An image sampling framework for the ITK

Release 1.0
Marius Staring1 and Stefan Klein?

August 12, 2010

IDivision of Image Processing, Leiden University Medical Center, Leidde Netherlands

2Biomedical Imaging Group Rotterdam, Departments of Radiology & Medicarinétics, Erasmus MC,

Rotterdam, The Netherlands

Abstract

This document describes the implementation of image sasplsing the Insight Toolkit ITK
wwv. i tk.org. Image samplers take a set of ‘picks’ from an image and stwetin an array. A
sample consists of the location of the pick (a point) and ttreesponding image intensity (a value).
Image samplers are useful for image registration, wher@kanare drawn from the fixed image in order
to compute the similarity measure. Together with an imagepéer base class, we introduce the follow-
ing image samplers: 1) a full sampler that draws all voxelrdoates from the input image, 2) a grid
sampler that draws samples from a user-specified regula goii, 3 and 4) two random samplers that
uniformly draw a user-specified number of samples from tpetiimage.

This paper is accompanied with the source code, input datangeters and output data that the
authors used for validating the algorithm described in plaiger.

Latest version available at thesight Journa] htt p: // hdl . handl e. net / 1926/ 1338]
Distributed undeCreative Commons Attribution License

Contents

1 Definitions 2
2 Implementation 2
3 Experiments 4
4 Use in image registration 4

Conclusion 6

www.itk.org
http://www.insight-journal.org
http://hdl.handle.net/1926/1338
http://creativecommons.org/licenses/by/3.0/us/

1 Definitions

An input image is denoted d$x) with spatial positiorx = (xy,...,Xq), with d the dimension of the input
image. We assume that we have scalar dgtg: < R. Let the image size bey x - x ng.

A sample is defined as the paie= {x, | (X)} containing the spatial position and the intensity at that position.
A sample set, or the image samples, are a collection of paits{s|i = 1,...,N}, with N the number of
samples that are drawn.

We define the following samplers:

ImageFullSampler: Every voxel froml is put in the sample set, which therefore has $i]fg1 n;. This
sample set is basically another way of storing the input image.

ImageGridSampler: The user specifies a regular grid on the input image, by supplying a dowlisg
factor for each dimension. The grid sampler then only pick samples fromrilis Effectively, this
sampler downsamples the input image and subsequently performs full sampling

ImageRandomSampler: The random sampler selects a user-specified number of salpies the input
image. Every voxel in the input image has an equal probability of beingtedleblew samples are
added to the sample set until its sizeNis A voxel from the input image is not necessarily selected
only once.

ImageRandomCoordinateSampler: All previous image samplers only select from the voxel grid. The
ImageRandomCoordinateSampler is not limited to this grid, but can also setedirates between
voxels. The intensity(X) must then be obtained by interpolation. Other than that it is equal to the
ImageRandomSampler.

While at first glance the full sampler seems the most obvious choice for inegggtration, in practice it
is not always smart to do so. The computational complexity of a similarity metric inémegjstration is
directly related to the size of the sample set, which can grow large for largegwagen using full sampling.
Random samplers can be quite useful in this case in combination with a stodstitsation routine?].

In addition to sampling from the entire image, it is possible to sample from a sohrefyan image. This is
useful in image registration when the input images have spatially varying itytelistributions (of which
MRI data is an example). Local image metrics like Local Mutual Information IjLdvle described in more
detail in [3].

2 Implementation

The image sample class is quite simple, it simply staras ani t k: : Poi nt andl(x) as aReal Type, both
as public member variables. The sample set is implementediliya: Vect or Dat aCont ai ner, a derived
classofstd: : vect or anditk:: Dat aCbj ect . In addition, ai t k: : Vect or Cont ai ner Sour ce was created
from which anitk: : 1 mageToVect or Cont ai ner Fi | t er inherits, from which all image samplers inherit.

The ImageSampler base class allows to set the input image, an input reglarptéonally a mask:
Set I nput ()

Set | nput | mageRegi on()
Set Mask()

Latest version available at thesight Journa] htt p: // hdl . handl e. net/ 1926/ 1338]
Distributed undeCreative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1Point.html
http://www.itk.org/Doxygen/html/classitk_1_1VectorDataContainer.html
http://www.itk.org/Doxygen/html/classitk_1_1DataObject.html
http://www.itk.org/Doxygen/html/classitk_1_1VectorContainerSource.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageToVectorContainerFilter.html
http://www.insight-journal.org
http://hdl.handle.net/1926/1338
http://creativecommons.org/licenses/by/3.0/us/

Furthermore, a method is defined to force the sampler to regenerate the sahgiealling Update(). This
makes of course only sense for the Random samplers.

Sel ect NewSanpl esOnUpdat e() ;
Also a function is defined that returns whether the sampler supports SeleStnplesOnUpdate():
bool Sel ecti ngNewSanpl esOnUpdat eSupport ed()

which returns true in case the sampler is stochastic.

In more detail, the image samplers work as follows:

ImageFullSampler: We iterate over the sample region until the iterator is at the end, and aidl (X) to
the image sample container, wheis within the supplied mask.

ImageGridSampler: The user can supply a grid spacing schedule or the number of desingtesal. In
the latter case the grid sampling schedule is derived foreuch that approximateli samples are
drawn. We iterate over the grid and add the gaii (x)) to the image sample container, wheis
within the supplied mask.

ImageRandomSampler: Iterate over the sample region using an
i tk:: I mageRandonConst|terator Wthlndex until we have drawnN valid (= within mask)
samples.

ImageRandomCoordinateSampler: The i t k: : Mer senneTwi st er RandonVar i at eGener at or is used to
randomly draw (continuous) coordinates within the appropriate image reGmminue untilN valid
samples are drawn.

ImageRandomSamplerSparseMask:This image sampler is useful in combination with small masks. The
above two random samplers may not find enough valid samples in a refsanaiunt of time in
combination with small masks. Therefore the sparse mask sampler firstrpsréofull sampling
over the masks and stores this intermediate result. Subsequently, it randamg/shmples from the
intermediate result unti.

The ImageRandomCoordinateSampler supports drawing samples fromamigirchosen subregion. The
user supplies a region size (the size of the box). A region center is deavdomly in such a way that the
box fits completely within the input image. Subsequerntlysamples are drawn from within the box. This
could be implemented for other image samplers as well of course.

Example of usage:

/1 Some typedefs

typedef itk::Imge< short, 3 > I mageType;

typedef itk::lmageRandonBanpl er< | mageType > Sanpl er Type;

typedef Sanpl er Type: : | mageSanpl eCont ai ner Type Sanpl eCont ai ner Type
typedef Sanpl er Type: : | mageSanpl eType Sanpl eType;

/1 read the input image ...

/I Create, setup and run the imge sanpler

Latest version available at thesight Journa] htt p: // hdl . handl e. net/ 1926/ 1338]
Distributed undeCreative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1ImageRandomConstIteratorWithIndex.html
http://www.itk.org/Doxygen/html/classitk_1_1MersenneTwisterRandomVariateGenerator.html
http://www.insight-journal.org
http://hdl.handle.net/1926/1338
http://creativecommons.org/licenses/by/3.0/us/

typenane Sanpl er Type: : Poi nter sanpler = Sanpl erType:: New();
sanpl er->Set I nput (i nputlnage);

sanpl er->Set | nput | mageRegi on(i nput | mage- >CGet Buf f er edRegi on());
sanpl er - >Set Number Of Sanpl es(2000);

sanpl er->Updat e();

/'l Get sanple container */
Sanpl eCont ai ner Type: : Poi nter sanpl es = sanpl er->Get Qut put ();
Sanpl eType sanpl e;

[l Print first 10 sanples
std::cout << "First 10 sanples:" << std::endl;
std::cout << "Sanple\tVal ue\tCoordinates" << std::endl;
for (unsigned int i =0; i <10; i++)
{

sanpl e = sanpl es->El ement At (i);

std::cout << i << "\t" << sanple.m|mageVal ue

<< "\t" << sanple.mlnmgeCoordinates << std::endl;

3 Experiments

In Figurel we illustrate the behaviour of the image samplers.

4 Use in image registration

A said, a possible application of image samplers is in the context of image régistrehis has been imple-
mented irel asti x [1] already. In the following we sketch how to adapt thiek: : | mageTol mageMetric’s
to use image samplers.

Add some typedefs and methods to enable setting/getting the image sampler in the metric

typedef itk::|mageSanpl er< Fixedl mageType > | nageSanpl er Type;
i tkSet Cbj ect Macro(| mageSanpl er, | mageSanpl er Type);
i t kGet Const Cbj ect Macro(| mageSanpl er, | mageSanpl er Type);

In the functionGet Val ue(), Get Deri vative() andCet Val ueAndDeri vative(), instead of looping over
the fixed image, we need to loop over the sample container:

[** Update the imageSanpl er and get a handle to the sanple container. */
t hi s->Get | mageSampl er () - >Updat e() ;
| mgeSanpl eCont ai ner Poi nt er sanpl eCont ai ner = this->GetlnageSanpl er()->CGet Qut put ();

[** Create iterator over the sanple container. */

typename | nageSanpl eCont ai ner Type: : Constlterator fiter;

typename | mageSampl eCont ai ner Type: : Const I terator fbegin = sanpl eCont ai ner->Begi n();
typenane | nageSanpl eCont ai ner Type: : Constlterator fend = sanpl eCont ai ner->End();

[** Loop over the fixed imge sanples to calculate ... */
for (fiter = fbegin; fiter = fend; ++fiter)

Latest version available at thesight Journa] htt p: // hdl . handl e. net/ 1926/ 1338]
Distributed undeCreative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageMetric.html
http://www.insight-journal.org
http://hdl.handle.net/1926/1338
http://creativecommons.org/licenses/by/3.0/us/

(b)

© (d)

Figure 1: lllustrating the sampling mechanism. (a) is the 2D input image. Sampgefrawn from it
(N = 2000) and displayed by a white dot in (b)-(d), with (b) the grid sampléth@&random sampler, and
(d) the random coordinate sampler.

Latest version available at thiesight Journal htt p: // hdl . handl e. net / 1926/ 1338]
Distributed undeCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/1926/1338
http://creativecommons.org/licenses/by/3.0/us/

{

const Real Type & fixedl mageVal ue = static_cast <Real Type>((*fiter).Value().mlmageVal ue);
const Fi xedl magePoi nt Type & fixedPoint = (*fiter).Value().mImageCoordinates;

. do sonmething withit ...

}
We have already done this inelastix (check out http://elastix.isi.uu.nl), re-
sulting in the i tk::Advancedl mageTol mageMetric, and adapted versions of the
i tk:: MeanSquar esl mageTol mageMetric, itk::NormalizedCorrel ationl mageTol mageMetri c,

itk::MattesMitual | nformationl mageTol mageMetric, itk:: KappaStatisticlmageTol mageMetric

and some more. The big advantage of this implementation is that the image sampliegjestrget sepa-
rated from the metric definition. Currently, in the ITK some choices for samliegyiven, but they are all
implemented in thei tk: : | mageTol mageMet ri ¢, greatly reducing code readability. The proposed image
samplers framework also makes it straightforward for developers to imptereersampling strategies (for
example, sampling on edges) and use these in existing metrics.

5 Conclusion

We propose a new image sampling framework for the ITK, especially usefuhe image registration
framework. The upcoming ITK4 refactoring seems like a great opportaaitpodify the current imple-
mentation.

References

[1] S. Klein, M. Staring, K. Murphy, M.A. Viergever, and J.P.W. Pluim. d¢basa toolbox for intensity-
based medical image registratiohEEE Transactions on Medical Imaging, 29(1):196 — 205, 2010.
4

[2] S. Klein, M. Staring, and J. P. W. Pluim. Evaluation of optimization methodsémrigid medical
image registration using mutual information and B-splindsEE Transactions on Image Processing,
16(12):2879 — 2890, December 2007.

[3] S. Klein, U. A. van der Heide, and I. M. Lipat al. Automatic segmentation of the prostate in 3D MR
images by atlas matching using localized mutual informatibfedical Physics, 35(4):1407 — 1417,
April 2008. 1

Latest version available at thesight Journa] htt p: // hdl . handl e. net/ 1926/ 1338]
Distributed undeCreative Commons Attribution License

http://elastix.isi.uu.nl
http://www.itk.org/Doxygen/html/classitk_1_1AdvancedImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1MeanSquaresImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1NormalizedCorrelationImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1MattesMutualInformationImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1KappaStatisticImageToImageMetric.html
http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageMetric.html
http://www.insight-journal.org
http://hdl.handle.net/1926/1338
http://creativecommons.org/licenses/by/3.0/us/

	Definitions
	Implementation
	Experiments
	Use in image registration
	Conclusion

