol and provides interfaces to all data stream fields and events transmitted by the
system. A second API component has been developed for bi-directional communication with the da Vinci
system. This API provides a rich set of functions for both querying system state and directly controlling
motion and behavior of both patient-side and console manipulators. Due to obvious safety concerns and
regulatory limitations, this interface is not permitted for use during human surgeries. The bi-directional,
read-write API encapsulates a binary library (the BBAPI library) that is used to communicate with the da
Vinci via an Intuitive Surgical proprietary interface. In order to use the da Vinci research interfaces, users
must develop and sign a research agreement with Intuitive Surgical.

Figure 4: da Vinci®) interface components

3 Use Cases

The development of SAW has been motivated by concurrent development of several “use cases” that provide
focus for defining and testing the functions of the SAW system. Conversely, the SAW development has
proved invaluable in facilitating the research associated with the use cases.

3.1 Augmented Reality in MIS Surgery

SAW is an information-rich immersive environment for planning and executing telesurgical procedures, such
as those performed with the da Vinci robot. The underlying principle is that the master console should be used
not only to control the patient-side robots, but also to provide a 3D interface that enables the user to interact
with other sources of information and provide high-level supervisory control commands to the system.

One use case in the area of MIS surgery is the development of ultrasound-guided liver tumor biopsy, ablation,
and resection capabilities for the da Vinci, allowing surgeons to perform minimally invasive liver interventions
with the efficacy of open surgery. While the project uses liver surgery as a focusing application, the addition
of laparoscopic ultrasound (LapUS) guidance to the da Vinci platform promises much broader benefits in
general, cardiac, ob/gyn, and urologic surgery. Fig. 5 shows the current embodiment of the laparoscopic
ultrasound tool developed for the da Vinci and illustrates the role played by the SAW software, as well as
some typical user interfaces[10].

To support this functionality, the system provides a masters as mice mode, where the master manipulators are
decoupled from the remote manipulators and used as 3D input devices to manipulate graphical objects in
the 3D environment. The LapUS project uses this mode to enable interaction with the ultrasound image; for
example, the surgeon can move the displayed US image to a different region of the visual field so that it does
not obstruct the view of important anatomy. The masters as mice mode also provides a Marker Tool, shown
in Fig. 5-b, that enables the surgeon to place markers in the 3D environment and then later realign the robotic
instruments with these markers. The markers are referenced to the patient and their positions are updated
when the camera moves. Similarly, when activated by the surgeon, a Measurement Tool displays (as a text
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Figure 5: Laparoscopic Ultrasound (LapUS) with Surgical Robots: (Top) A high-level system schematic
illustrating the use of SAW for video processing, 3-D user interface, and display within the da Vinci console.
(Bottom) (a) the graphical probe widget indicates the transducer and image plane orientation as well as wrist
configuration. (b) A mapping tool indicates the current probe position and orientation (white cursor), as well
as “bread crumbs” (green markers).

overlay) the 3D distance traveled by the robotic tool; this can be useful for measuring anatomical features.

Other forms of augmented reality for MIS include a Vol-
ume Viewer, which enables the surgeon to load a 3D
model (such as a preoperative CT or MRI scan) of the
patient, as shown in Fig. 6, and interact with it in 3D
using the master input devices. The model can appear in a
small “3D window” within the field of view (as in Fig. 6),
or it can be overlaid onto the stereo video. The latter case
requires a registration between the coordinate systems of
the 3D model and the stereo video.

The masters as mice mode also enables the user to provide
high-level control parameters, such as the definition of
virtual fixtures or autonomous motion macros. As a sim-
ple example, this interface could be used to allow the user
to define safety boundaries (boundary virtual fixtures) in
the 3D view, which could then be enforced by the system

Figure 6: SAW application showing interaction
with 3D medical image overlayed on visual field.
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during telemanipulation.

3.2 Cooperative Control and Information Fusion for Microsurgery

The goal of this project is to develop technology and systems addressing fundamental limitations in current
microsurgical practice, using vitreoretinal surgery as an intitial focus. Vitreoretinal surgery is the most
technically demanding ophthalmologic discipline and addresses prevalent sight-threatening conditions in
areas of growing need. Retinal surgery is currently performed under a stereo microscope with free-hand in-
strumentation. Limitations include limited visual resolution, and physiological hand tremor. The surgeon also
struggles with a lack of tactile feedback, proximity sensing, and real-time sensing of physiological parameters
of the retina. Surgical technique and efficiency would be enhanced by the integration of preoperative images
with the intraoperative view. In current practice, poor ergonomics result in surgeon fatigue and potential
disability. All of these factors contribute to extended operating times, associated light toxicity, and higher
than needed complication rates. At the center of our planned approach is a “surgical workstation” system,
shown in Fig. 7, interfaced to a stereo visualization subsystem and a family of novel sensors, instruments, and
robotic devices[1]. The capabilities of these components individually address important limitations of current
practice; together they provide a modular, synergistic, and extendable system that enables computer-interfaced
technology and information processing to work in partnership with surgeons to improve clinical care and
enable novel therapeutic approaches.
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Figure 7: Microsurgery Assistant Workstation: (Left) System block diagram, showing major components;
(Right) Typical experimental setup showing stereo video microscope and 3D display, Steady Hand microsur-
gical robot holding cannulation instrument, and phantom head containing chick embryo.

3.3 Surgical Skill Assessment

We are currently conducting a multi-center study of robotic surgery training focusing on development and
longitudinal assessment of surgical skill (see Fig. 8). Such assessment will be key for developing feedback
methods to robotic surgery trainees. We aim to separately investigate automated methods for surgical and
system skill development and assessment, including creation of ground truth for such methods using manual
expert assessment of clinical skill using methods such as Objective Structured Assessment of Technical Skill
(OSATS) evaluations. Figure 8,right, shows the motion trajectories of the left and right masters during a
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Figure 8: Robotic surgery training data collection infrastructure (left), and motion envelop of the master
during a training task (right)

training tasks. The green triangles represent camera or master workspace reconfiguration. Similar data from
24 trainee subjects is currently being processed for development of skill metrics.

4 Conclusions

The Surgical Assistant Workstation (SAW) is an open-source, component-based C++ software frame-
work developed to support research in medical robotics and computer-assisted surgery. It is available
at www.cisst.org/saw. Key features of SAW include interface components to a variety of devices, such
as robots and sensors, used to build such systems, as well as software libraries for functionalities such as
real-time image processing, 3D user interfaces, data collection, and robot control. An important point is
the attempt to standardize interfaces to similar components, to enable “plug and play” system construction.
Currently, these standards only apply within the SAW framework, as there is not yet an accepted industry
standard. It is possible, however, to develop interface components (adapters) to “bridge” between SAW and
any standard that may evolve in the future. For example, SAW already includes an adapter for the recently
introduced OpenlGTLink research protocol. Use cases in minimally-invasive surgery, microsurgery, and
surgical skill assessment demonstrate the versatility of SAW and suggest broader applicability within the
field of computer-assisted surgery.
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