
An ITK Implementation of a Diffusion Tensor
Images Resampling Filter

Release 1.00

Francois Budin1, Sylvain Bouix2, Martha Shenton2, Martin Styner1, Ipek Oguz1

August 10, 2010
1Department of Psychiatry, University of North Carolina, Chapel Hill, NC

2Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital,
Harvard Medical School, Boston MA

Abstract

This paper describes the implementation of a resampling filter for Diffusion Tensor Images (DTI) in the
Insight ToolKit (ITK). ITK already contains a filter for resampling scalar and vector images as well as
several transformation and interpolation classes. However, due to the directional nature of DT images,
using the existing classes would result in losing the structural information of the image.

We developed a new resampling filter, specific to DTI, that preserves the structure by applying a
rotation directly on the tensors while performing the transformation of the image. New transformation
and interpolator classes have also been implemented to handle tensors correctly. The new transformation
classes are based on algorithms described by D.C. Alexander et al. [1]. Finally, three filters have been
written to correct symmetric semi-definite matrices that would no longer be positive after the resampling
process and project them into the tensors’ space. In addition, a software based on the new classes has
been developed and is provided with this article.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3189]
Distributed under Creative Commons Attribution License

Contents

1 Introduction 2

2 Theory 3
2.1 Transformation . 3

Finite Strain Method . 3
Preservation of Principal Direction Method . 3
Non-Rigid Transformations . 5

2.2 Interpolation . 5
2.3 Tensor Correction . 5

2

3 Implementation 8
3.1 Organization of the Software . 8
3.2 Diffusion Tensor Resampling Filter . 9
3.3 Transforms . 9
3.4 Interpolators . 9
3.5 Extending Existing ITK Classes . 9
3.6 Warp Transformations . 10

4 Performance 10
4.1 Computational Time . 10
4.2 Memory Usage . 10

5 Testing 12

6 Conclusion 12

7 Acknowledgments 12

8 Software Requirements 13

A Appendix - Results on Real Images 14

1 Introduction

Diffusion Tensor Imaging (DTI) [3] is an image modality that measures the motion of water molecules in
tissue and models this motion with a diffusion tensor (a symmetric positive semi-definite matrix, which
can be visualized as an oriented ellipsoid). The size, orientation and anisotropy of the diffusion tensor at
each voxel in the image, as well as the analysis of its eigen system have been extremely useful in the study
of several diseases including chronic and acute cerebral ischemia, multiple sclerosis, metabolic disorders,
epilepsy, and brain tumors [4].

Before analyzing images, one often needs to realign them to bring them into a common coordinate frame: a
resampling filter is used to obtain the transformed image. For scalar images, the filter computes the position
of a voxel after transformation and interpolates the value at that position. No additional step is performed
to modify the value of the voxel. If a resampling filter for scalar images is applied to a DT image, tensors
will conserve their original orientation in the output image. Therefore, if a rotation is applied to the image,
the structure in the output image will be lost. One needs to transform the tensors themselves along with the
image to preserve its coherence.

The Insight ToolKit (ITK) library [6] contains filters to resample scalar and vector images but none for
DT images. In this paper we present the implementation of a filter in the ITK framework to resample DT
images as well as transformation and interpolation classes that can be used with it. The transformations
are based on algorithms described by D.C. Alexander et al. [1]. Additionally, classes have been created
to correct transformed tensors that are no longer positive semi-definite. Software based on these classes
has been developed and is provided with this paper to allow the reader comparisons between the different
transformation and interpolation algorithms.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3189]
Distributed under Creative Commons Attribution License

3

2 Theory

2.1 Transformation

Transforming scalar images consists of computing the new position of a voxel after applying a given trans-
formation to it. Using a backward transformation, one computes for each voxel of the output image its
corresponding position in the input image and assigns its intensity by interpolating values in the source im-
age. However, for DT images a second step is necessary to preserve the relative orientation of the tensor with
respect to the image coordinate system. If a rotation is applied to the image, the tensors have to be rotated as
well so that the diffusion orientation information in the image is still valid. Since backward transformations
are used, the inverse rotation (transpose matrix) has to be used for the tensors.

In the general case, applying the transformation M to a matrix D is given by equation (1). In the case of a
rotation R, the general formula becomes equation (2).

D = M ·D ·M−1 (1)

D = R ·D ·RT (2)

If the transformation is not a rotation, one cannot apply it directly as this would modify the size and the
shape of the tensors and misrepresent the diffusion properties of the underlying tissue. Only the tensor
orientation should be modified. In the case of affine transformations, Alexander et al. [1] suggested two
different strategies to find the tensors’ rotation matrix: the Finite Strain (FS) and the Preservation of Principal
Direction (PPD).

Finite Strain Method

Any non-singular matrix F can be decomposed into a rigid rotation component R and a deformation com-
ponent U where

F = U ·R (3)

R = (F ·FT)−1/2 ·F (4)

R is used to transform the tensors. The rotation matrix needs to be extracted from the transformation matrix
only once for the whole image.

However some problems might arise from the use of this method. To illustrate this, a shearing deformation
has been applied on a synthetic image. The results are visible in Figure 1. These images show that this
method is not optimal because the image structure is not always well preserved. When applying a horizontal
shearing (Fig. 1b) to the phantom image (Fig. 1a), the tensors should not be transformed. On the other hand,
when applying a vertical shearing on the image(Fig. 1c), the tensors should be rotated with a larger angle.

Preservation of Principal Direction Method

To overcome the problems that appear using FS, one can use the Preservation of Principal Direction (PPD)
method. In this method, the transformation applied to the tensors has to be recomputed for each tensor of
the image as the amount of rotation is dependent on the orientation of the tensor (see Fig. 1b,c).

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3189]
Distributed under Creative Commons Attribution License

2.2 Interpolation 4

(a) (b) (c)

Figure 1: Finite Strain Method. From left to right: a) Diffusion Tensor Image phantom. b) Horizontal shearing applied
to DTI phantom. c) Vertical shearing applied to DTI phantom

(a) (b) (c)

Figure 2: Preservation of Principal Direction Method. From left to right: a) Diffusion Tensor Image phantom. b)
Horizontal shearing applied to DTI phantom. c) Vertical shearing applied to DTI phantom

In our experiments on a phantom image (Fig. 2b, 2c), the structure of the image is well preserved with this
method. However, Alexander et al. [1] also noted that the FS method gives very similar results to PPD when
applied to real biological tissue images and thus might be more advantageous for computational efficiency.

Non-Rigid Transformations

Alexander et al. have also shown how to transform DT images with higher order transformations. The
extension of the method is straightforward. An image transformation can be expressed as a displacement
field u(x) so that at each position x of the image, T (x) = x + u(x). An affine transformation T can be
described by T (x) = Fx+ t. Differentiating these two expressions with respect to x gives T ′(x) = I +Ju and
T ′(x) = F where I is the identity matrix and Ju is the Jacobian of the displacement field u. A local affine
model of a more complex transformation can be created by taking F = I + Ju at every point. One can then
use one of the two methods described previously (FS or PPD) to compute the transformed tensors.

2.2 Interpolation

The transformation results in the need to evaluate the image at non-grid locations. An interpolator is used
to compute the values at these non-discrete positions. Several interpolation methods have been developed
for scalar images (e.g. nearest neighbor, linear, cubic, BSpline) [7, 9, 8]. As DTI is a multicomponent
image, we implemented two basic techniques, 1) Nearest neighbor interpolation and 2) Component-wise

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3189]
Distributed under Creative Commons Attribution License

2.3 Tensor Correction 5

Figure 3: Interpolation between one prolate and one oblate tensors. From top to bottom: linear, BSpline order 2,
windowed sinc with Welch kernel interpolator.

Figure 4: Interpolation between two prolate tensors. From top to bottom: linear, BSpline order 2, windowed sinc with
Welch kernel interpolator.

scalar interpolation (i.e. each component of the tensor gets interpolated independently using a standard
scalar interpolation technique).

The nearest neighbor interpolation for tensor images is equivalent to the one for scalar images. The tensor
of the closest voxel from the transformed point is copied into the new location. Using this method, there is
no risk to obtain a matrix that does not belong to the tensor space, but images can appear ”blocky”.

Component-wise interpolation consists of interpolating each component of the tensor individually. In this
case, the tensor image is separated into six different images composed, at each voxel, of one tensor compo-
nent. Standard scalar interpolation techniques can then be applied (Fig. 3,4). We have implemented three
types of interpolator: linear, BSpline and windowed sinc.

2.3 Tensor Correction

Diffusion tensors (positive semi-definite matrices) form a convex half-cone in the vector space of matrices
and simple arithmetic operations with tensor components can lead to non-positive semi-definite matrices,
thus illegal diffusion tensors. Some of the previously presented interpolators may generate such invalid
tensors, in particular the positivity of the matrix may not be preserved.

To move the interpolated matrix back into the space of diffusion tensors, three correction methods have been
implemented:

• Set negative eigenvalues to zero

• Set negative eigenvalues to their absolute value

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3189]
Distributed under Creative Commons Attribution License

6

Figure 5: Software execution diagram

• Set the matrix representing the tensor to the nearest symmetric positive semi-definite matrix (eq. 5) as
defined by Higham [5]. X is the nearest symmetric positive semi-definite matrix to A in the Frobenius
norm, B is the symmetric part of A (eq. 6) and H is the symmetric polar factor of B (eq. 7).

X = (B+H)/2 (5)

B = (A+AT)/2 (6)

H =
√

BT ·B (7)

3 Implementation

3.1 Organization of the Software

A global execution diagram of the software is shown in Figure 5. It shows the organization of the different
components of the resampling program. The transforms both evaluate the new tensor position and transform
the tensor after the interpolation. The resampling filter executes this process for every voxel of the output
image.

3.2 Diffusion Tensor Resampling Filter

itk::DiffusionTensor3DResample has been implemented as a subclass of itk::ImageToImageFilter.
It has a similar structure to itk::ResampleImageFilter. Hence it should be trivial to modify a software
using the latter class and replace it with the Diffusion Tensor resampling filter one.

The main methods of this class are SetInput(), SetInterpolator() and SetTransform().

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3189]
Distributed under Creative Commons Attribution License

3.3 Transforms 7

3.3 Transforms

Three main types of transforms have been implemented: itk::DiffusionTensor3DRigidTransform,
itk::DiffusionTensor3DAffineTransform and itk::DiffusionTensor3DNonRigidTransform.

Two subclasses of itk::DiffusionTensor3DAffineTransform have been implemented: one for the Fi-
nite Strain (FS) strategy and one for the Preservation of the Principal Direction (PPD) strategy. Any kind of
transformation supported in ITK (for which the computation of the Jacobian is properly implemented) can
be loaded in itk::DiffusionTensor3DNonRigidTransform and used to transform a DTI.

3.4 Interpolators

Interpolators available in ITK for scalar images cannot be used with tensor images. These interpolators
are subclasses of itk::InterpolateImageFunction, itself a subclass of itk::ImageFunction. It is not
possible to create a class derived from itk::InterpolateImageFunction for tensor images due to an
implementation incompatibility. To keep the structure of the new interpolators as close as possible to the
structure of the existing ones, the tensor interpolator base class has been implemented as a derived class
of itk::ImageFunction. This allows the access to the method IsInsideBuffer() necessary for the
resampler to know whether it should interpolate a tensor at that position or whether the current point is
outside the image.

itk::DiffusionTensor3DNearestNeighborInterpolateFunction is simply a re-implementation for
tensors of itk::NearestNeighborInterpolateImageFunction available in ITK. The other tensor in-
terpolation classes that have been developed are wrappers for the original interpolation classes in
ITK. The 6 components of the tensors need to be separated into 6 images. For this purpose,
itkSeparateComponentsOfADiffusionTensorImage, a multithreaded filter, was created. Once the com-
ponent separation done, the ITK scalar interpolators can be used for each component of the tensors through
our new classes.

3.5 Extending Existing ITK Classes

To resample DT Images, it is necessary to multiply the tensors by a rotation matrix. This operation
is not currently available in itk::DiffusionTensor. A subclass of itk::DiffusionTensor called
itk::DiffusionTensor3DExtended was created to be able to get a matrix from a tensor. One can then
multiply this matrix and convert it back to a tensor.

It is also not possible to directly cast matrices with scalar values of one type into matrices with another scalar
type using itk::Matrix. All the transformation operations are performed with doubles. Hence it is neces-
sary to convert the components of the matrices obtained from the tensors to doubles; itk::MatrixExtended
has been implemented to allow that operation.

3.6 Warp Transformations

ITK contains a warping filter (itk::WarpImageFilter) which allows to apply a deformation field to an
image. However, there is currently no warp transformation available which could be set as a transformation
in a resampling filter. A new class (itk::WarpTransform3D) was implemented to transform a point using
a deformation field and compute the Jacobian of the field at a given position.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3189]
Distributed under Creative Commons Attribution License

8

In the case of multiple transformations in a row, if these are applied sequentially, there will be as many
interpolations as there are transformations. Each time this is done, some error will be introduced in the
image. To avoid this, one can concatenate all the transformations into one deformation field and reduce the
number of interpolations to one.

itk::TransformDeformationFieldFilter was implemented to combine all the transformations into a
single deformation field. This filter takes an input field and compute the new field after a second transfor-
mation is added. The initial deformation field can be set to the identity transformation, which corresponds
to setting the whole deformation field to vectors filled with 0, if there is no initial deformation field.

4 Performance

4.1 Computational Time

One important question when processing images is the computational time. The perfomance of the provided
software was tested on a DT image of 512x256x256 voxels. The computer used has an Intel Xeon X5570
(2.93GHz, 4 cores) processor and 6GB (DDR3 at 1333MHz) of memory. Since the resampling filter is
multithreaded, the more processors/cores the computer has, the faster the program will be.

Loading and saving the image takes about 30 seconds. A correction filter is applied after the resampling
process and takes approximately 28 seconds. Applying a rigid transformation takes approximately the same
amount of time as applying an FS affine transformation (Fig. 6). The only difference is that the tensors’
rotation matrix has to be extracted once at the beginning of the process for the FS affine transformation. The
computational time difference between an affine transformation using the FS method and one using the PPD
method is small. The time difference between each try is induced mostly by the kind of interpolation used.
Applying a BSpline transformation, however, also makes the resampling process much slower, whether it
is with a bulk1 affine transformation or merged in a deformation field with a separate affine transformation.
The choice of the interpolator significantly affects the computational time for rigid and affine transforms. For
more complex transforms, the computational time due to the interpolator is proportionally less important.

4.2 Memory Usage

The amount of memory used to resample a DTI image can be important. A coarse summary of the memory
usage for a 512x256x256 float input and output DTI is presented in Table 1. In the case of a deformation field
transformation using a BSpline interpolation, the memory usage is around 3.8GB. One should be careful that
enough memory is available on the computer before starting the resampling process.

5 Testing

ITK provides a class to compare images which allows to verify that the result obtained corresponds to what
was expected. However, this class does not allow the comparison between two DT images. A new filter
called itk::DifferenceDiffusionTensor3DImageFilter was developed to compare DT images based
on itk::DifferenceImageFilter. It computes the difference between two images: at each voxel, it adds

1A bulk transform is a second transform associated to the BSpline one. Both deformations are computed from the original point
position. Both displacement vectors are added to compute the transformed point position.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3189]
Distributed under Creative Commons Attribution License

9

Figure 6: Computational Time; 1: Nearest neighbor; 2: Linear; 3 to 7: windowed sinc using various kernels (Hamming,
Cosine, Welch, Lanczos, Blackman); 8 to 13: BSpline with various orders (0 to 5)

Images
Input image 768MB

Output image 768MB
Interpolators

Nearest Neighborhood No additional memory used
Linear, BSpline and Windowed Sinc 768MB (input image size) to separate

the components of the tensors into different images
BSpline Additional 768MB (input image size) for the

itk::BSplineDecompositionImageFilter
used in the BSpline interpolator.

Deformations
Deformation field 768MB

Other transformations Small amount of memory used

Table 1: Coarse summary of the memory usage for a 512x256x256 float input DTI

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3189]
Distributed under Creative Commons Attribution License

10

the absolute value of the difference of each component of the tensors in both images and compares this sum
with a given threshold.

itkTestMainExtended.h was created, based on itkTestMain.h. It handles both scalar images and DTI.
Finally, several tests were written to compare the output of our software after applying different transforma-
tions and interpolations, with reference images.

6 Conclusion

This paper presented newly implemented classes to resample DT images based on the ITK framework. The
resampling operation could also be done in the Log-Euclidean domain [2]. In this case, the logarithm of the
input image would be computed beforehand and set as the input of the resampling filter. The exponential
of the filter output would then be computed. With this method, the resampled image contains only positive
symmetric semi-definite matrices, and therefore there is no need to apply any correction filter to it.

The DTI resampling software provided with this paper is a module available in 3D Slicer [10], a free open
source visualization and image computing software. It integrates all the transformation classes and all
the interpolation classes described in this document. The previously described software has been used to
resample real images and some results are shown in appendix A.

7 Acknowledgments

This work was funded by the National Institutes of Health through the NIH Roadmap for Medical Research
grant U54 EB005149, the NIH Program Project IP01DA022446-02, the UNC Neurodevelopmental Disor-
ders Research Center HD 03110, the NIH STTR grant R41 NS059095 and the NIH grant RC1AA019211. I
am thankful to Clement Vachet for his technical support. I am also grateful to Steve Pieper, Jim Miller and
Dominik Meier for their insighful discussions and Ashley Rumple for her helpful suggestions.

8 Software Requirements

You need to have the following software installed:

• Insight Toolkit 3.X

• CMake 2.6

For the provided DTI resampling software to pass all the verification tests successfully, the Insight Toolkit
needs to be compiled with the option ITK USE OPTIMIZED REGISTRATION turned ON. To recompile this
LaTeX file, type: make -i

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3189]
Distributed under Creative Commons Attribution License

11

A Appendix - Results on Real Images

Figure 7: Slice extracted from a real DT image - No
transformation.

Figure 8: Real DT image transformed with a 45◦

rotation - Linear interpolation.

Figure 9: Real DT image upscaled with a factor 2 -
Linear interpolation

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3189]
Distributed under Creative Commons Attribution License

References 12

References

[1] D.C. Alexander, C. Pierpaoli, P.J. Basser, and J.C. Gee. Spatial transformations of Diffusion Ten-
sor Magnetic Resonance Images. IEEE Transactions on medical imaging, 20(11):1131–1139, 2001.
(document), 1, 2.1, 2.1

[2] Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Log-Euclidean metrics for fast
and simple calculus on diffusion tensors. Magnetic Resonance in Medicine, 56(2):411–421, August
2006. 6

[3] P.J. Basser, J. Mattiello, and D. Le Bihan. MR Diffusion Tensor spectroscopy and imaging. Biophys
J, 66:259–267, 1994. 1

[4] Q. Dong, R.C. Welsh, T.L. Chenevert, R.C. Carlos, P. Maly-Sundgren, D.M. Gomez-Hassan, and S.K.
Mukherji. MR Diffusion Tensor spectroscopy and imaging. J Magn Reson Imaging, 19:6–18, 2004. 1

[5] Nicholas J. Higham. Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and
its Applications, 103:103–118, May 1988. 2.3

[6] L. Ibanez, W. Schroeder, L. Ng, and J. Cates. The ITK Software Guide. Kitware, Inc. ISBN 1-930934-
15-7, http://www.itk.org/ItkSoftwareGuide.pdf, second edition, 2005. 1

[7] E. Meijering. A chronology of interpolation from ancient astronomy to modern signal and image
processing. Proceedings of the IEEE, 90(3):319–342, 2002. 2.2

[8] Erik Meijering and Michael Unser. A note on cubic convolution interpolation. IEEE Trans. Image
Process, 12:477–479, 2003. 2.2

[9] Erik H. W. Meijering. Spline interpolation in medical imaging: Comparison with other convolution-
based approaches. EUSIPC, 4:1989–1996, 2000. 2.2

[10] S. Pieper, M. Halle, and R. Kikinis. 3D SLICER. 04 2004. 6

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3189]
Distributed under Creative Commons Attribution License

