
An image sampling framework for the ITK
Release 1.0

Marius Staring1 and Stefan Klein2

August 12, 2010

1Division of Image Processing, Leiden University Medical Center, Leiden, The Netherlands
2Biomedical Imaging Group Rotterdam, Departments of Radiology & Medical Informatics, Erasmus MC,

Rotterdam, The Netherlands

Abstract

This document describes the implementation of image samplers using the Insight Toolkit ITK
www.itk.org. Image samplers take a set of ‘picks’ from an image and store them in an array. A
sample consists of the location of the pick (a point) and the corresponding image intensity (a value).
Image samplers are useful for image registration, where samples are drawn from the fixed image in order
to compute the similarity measure. Together with an image sampler base class, we introduce the follow-
ing image samplers: 1) a full sampler that draws all voxel coordinates from the input image, 2) a grid
sampler that draws samples from a user-specified regular voxel grid, 3 and 4) two random samplers that
uniformly draw a user-specified number of samples from the input image.

This paper is accompanied with the source code, input data, parameters and output data that the
authors used for validating the algorithm described in thispaper.

Latest version available at theInsight Journal[http://hdl.handle.net/1926/1338]
Distributed underCreative Commons Attribution License

Contents

1 Definitions 2

2 Implementation 2

3 Experiments 4

4 Use in image registration 4

5 Conclusion 6

www.itk.org
http://www.insight-journal.org
http://hdl.handle.net/1926/1338
http://creativecommons.org/licenses/by/3.0/us/

2

1 Definitions

An input image is denoted asI(xxx) with spatial positionxxx = (x1, . . . ,xd), with d the dimension of the input
image. We assume that we have scalar data:I(xxx) ∈ R. Let the image size ben1×·· ·×nd .

A sample is defined as the pairs = {xxx, I(xxx)} containing the spatial position and the intensity at that position.
A sample set, or the image samples, are a collection of pairsS = {si|i = 1, . . . ,N}, with N the number of
samples that are drawn.

We define the following samplers:

ImageFullSampler: Every voxel fromI is put in the sample set, which therefore has size∏d
i=1 ni. This

sample set is basically another way of storing the input image.

ImageGridSampler: The user specifies a regular grid on the input image, by supplying a downsampling
factor for each dimension. The grid sampler then only pick samples from this grid. Effectively, this
sampler downsamples the input image and subsequently performs full sampling.

ImageRandomSampler: The random sampler selects a user-specified number of samplesN from the input
image. Every voxel in the input image has an equal probability of being selected. New samples are
added to the sample set until its size isN. A voxel from the input image is not necessarily selected
only once.

ImageRandomCoordinateSampler: All previous image samplers only select from the voxel grid. The
ImageRandomCoordinateSampler is not limited to this grid, but can also select coordinates between
voxels. The intensityI(xxx) must then be obtained by interpolation. Other than that it is equal to the
ImageRandomSampler.

While at first glance the full sampler seems the most obvious choice for image registration, in practice it
is not always smart to do so. The computational complexity of a similarity metric in image registration is
directly related to the size of the sample set, which can grow large for large images when using full sampling.
Random samplers can be quite useful in this case in combination with a stochasticoptimisation routine [2].

In addition to sampling from the entire image, it is possible to sample from a subregion of an image. This is
useful in image registration when the input images have spatially varying intensity distributions (of which
MRI data is an example). Local image metrics like Local Mutual Information (LMI) are described in more
detail in [3].

2 Implementation

The image sample class is quite simple, it simply storesxxx as anitk::Point andI(xxx) as aRealType, both
as public member variables. The sample set is implemented by aitk::VectorDataContainer, a derived
class ofstd::vector and itk::DataObject. In addition, aitk::VectorContainerSource was created
from which an itk::ImageToVectorContainerFilter inherits, from which all image samplers inherit.

The ImageSampler base class allows to set the input image, an input region, and optionally a mask:

SetInput()
SetInputImageRegion()
SetMask()

Latest version available at theInsight Journal[http://hdl.handle.net/1926/1338]
Distributed underCreative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1Point.html
http://www.itk.org/Doxygen/html/classitk_1_1VectorDataContainer.html
http://www.itk.org/Doxygen/html/classitk_1_1DataObject.html
http://www.itk.org/Doxygen/html/classitk_1_1VectorContainerSource.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageToVectorContainerFilter.html
http://www.insight-journal.org
http://hdl.handle.net/1926/1338
http://creativecommons.org/licenses/by/3.0/us/

3

Furthermore, a method is defined to force the sampler to regenerate the sampleset on calling Update(). This
makes of course only sense for the Random samplers.

SelectNewSamplesOnUpdate();

Also a function is defined that returns whether the sampler supports SelectNewSamplesOnUpdate():

bool SelectingNewSamplesOnUpdateSupported()

which returns true in case the sampler is stochastic.

In more detail, the image samplers work as follows:

ImageFullSampler: We iterate over the sample region until the iterator is at the end, and addxxx andI(xxx) to
the image sample container, whenxxx is within the supplied mask.

ImageGridSampler: The user can supply a grid spacing schedule or the number of desired samplesN. In
the latter case the grid sampling schedule is derived fromN, such that approximatelyN samples are
drawn. We iterate over the grid and add the pair(xxx, I(xxx)) to the image sample container, whenxxx is
within the supplied mask.

ImageRandomSampler: Iterate over the sample region using an
itk::ImageRandomConstIteratorWithIndex until we have drawnN valid (= within mask)
samples.

ImageRandomCoordinateSampler: The itk::MersenneTwisterRandomVariateGenerator is used to
randomly draw (continuous) coordinates within the appropriate image region. Continue untilN valid
samples are drawn.

ImageRandomSamplerSparseMask:This image sampler is useful in combination with small masks. The
above two random samplers may not find enough valid samples in a reasonable amount of time in
combination with small masks. Therefore the sparse mask sampler first performs a full sampling
over the masks and stores this intermediate result. Subsequently, it randomly draws samples from the
intermediate result untilN.

The ImageRandomCoordinateSampler supports drawing samples from a randomly chosen subregion. The
user supplies a region size (the size of the box). A region center is drawnrandomly in such a way that the
box fits completely within the input image. Subsequently,N samples are drawn from within the box. This
could be implemented for other image samplers as well of course.

Example of usage:

// Some typedefs
typedef itk::Image< short, 3 > ImageType;
typedef itk::ImageRandomSampler< ImageType > SamplerType;
typedef SamplerType::ImageSampleContainerType SampleContainerType;
typedef SamplerType::ImageSampleType SampleType;

// read the input image ...

// Create, setup and run the image sampler

Latest version available at theInsight Journal[http://hdl.handle.net/1926/1338]
Distributed underCreative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1ImageRandomConstIteratorWithIndex.html
http://www.itk.org/Doxygen/html/classitk_1_1MersenneTwisterRandomVariateGenerator.html
http://www.insight-journal.org
http://hdl.handle.net/1926/1338
http://creativecommons.org/licenses/by/3.0/us/

4

typename SamplerType::Pointer sampler = SamplerType::New();
sampler->SetInput(inputImage);
sampler->SetInputImageRegion(inputImage->GetBufferedRegion());
sampler->SetNumberOfSamples(2000);
sampler->Update();

// Get sample container */
SampleContainerType::Pointer samples = sampler->GetOutput();
SampleType sample;

// Print first 10 samples
std::cout << "First 10 samples:" << std::endl;
std::cout << "Sample\tValue\tCoordinates" << std::endl;
for (unsigned int i = 0; i < 10; i++)
{
sample = samples->ElementAt(i);
std::cout << i << "\t" << sample.m_ImageValue
<< "\t" << sample.m_ImageCoordinates << std::endl;

}

3 Experiments

In Figure1 we illustrate the behaviour of the image samplers.

4 Use in image registration

A said, a possible application of image samplers is in the context of image registration. This has been imple-
mented inelastix [1] already. In the following we sketch how to adapt theitk::ImageToImageMetric’s
to use image samplers.

Add some typedefs and methods to enable setting/getting the image sampler in the metric:

typedef itk::ImageSampler< FixedImageType > ImageSamplerType;
itkSetObjectMacro(ImageSampler, ImageSamplerType);
itkGetConstObjectMacro(ImageSampler, ImageSamplerType);

In the functionsGetValue(), GetDerivative() andGetValueAndDerivative(), instead of looping over
the fixed image, we need to loop over the sample container:

/** Update the imageSampler and get a handle to the sample container. */
this->GetImageSampler()->Update();
ImageSampleContainerPointer sampleContainer = this->GetImageSampler()->GetOutput();

/** Create iterator over the sample container. */
typename ImageSampleContainerType::ConstIterator fiter;
typename ImageSampleContainerType::ConstIterator fbegin = sampleContainer->Begin();
typename ImageSampleContainerType::ConstIterator fend = sampleContainer->End();

/** Loop over the fixed image samples to calculate ... */
for (fiter = fbegin; fiter != fend; ++fiter)

Latest version available at theInsight Journal[http://hdl.handle.net/1926/1338]
Distributed underCreative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageMetric.html
http://www.insight-journal.org
http://hdl.handle.net/1926/1338
http://creativecommons.org/licenses/by/3.0/us/

5

(a) (b)

(c) (d)

Figure 1: Illustrating the sampling mechanism. (a) is the 2D input image. Samples are drawn from it
(N = 2000) and displayed by a white dot in (b)-(d), with (b) the grid sampler, (c) the random sampler, and
(d) the random coordinate sampler.

Latest version available at theInsight Journal[http://hdl.handle.net/1926/1338]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/1926/1338
http://creativecommons.org/licenses/by/3.0/us/

6

{
const RealType & fixedImageValue = static_cast<RealType>((*fiter).Value().m_ImageValue);
const FixedImagePointType & fixedPoint = (*fiter).Value().m_ImageCoordinates;

... do something with it ...
}

We have already done this inelastix (check out http://elastix.isi.uu.nl), re-
sulting in the itk::AdvancedImageToImageMetric, and adapted versions of the
itk::MeanSquaresImageToImageMetric, itk::NormalizedCorrelationImageToImageMetric,
itk::MattesMutualInformationImageToImageMetric, itk::KappaStatisticImageToImageMetric
and some more. The big advantage of this implementation is that the image sampling strategies get sepa-
rated from the metric definition. Currently, in the ITK some choices for samplingare given, but they are all
implemented in theitk::ImageToImageMetric, greatly reducing code readability. The proposed image
samplers framework also makes it straightforward for developers to implement new sampling strategies (for
example, sampling on edges) and use these in existing metrics.

5 Conclusion

We propose a new image sampling framework for the ITK, especially usefulfor the image registration
framework. The upcoming ITK4 refactoring seems like a great opportunityto modify the current imple-
mentation.

References

[1] S. Klein, M. Staring, K. Murphy, M.A. Viergever, and J.P.W. Pluim. elastix: a toolbox for intensity-
based medical image registration.IEEE Transactions on Medical Imaging, 29(1):196 – 205, 2010.
4

[2] S. Klein, M. Staring, and J. P. W. Pluim. Evaluation of optimization methods for nonrigid medical
image registration using mutual information and B-splines.IEEE Transactions on Image Processing,
16(12):2879 – 2890, December 2007.1

[3] S. Klein, U. A. van der Heide, and I. M. Lipset al. Automatic segmentation of the prostate in 3D MR
images by atlas matching using localized mutual information.Medical Physics, 35(4):1407 – 1417,
April 2008. 1

Latest version available at theInsight Journal[http://hdl.handle.net/1926/1338]
Distributed underCreative Commons Attribution License

http://elastix.isi.uu.nl
http://www.itk.org/Doxygen/html/classitk_1_1AdvancedImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1MeanSquaresImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1NormalizedCorrelationImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1MattesMutualInformationImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1KappaStatisticImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageMetric.html
http://www.insight-journal.org
http://hdl.handle.net/1926/1338
http://creativecommons.org/licenses/by/3.0/us/

	Definitions
	Implementation
	Experiments
	Use in image registration
	Conclusion

