
Mesh To List Adaptor
Release 1.00

Wen Li1,2, Vincent A. Magnotta1,2,3,Luis Ibanez4

August 25, 2010
1Department of Radiology, The University of Iowa, Iowa City, IA 52242

2Department of Biomedical Engineering, The University of Iowa, Iowa City, IA 52242
3Department of Psychiatry, The University of Iowa, Iowa City, IA 52242

4Kitware Inc., Clifton Park, NY

Abstract

This documents is about the filter itk::ScalarQuadEdgeMeshToListAdaptor. It takes the input mesh
and generates a list of measurement vectors according to the scalars of the mesh. The list can be fed
into itk::Statistics::SampleToHistogramFilter [1, 2] to generate a histogram about the scalars
on the input mesh.

This paper is accompanied with the source code, input data, parameters and output data that we
used for validating the algorithm described in this paper. This adheres to the fundamental principle that
scientific publications must facilitate reproducibility of the reported results.

Acknowledgements

This work was funded in part by NIH/NINDS award NS050568.

Contents

1 Introduction 2

2 How to Build 2
2.1 Building Executables and Tests . 2
2.2 Building this Report . 3

3 How to Use the Filter 3

4 Results 6

2

1 Introduction

itkScalarQuadEdgeMeshToListAdaptor requires a mesh as input. Each point of the mesh could have an
associated scalar value. This filter can only deal with those meshes with scalar pixel values, so the length of
measurement vectors is fixed to be 1 and can not be changed by users.

The filter takes a mesh as input and goes through its PointDataContainer and push the scalars associated
with the PointData into stack.

2 How to Build

This contribution includes

• Warp Mesh filter

• Tests for the filter

• All the LaTeX source files of this paper

The source code is in Source directory and named as

• itkScalarQuadEdgeMeshToListAdaptor.h

• itkScalarQuadEdgeMeshToListAdaptor.cxx

The testing code is in Examples directory as

• ScalarQuadEdgeMeshHistogram.cxx

2.1 Building Executables and Tests

In order to build the whole, it is enough to configure the directory with CMake. As usual, an out-of-source
build is the recommended method.

In a Linux environment it should be enough to do the following:

• ccmake SOURCE DIRECTORY

• make

• ctest

Where SOURCE DIRECTORY is the directory where you have expanded the source code that accompanies
this paper.

This will configure the project, build the executables, and run the tests and examples.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3203]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3203
http://creativecommons.org/licenses/by/3.0/us/

2.2 Building this Report 3

2.2 Building this Report

In order to build this report you can do

• ccmake SOURCE DIRECTORY

• Turn ON the CMake variable

– BUILD REPORTS

• make

This should produce a PDF file in the binary directory, under the subdirectory Documents/Report006.

3 How to Use the Filter

This section illustrates the minimum operations required for running the filter. The code shown here is
available in the Testing directory of the code that accompanies this paper. You can download the entire set
of files from the Insight Journal web site.

The source code presented in this section can be found in the Examples directory under the filename.

• ScalarQuadEdgeMeshHistogram

In order to use this filter you should include the header for the mesh to list adaptor, the reader and
the itk::QuadEdgeMesh itself. And to show how to generate a histogram by using it, the header for
itkSampleToHistogramFilter is included as well.

1 #include "itkVector.h"
2 #include "itkListSample.h"
3 #include "itkHistogram.h"
4 #include "itkQuadEdgeMesh.h"
5
6 #include "itkQuadEdgeMeshVTKPolyDataReader.h"
7 #include "itkScalarQuadEdgeMeshToListAdaptor.h"
8 #include "itkSampleToHistogramFilter.h"

The Scalar type associated with the nodes in the mesh, and the mesh dimension are defined in order to
declare the Mesh type

1 typedef float MeshPixelType;
2 const unsigned int Dimension = 3;
3
4 typedef itk::QuadEdgeMesh < MeshPixelType , Dimension > MeshType;

In order to read the input meshes you declare reader type for the input mesh and create the instance of it.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3203]
Distributed under Creative Commons Attribution License

http://www.itk.org/Doxygen/html/classitk_1_1QuadEdgeMesh.html
http://www.insight-journal.org
http://hdl.handle.net/10380/3203
http://creativecommons.org/licenses/by/3.0/us/

4

1 typedef itk::QuadEdgeMeshVTKPolyDataReader < MeshType > InputReaderType;
2
3 InputReaderType::Pointer inputMeshReader = InputReaderType::New();

You declare the type of the mesh to list adaptor and instantiate it.

1 typedef itk::ScalarQuadEdgeMeshToListAdaptor < MeshType > AdaptorType;
2
3 AdaptorType::Pointer adaptor = AdaptorType::New();

The output of the reader is passed as input to the adaptor.

1 adaptor ->SetMesh(inputMeshReader ->GetOutput());

The execution of the filter can be triggered by calling the Compute() method. This should be done inside a
try/catch block, since it is possible that error conditions may generate exceptions.

1 try
2 {
3 adaptor ->Compute();
4 }
5 catch(itk::ExceptionObject & exp)
6 {
7 std::cerr << exp << std::endl;
8 return EXIT_FAILURE;
9 }

We declare the type of itk::Statistics::SampleToHistogramFilter and also
the type of ListSampleType and HistogramType are declared. The instance of
itk::Statistics::SampleToHistogramFilter is created.

1 typedef AdaptorType::MeasurementType MeasurementType;
2 typedef AdaptorType::MeasurementVectorType MeasurementVectorType;
3 typedef itk::Statistics::ListSample < MeasurementVectorType > ListSampleType;
4
5 typedef itk::Statistics::Histogram < MeasurementType ,
6 itk::Statistics::DenseFrequencyContainer2 > HistogramType;
7
8 typedef itk::Statistics::SampleToHistogramFilter <
9 ListSampleType , HistogramType > HistogramFilterType;

10
11 HistogramFilterType::Pointer histogramFilter = HistogramFilterType::New();

The use of itk::Statistics::SampleToHistogramFilter can be refered to itk documentations [1, 2]
for help.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3203]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3203
http://creativecommons.org/licenses/by/3.0/us/

5

1 typedef HistogramFilterType::HistogramType HistogramType;
2
3 histogramFilter ->SetInput(adaptor ->GetSample());
4
5 histogramFilter ->SetMarginalScale(10.0);
6
7 typedef HistogramFilterType::HistogramSizeType HistogramSizeType;
8
9 MeasurementVectorType value;

10
11 unsigned int numberOfScalarComponents =
12 itk::Statistics::MeasurementVectorTraits::GetLength(value);
13
14 HistogramSizeType histogramSize(numberOfScalarComponents);
15 histogramSize[0] = atoi(argv[2]);
16
17 histogramFilter ->SetHistogramSize(histogramSize);
18
19 typedef HistogramFilterType::HistogramMeasurementVectorType HistogramMeasurementVectorType;
20
21 HistogramMeasurementVectorType histogramBinMinimum(numberOfScalarComponents);
22 histogramBinMinimum.Fill(atof(argv[3]) - 0.5);
23
24 HistogramMeasurementVectorType histogramBinMaximum(numberOfScalarComponents);
25 histogramBinMaximum.Fill(atof(argv[4]) - 0.5);
26
27 histogramFilter ->SetHistogramBinMinimum(histogramBinMinimum);
28 histogramFilter ->SetHistogramBinMaximum(histogramBinMaximum);
29
30 histogramFilter ->Update();

The result of itk::Statistics::SampleToHistogramFilter can be printed out on the screen.

1 HistogramType::ConstPointer histogram = histogramFilter ->GetOutput();
2
3 const unsigned int histogramTotalNumberOfBins = histogram ->Size();
4
5 std::cout << "Total Number of Bins " << histogramTotalNumberOfBins << std::endl;
6
7 for(unsigned int bin=0; bin < histogramTotalNumberOfBins; bin++)
8 {
9 std::cout << "bin = " << bin << " frequency = ";

10 std::cout << histogram ->GetFrequency(bin, 0) <<std::endl;
11 }

The results in the following section were generated with calls similar to

QuadEdgeMeshHistogram inputMesh.vtk \
NumberOfBins Min Max

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3203]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3203
http://creativecommons.org/licenses/by/3.0/us/

6

Figure 1: Radius = 100.0; Scalar values are between 0.0 and 1.0.

4 Results

Figure 1 shows the input mesh. The radius of it is 100.0 and it is centered to the origin of the coordinate
system. The number of points on the mesh is 2,048. The scalar values of the points are between 0.0 and 1.0.

Figure 2 shows the histogram of the input mesh. X axis has the range of scalar values of the input mesh and
Y axis shows the frequencies of each value.

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3203]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3203
http://creativecommons.org/licenses/by/3.0/us/

7

Figure 2: X axis: the range of scalar values; Y axis: the frequency of each value

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3203]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3203
http://creativecommons.org/licenses/by/3.0/us/

References 8

References

[1] L. Ibanez, W. Schroeder, L. Ng, and J. Cates. The ITK Software Guide. Kitware, Inc. ISBN 1-930934-
10-6, http://www.itk.org/ItkSoftwareGuide.pdf, first edition, 2003. (document), 3

[2] L. Ibanez, W. Schroeder, L. Ng, and J. Cates. The ITK Software Guide. Kitware, Inc. ISBN 1-930934-
15-7, http://www.itk.org/ItkSoftwareGuide.pdf, second edition, 2005. (document), 3

Latest version available at the Insight Journal [http://hdl.handle.net/10380/3203]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3203
http://creativecommons.org/licenses/by/3.0/us/

	Introduction
	How to Build
	Building Executables and Tests
	Building this Report

	How to Use the Filter
	Results

