
Implementation of graph-based interactive 3D
vessel segmentation filter

Release 1.00

David Pellow1, Moti Freiman1 and Leo Joskowicz1

July 15, 2010

1School of Engineering and Computer Science, The Hebrew University of Jerusalem, Israel

Abstract

This paper describes an ITK implementation of a 3D vascular segmentation filter using a graph-based
energy minimization algorithm. The method first computes the shortest path between two user provided
points in the vessel and then performs a graph min-cut based segmentation of the vessel based on the
intensity information coupled with the computed path as a spatial constraint. The shortest path compu-
tation is adapted from the algorithm in [1] to use a vesselness based weighting function. The min-cut
algorithm uses the Boost graph library [2] to calculate the minimal cut. Several examples of applications
are provided, along with images of the resulting segmentations.

Keywords: min-cut, vesselness, vessel segmentation, ITK, boost

Contents

1 Introduction 1

2 Proposed class and implementation 4
2.1 Overview . 4
2.2 Implementation. 4

3 Examples 7

4 Software Requirements 7

1 Introduction

Minimum cut graph algorithms are useful in accurately performing vascular segmentation. In this method
the image voxels are represented as nodes of a graph, and every node has edges to its neighboring voxels
and to a “source” and “sink” node. The weight of edges betweenvoxel nodes is determined based on the
similarity in voxel intensity. The source and sink weights depend on the probability that the voxel belongs

2

(a) Original image (b) Vesselness filter response (c) Shortest path (d) Final result

Figure 1:An outline of the algorithm: (a) The original image (b) The vesselness image overlayed over the original (c)

The shortest path centerline (d) The segmentation cut.

to either the foreground or the background class. The minimum cut classifies each voxel as belonging
to the foreground or background class. The original graph min-cut implementation [3] requires extensive
user interaction to compute the prior intensity model. In addition, the segmentation is biased to blob-like
structures. Therefore it is less suitable for 3D vascular segmentation.

Our implementation uses a two-phase approach. The first phase is the computation of an approximate cen-
terline inside the vessel based only on two user provided seeds. In the second phase the vessel segmentation
is computed with a graph min-cut based technique based on both intensity and spatial information. Both
intensity and spatial prior information are computed usingthe results of the first phase.

The algorithm is outlined as follows:

• Input: Start and end points of the vessel

1. Compute vesselness image

2. Assign edge weights to voxels based on their vesselness

3. Compute the shortest path

4. Use mean and standard deviation along the path to estimateprior values of the image classes

5. Compute class means and standard deviations and use them to assign voxel sink and source
weights

6. Calculate the minimum graph cut

• Output: Segmentation of the vessel

This algorithm is an improvement of our previous algorithm [4, 5]. The main differences are the use of the
vesselness based weighting function to compute the path, the Gaussian mixture model estimation used to
determine source and sink weights, and the use of the open-source Boost graph library [2].

Figure1 shows images created during the different stages of this algorithm. The images are axial slices from
the 3D volume.

3

Intensity (HU)
500 1000 1500 2000 2500 3000

P
ro

po
rt

io
n

0
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Figure 2:An example of the intensity model that is used as a prior. The vessel class is in red and background classes

in other colors.

Shortest-path computation

The shortest-path computation inputs two user seeds, one from the beginning of the vessel, and another
one from the end of the vessel. Next, it computes the vesselness response using Frangi’s method [6]. The
shortest-path is computed using the implementation proposed in [1], in which the vesselness map is used as
input. The vesselness imagev is rescaled to intensity values between 0 and 500. The edge weight between
two voxelsi, j is assigned as:

w(i, j) = 500−v(j) (1)

The shortest-path filter thus finds a path along which the vesselness is maximized. This step computes a
rough estimation of the vessel centerline by maximizing thevesselness response along the path.

Prior intensity model

Given the path along the vessel, we model the intensity information as a mixture of Gaussians. One class
is used to represent the vessel intensity model and an additional four classes are used to represent the back-
ground intensity. Only a narrow band along the path is used toestimate the intensity model, to limit infor-
mation that is irrelevant to the separation of the vessel from its background. An ITK based Expectation-
Maximization (EM) is used to estimate the model parameters.

The initial prior of the foreground class is based on the previously calculated path through the vessel, and
the additional background classes are defined relative to this initial information.

Fig. 2 shows an example of the estimated intensity model.

Spatially constrained graph min-cut segmentation

Let G = (V,E) be the graph corresponding to the image, whereV = {vx1, . . .vxn,vs,vt} are the graph nodes
such that nodevx corresponds to voxelx and terminal nodesvs andvt correspond to the object and back-

4

ground classes. The graph edgesE = {(vx,vs),(vx,vt),(vx,vy)} consist of three groups: 1) edges(vx,vs)
from voxels to the object terminal node; 2) edges(vx,vt) from voxels to the background terminal node,
and; 3) edges(vx,vy) between adjacent voxels (4 or 8 neighbors for 2D images, 6 or 26 neighbors for 3D
images). The cost of a cutC that divides the graph into the object class (source vertex)and the background
class (terminal vertex) is defined as the sum of the weights ofthe cut edgese∈C.

Edge weightswe are assigned as follows. The voxel to source edges weights are defined as:

w(vx,vs) = exp

(

−
(i −µv)

2

2σ2
v

)

(2)

whereµv is the mean andσv the standard deviation of the vessel class.

The voxel to sink edges weights are defined as:

w(vx,vt) =
n

∑
k=1

exp

(

−
(i −µk)

2

2σ2
k

)

(3)

whereµk andσk are the class means and standard deviations of the background classes. To increase the
effect of the source weight on voxels close to the path and of the sink weight on voxels farther from the
path, source weights are divided by a sigmoid functionsand sink weights are multiplied by it. The sigmoid
functions is defined as:

s=

∣

∣

∣

∣

2
1+e−αx −1

∣

∣

∣

∣

(4)

wherex is the Euclidean distance from the path. In this implementation α has a value of 0.8.

The minimal cut is then computed using Boykov’s algorithm [3] as implemented in the Boost [2] open-
source library.

In principle, the algorithm can be implemented in n-dimensions, but since the vesselness filter is not tem-
plated over the dimension, our implementation performs only 3-dimensional segmentation.

2 Proposed class and implementation

2.1 Overview

This project consists of two filters, theitk::ActiveContourMinCutImageFilter, and the
itk::TwoPointsVesselSegmenterImageFilter which utilizes it. The additional utility class
itk::GMMEstimatorImageFilter is used to wrap the classes that are required by ITK to computethe
prior intensity model into one class. The min-cut filter calculates the minimum cut using Boykov’s algo-
rithm [3] as implemented in the Boost graph library [2]. To reduce the memory requirements and to improve
the accuracy, the cut is computed only on a user-defined narrow band along the path.

Theitk::TwoPointsVesselSegmenterImageFilter performs a vessel segmentation by first computing
a path through the vessel and then passing this path to the min-cut filter as the region of interest. The path is
computed using the shortest path algorithm from [1] with a vesselness based weighting function.

2.2 Implementation

In this section we will give examples of how to call the different classses used in our algorithm.

2.2 Implementation 5

Shortest-path computation

The shortest-path filter is given two user provided seeds

1 typename itkShortestPathImageFilterType ::Pointer
2 dijkstra = itkShortestPathImageFilterType ::New();
3
4 //set the input image
5 dijkstra ->SetInput (this ->GetInput ());
6
7 //set the start and end points
8 dijkstra ->SetStartPoint (m_StartPoint);
9 dijkstra ->SetEndPoint (m_EndPoint);

10
11 //set the neighbors mode
12 dijkstra ->SetFullNeighborsMode (m_FullNeighborsMode);
13 dijkstra ->Update ();

Prior intensity model

Theitk::ActiveContourMinCutImageFilter filter uses the path to compute the class intensity informa-
tion using theitk::GMMEstimatorImageFilter:

1 typename itkGMMEstimatorImageFilterType ::Pointer
2 meansEstimator = itkGMMEstimatorImageFilterType ::New();
3
4 //set the input image
5 meansEstimator ->SetInput (inputImage);
6
7 meansEstimator ->SetNumberOfClasses(numberOfClasses);
8
9 //arrays of initial class means , standard deviations , and proportions

10 //are computed from the output of the shortest path filter
11 meansEstimator ->SetInitialParams
12 (initialMeans , initialStd , initialProps);
13
14 meansEstimator ->Update ();
15
16 //the final value of each class mean and standard deviation is
17 //assigned to class_mean and class_std
18 meansEstimator ->GetClassParams(i, class_mean , class_std);

Min-cut filter

Both the original image and the shortest-path are passed on to the
itk::ActiveContourMinCutImageFilter:

2.2 Implementation 6

1 typename itkActiveContourMinCutImageFilterType ::Pointer
2 minCut = itkActiveContourMinCutImageFilterType ::New();
3
4 //Set the input image
5 minCut ->SetInput (this ->GetInput ());
6
7 //Set the output of the shortest path filter as the region of interest
8 minCut ->SetObjImage (outputImage);
9

10 //Set the radius
11 minCut ->SetUncertaintyRadius (UncertaintyRadius);
12
13 //Set the number of background classes within the region of interest
14 minCut ->SetNumberOfBackgroundClasses (number_of_classes);
15
16 //Set initial means of the background classes
17 minCut ->SetInitialMeans(initial_means_vector);
18
19 //Set initial proportions for all classes - the first value is for the
20 //vessel class , and the last value for is for the black masked out area
21 minCut ->SetInitialProportions (initial_props_vector);
22
23 minCut ->Update ();

Using the itk::TwoPointsVesselSegmenterImageFilter

Theitk::TwoPointsVesselSegmenterImageFilter instantiates both the shortest-path image filter and
min-cut image filter. It passes the output of the shortest-path filter to the min-cut filter. The user provides
the seed points and can set the neighbors and the radius of theregion of interest for the min-cut filter. In this
example the filter’s default parameters are used. The defaults are: full neighbors mode - on, and min-cut
radius - 5.0, number of background classes - 4, initial background means -[−200,100,200,300], initial
proportions -[0.01,0.04,0.005,0.003,0.002,0.94].

1 // instantiate the seed points
2 PointType p1, p2;
3
4 //get the seed points from the user
5
6 // instantiate the initial class vectors
7 std::vector <double > initialMeans;
8 std::vector <double > initialProps;
9

10 //get the initial class data from the user
11
12 FilterType ::Pointer filter = FilterType ::New();
13
14 //set the input image

7

(a) (b) (c) (d) (e) (f)

Figure 3:Carotid artery bifurcation segmentation examples. To produce these images two segmentations were com-

bined, one with start point at the base of the carotid and end point at the end of the left side of the bifurcation, and the

other with the same start point and end point at the end of the right side of the bifurcation.

15 filter ->SetInput (reader ->GetOutput ());
16
17 //set the seed points
18 filter ->SetStartPoint (p1);
19 filter ->SetEndPoint (p2);
20
21 filter ->Update ();

3 Examples

This section provides several examples of the results of theitk::TwoPointsVesselSegmenterImageFilter
running on representative exmaples from the CLS2009 database [7]. The resulting carotid artery segmenta-
tions can be seen in Figure3.

To run the example inside the provided code, You may type the following command in your commandline
shell:

1 $> ./3D_test ./Data/3D_test.vtk ./Results /output.vtk -12.32 138.21 5.50
2 -15.31 119.09 70.00

4 Software Requirements

You need to have the following software installed:

• Insight Toolkit 2.4 [8].

• CMake 2.2 [9].

• Boost C++ libraries 3.7 [2].

References 8

References

[1] L. J. L. Weizman, M. Freiman, “Implementation of weighted Dijkstra’s shortest-path algorithm for n-D
images,”Insight Journal, 2009.(document), 1, 2.1

[2] http://www.boost.org. (document), 1, 1, 2.1, 4

[3] Y. Boykov and G. Funka-Lea, “Graph Cuts and Efficient N-D Image Segmentation.,”Int. J. of Comp.
Vision, vol. 70, no. 2, pp. 109–131, 2006.1, 1, 2.1

[4] M. Freiman, N. Broide, M. Natanzon, L. Weizman, E. Nammer, O. Shilon, J. Frank, L. Joskowicz, and
J. Sosna, “Vessels-Cut: A Graph Based Approach to Patient-Specific Carotid Arteries Modeling,” in
Proc. of the 2nd 3D Physiological Human workshop, 3DPH’09, vol. 5903 ofLNCS, pp. 1–12, 2009.1

[5] M. Freiman, J. Frank, L. Weizman, E. Nammer, O. Shilon, L.Joskowicz, and J. Sosna, “Nearly auto-
matic vessels segmentation using graph-based energy minimization,” in 3D Segmentation in the Clinic:
Carotid Lumen Segmentation and Stenosis Grading Challenge(http://cls2009.bigr.nl),
2009.http://www.insight-journal.org/browse/publication/661. 1

[6] A. Frangi, W. Niessen, K. Vincken, and M. Viergever, “Multiscale Vessel Enhancement Filtering,” in
Proc. of the 1st Int. Conf. on Med. Image Comp. and Comp. AidedInterventions, MICCAI’98, vol. 1496
of LNCS, pp. 130–137, 1998.1

[7] R. Hameeteman, M. Zuluaga, L. Joskowicz, M. Freiman, andT. van Walsum, “3D segmentation in the
clinic: Carotid lumen segmentation and stenosis grading challenge,” in3D Segmentation in the Clinic:
Carotid Lumen Segmentation and Stenosis Grading Challenge, 2009.http://cls2009.bigr.nl. 3

[8] http://www.itk.org. 4

[9] http://www.cmake.org. 4

http://www.boost.org
http://cls2009.bigr.nl
http://www.insight-journal.org/browse/publication/661
http://cls2009.bigr.nl
http://www.itk.org
http://www.cmake.org

	Introduction
	Proposed class and implementation
	Overview
	Implementation

	Examples
	Software Requirements

