
Deconvolution: infrastructure and reference
algorithms

Gaëtan Lehmann

August 30, 2010

1INRA, UMR 1198; ENVA; CNRS, FRE 2857, Biologie du Développement et Reproduction, Jouy en
Josas, F-78350, France.

Abstract

The deconvolution, also called deblurring, tries to revertthe optical distortion introduced during the
aquisition of the image. It is a family of image processing which can be classed in the larger family of
image restoration.

Deconvolution is a very difficult problem, and many algorithms have been proposed to solve it,
with different strenght and weakness which may depend on thecontext where they are used. As a
consequence, it is desirable to have several algorithms available when trying to restore some images.
The different algorithms are often built on a similar principle, making possible to share a large part of
their API in their implementation. Also, the most generic operations related to deconvolution should be
reusable in order to avoid code duplication and ease the implementation of new algorithms.

In this contribution, the infrastructure for the implementation of several deconvolution algorithms
is proposed. Based on this infrastructure, twelve simple deconvolution algorithms of reference are also
provided.

Latest version available at theInsight Journal[http://hdl.handle.net/10380/]
Distributed underCreative Commons Attribution License

Contents

1 Introduction 2

2 Infrastructure 3
2.1 Generic classes. 3

itk::BinaryFunctorWithIndexImageFilter. 3
itk::ComplexConjugateImageFilter. 3
itk::DivideOrZeroOutImageFilter. 3
itk::MultiplyByComplexConjugateImageFilter . 4
itk::LaplacianImageFilter. 4
itk::FFTConvolveByOpticalTransferFunctionImageFilter 4

http://www.insight-journal.org
http://hdl.handle.net/10380/
http://creativecommons.org/licenses/by/3.0/us/

2

3 Calculators 4
itk::ImprovementInSignalToNoiseRatioCalculator. 4
itk::RelativeChangeCalculator. 4
itk::IDivergenceCalculator . 5
itk::TotalIntensityRatioCalculator . 5

4 Linear deconvolution 5

5 Iterative deconvolution 5

6 Reference algoritms 6
6.1 Linear algorithms. 6

itk::WienerDeconvolutionImageFilter. 6
itk::TikhonovMillerDeconvolutionImageFilter. 6
itk::RegularizedLeastSquaresDeconvolutionImageFilter . 6

6.2 Iterative algorithms. 7
itk::VanCittertDeconvolutionImageFilter. 7
itk::JanssonVanCittertDeconvolutionImageFilter. 7
itk::LandweberDeconvolutionImageFilter. 7
itk::RichardsonLucyDeconvolutionImageFilter. 7
itk::MaximumEntropyRichardsonLucyDeconvolutionImageFilter 7
itk::DampedRichardsonLucyDeconvolutionImageFilter. 8
itk::ConchelloIntensityPenalizationImageFilter. 8
itk::TikhonovMillerRichardsonLucyDeconvolutionImageFilter 8
itk::PoissonMaximumAPosterioriDeconvolutionImageFilter 8

7 Development version 8

8 Conclusion 9

1 Introduction

The deconvolution is the process used to remove the blur introduced during the image acquisition. This blur
can have several origins: it can be caused by the optical properties of the equipment, or by a camera shake
for example. The blur can then be caracterised by a point spread function, which may or may not be constant
in the whole image.

The deconvolution is a widely used methods in several fields including astronomy, where it has been heavily
developped during the optical problem of the Hubble space telescope, and fluorescence microscopy, where
it is used as an alternative or in conjunction with physical methods aimed to improve the image quality, like
the 2-photons or the confocal microscopy.

The image formation can be modelised as follow:

I = NP(O⊗P)+ NG (1)

Latest version available at theInsight Journal[http://hdl.handle.net/10380/]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/
http://creativecommons.org/licenses/by/3.0/us/

3

whereI is the observed image,O is the unknown original image,P is the point spread function,⊗ is the
convolution process,NG is an additive gaussian noise andNP is a poisson noise.NG andNP can be more or
less important, and may be negleted depending of the cases.

Several approaches have been considered over the time to solve that difficult problem, leading to two groups
of algorithms:

• linear algorithms: the computation is made in a fixed number of passes. They are generally very fast
and very useful in previsualization.

• iterative algorithms: the computation of the unblurred image is refined iteration after iteration. While
generally slower than the linear algorithms, they also generally produce more accurate results, by
allowing the integration of constraints during the computation, like the non negativity of the light
intensity.

In this contribution, the point spread function is assumed to be known and constant in the whole image.
While this is not true in all the cases, this approach allows to use the highly efficient FFT based convolution
to implement the deconvolution algorithms. Other cases maybe developped in another contribution. The
point spread function can be measured or simulated, but noneof those methods are provided here, and may
be developped in another contribution.

2 Infrastructure

There are several common steps in the deconvolution algorithms, being linear or iterative. The most obvious
is the transform to the frequency domain to make the computations. This code is already available in another
contribution by the same author. Some others steps, mostly related to the iterative deconvolution, are also
usable outside of the context of the deconvolution – they have been grouped here in generic filters and
calculators.

2.1 Generic classes

itk::BinaryFunctorWithIndexImageFilter

This filter is very similar toitk::BinaryFunctorImageFilter, but also is also passing the index position
of the current index to the functor, allowing to apply a transform dependent on the position in the image.

itk::ComplexConjugateImageFilter

This filter simply compute the complex conjugate of a compleximage pixel-wise.

itk::DivideOrZeroOutImageFilter

This filter divides an image by another, and replaces any too small value (defined by the user) by zero. It is
very useful to prevent very large value when the result is used as the denominator in a division.

Latest version available at theInsight Journal[http://hdl.handle.net/10380/]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/
http://creativecommons.org/licenses/by/3.0/us/

4

itk::MultiplyByComplexConjugateImageFilter

This filter combines, in a single step, the complex conjugatetransform and the multiplication by a complex
number from another image. Its principal interest is to reduce the number of filters involved in a pipeline,
but it may also provide some performance enhancements (not measured).

itk::LaplacianImageFilter

This filter has been modified so that the laplacian kernel can be normalized to one, in order to produced
reproductible changes independently of the image spacing.It has also been enhanced to run the expected
number of threads.

itk::FFTConvolveByOpticalTransferFunctionImageFilter

Performs the convolution of an image in the spatial domain bya kernel in the frequency domain. It is
implemented with the very simple pipeline FFT-frequency domain multiplication-inverse FFT and is used in
many iterative algorithms to reduce the code complexity. Anoption is available to compute the convolution
by the conjugate of the kernel image.

3 Calculators

Several calculators are provided, to compute some values ofinterest on the processed images. Because of the
lack of multithreading infrastructure for the calculatorsin ITK, none of those calculators are multithreaded.

itk::ImprovementInSignalToNoiseRatioCalculator

Compute the signal to noise improvement based on three images: the original image, the blurred image and
the restored image. This is useful to measure the efficiency of a restoration procedure, but requires to have
the original image, and so is restricted to a simulated blur.

improvment = 10× log10

(

∑(Iblurred − Iorigin)
2

∑(Irestored − Iorigin)2

)

(2)

itk::RelativeChangeCalculator

Computes the relative change of an image after a transform, using the formulae:

change =
∑ In × In−1

∑1
(3)

it is used as a criteria to stop the iteration process in the iterative deconvolution.

Latest version available at theInsight Journal[http://hdl.handle.net/10380/]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/
http://creativecommons.org/licenses/by/3.0/us/

5

itk::IDivergenceCalculator

Computes the idivergence between two images. The formulae is

idiv = ∑
{

log(In/In+1)− (In − In+1), if In 6= 0 andIn+1 6= 0

−(In − In+1), otherwise
(4)

This parameter is widely used in case of poisson noise. Note that the 0 case is often not documented and as
been chosen as it is in this definition by the author.

itk::TotalIntensityRatioCalculator

Computes the ratio of the total intensity of two images. Thiscalculator allows to verify a desirable feature
of some deconvolution algorithms: the non modification of the global intensity in the image.

4 Linear deconvolution

Linear deconvolution algorithms are made in a non-iterative way, making them usually faster than the itera-
tive deconvolution algorithms. They are mostly implemented with FFT based convolution, that’s why all the
implemation provided here are subclasses ofitk::FFTConvolutionImageFilterBase. They don’t have
any specific needs which are not covered by this base class, and thus no special base class has been develop
for this group of filters.

5 Iterative deconvolution

Iterative deconvolution algorithms exhibits some less usual construction than the linear ones. A base class,
itk::IterativeDeconvolutionImageFilter has been developped to share some code bitween the dif-
ferent algorithm implementations and make them easier to code.

An iterative algorithm is usually quite long to run, so we want a little more observability and possibilities of
interaction during the update process than with a linear algorithm.

The filter should:

• be able to start with a different image than the input image. This should allow to restart a decon-
volution where the process has stopped and to use precondionned images to start the deconvolution
with;

• announce when an iteration is completed;

• expose the current iteration number;

• expose the result of the last iteration to let the user visually check the deconvolution result during the
process;

• be able to stop at any iteration if the user decide to do so;

• be able to run for a given number of iterations;

Latest version available at theInsight Journal[http://hdl.handle.net/10380/]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/
http://creativecommons.org/licenses/by/3.0/us/

6

• be able to stop if the process has reach a stable state;

• provide the basic infrasctructure for the iteration to makethe filters easier to implement;

• allow the user to modify the image at each iteration to add a smoothing step for example.

Those features have been implemented initk::IterativeDeconvolutionImageFilter, as a subclass of
itk::FFTConvolutionImageFilterBase.

6 Reference algoritms

Some reference algorithms implementations are provided. In the next equations,Iω is the imageI in the
frequency domain.

6.1 Linear algorithms

itk::WienerDeconvolutionImageFilter

An additive gaussian noise is assumed with the Wiener deconvolution.

Îω =
IωP∗

ω
|Pω|2 + γ

(5)

whereγ is a user defined parameter.γ depends on the amount of noise in the image and is usually in the
range 0.001 to 0.1.

itk::TikhonovMillerDeconvolutionImageFilter

An additive gaussian noise is assumed with the linear Tikhonov-Miller deconvolution.

Îω =
IωP∗

ω
|Pω|2 + γ|Rω|2

(6)

whereR is a regularization operator – usually a laplacian – andγ is a user defined parameter.γ depends on
the amount of noise in the image and is usually in the range 0.001 to 0.1. If R is the identity transform, the
direct Tikhonov-Miller deconvolution is equivalent as theWiener deconvolution.

itk::RegularizedLeastSquaresDeconvolutionImageFilter

Îω =

{

IωP∗
ω

|Pω|2
, if |Pω|

2 > α
0, otherwise

(7)

Latest version available at theInsight Journal[http://hdl.handle.net/10380/]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/
http://creativecommons.org/licenses/by/3.0/us/

6.2 Iterative algorithms 7

6.2 Iterative algorithms

itk::VanCittertDeconvolutionImageFilter

În = În−1+ α
(

I−P⊗ În−1
)

(8)

An optional non negativity constraint can be applied at eachiteration.

itk::JanssonVanCittertDeconvolutionImageFilter

În = În−1 + α
(

1−
2

B−A
|În−1−

A + B
2

|

)

(

I−P⊗ În−1
)

(9)

whereA is the minimum value in the image anB the greatest value in the image. In our implementation, it
is restricted toA = 0, which leads to

În = În−1 + α
(

1−
2|În−1−B/2|

B

)

(

I−P⊗ În−1
)

(10)

An optional non negativity constraint can be applied at eachiteration.

This filter is implemented by subclassingitk::VanCittertDeconvolutionImageFilter and slightly
modifying its internal pipeline.

itk::LandweberDeconvolutionImageFilter

În = În−1 + αPT ⊗
(

I −P⊗ În−1
)

(11)

An optional non negativity constraint can be applied at eachiteration.

This filter is implemented by subclassingitk::VanCittertDeconvolutionImageFilter and slightly
modifying its internal pipeline.

itk::RichardsonLucyDeconvolutionImageFilter

În = În−1

(

PT ⊗
I

P⊗ În−1

)

(12)

itk::MaximumEntropyRichardsonLucyDeconvolutionImageFilter

În = În−1

(

PT ⊗
I

P⊗ În−1

)

−TIn−1ln(In−1) (13)

This filter is implemented by subclassingitk::RichardsonLucyDeconvolutionImageFilter and
slightly modifying its internal pipeline.

This filter doesn’t conserve the global intensity in the image.

Latest version available at theInsight Journal[http://hdl.handle.net/10380/]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/
http://creativecommons.org/licenses/by/3.0/us/

8

itk::DampedRichardsonLucyDeconvolutionImageFilter

Un−1 = −
2

T 2

(

I + ln(
P⊗ În−1

I
)−P⊗ În−1+ I

)

(14)

În = În−1

(

PT ⊗

(

1+UN−1
n−1 (N − (N −1)Un−1)

I −P⊗ În−1

P⊗ În−1

))

(15)

This filter is implemented by subclassingitk::RichardsonLucyDeconvolutionImageFilter and
slightly modifying its internal pipeline.

itk::ConchelloIntensityPenalizationImageFilter

The Conchello’s intensity regularization is implemented as an external regularization filter to plug into the
regular Richardson-Lucy filter.

At each iteration, it adds the following computation to avoid over intensifying the bright pixels:

În =
−1.0+

√

1+2λÎn

λ
(16)

This filter doesn’t conserve the global intensity in the image.

itk::TikhonovMillerRichardsonLucyDeconvolutionImageFilter

În =
În−1

1−2λ∆În−1

(

PT ⊗
I

P⊗ În−1

)

(17)

This filter is implemented by subclassingitk::RichardsonLucyDeconvolutionImageFilter and
slightly modifying its internal pipeline.

itk::PoissonMaximumAPosterioriDeconvolutionImageFilter

În = În−1e
PT⊗

(

I
P⊗În−1

−1

)

(18)

7 Development version

A development version is available in a darcs repository athttp://mima2.jouy.inra.fr/darcs/contrib-itk/decon

Latest version available at theInsight Journal[http://hdl.handle.net/10380/]
Distributed underCreative Commons Attribution License

http://mima2.jouy.inra.fr/darcs/contrib-itk/deconv/
http://www.insight-journal.org
http://hdl.handle.net/10380/
http://creativecommons.org/licenses/by/3.0/us/

9

8 Conclusion

With this work, we are providing a well constructed infrasctructure which should highly simplify the im-
plementation of deconvolution algorithms with ITK, and should help to keep the API very similar in all the
future deconvolution filters.

We have also provided several reference algorithms implementation. While not at the state of the art, those
algorithms are considered as reference in the domain, and their simplicity was a great opportunity to ensure
a high reusability of the infrastructure code.

Several things are still to be developed to make ITK a real actor in the deconvolution fields:

• some state of the art algorithm implementations. Significant improvements has been made in the last
decade in the deconvolution field, and the implemented algorithms, while useful as references, just
can’t compete with the more recent published algorithms;

• blind deconvolution;

• theorical PSF generation;

• real test cases.

References

[1] L. Ibanez and W. Schroeder. The ITK Software Guide. Kitware, Inc. ISBN 1-930934-10-6,
http://www.itk.org/ItkSoftwareGuide.pdf, 2003.

Latest version available at theInsight Journal[http://hdl.handle.net/10380/]
Distributed underCreative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/
http://creativecommons.org/licenses/by/3.0/us/

	Introduction
	Infrastructure
	Generic classes
	itk::BinaryFunctorWithIndexImageFilter
	itk::ComplexConjugateImageFilter
	itk::DivideOrZeroOutImageFilter
	itk::MultiplyByComplexConjugateImageFilter
	itk::LaplacianImageFilter
	itk::FFTConvolveByOpticalTransferFunctionImageFilter

	Calculators
	itk::ImprovementInSignalToNoiseRatioCalculator
	itk::RelativeChangeCalculator
	itk::IDivergenceCalculator
	itk::TotalIntensityRatioCalculator

	Linear deconvolution
	Iterative deconvolution
	Reference algoritms
	Linear algorithms
	itk::WienerDeconvolutionImageFilter
	itk::TikhonovMillerDeconvolutionImageFilter
	itk::RegularizedLeastSquaresDeconvolutionImageFilter

	Iterative algorithms
	itk::VanCittertDeconvolutionImageFilter
	itk::JanssonVanCittertDeconvolutionImageFilter
	itk::LandweberDeconvolutionImageFilter
	itk::RichardsonLucyDeconvolutionImageFilter
	itk::MaximumEntropyRichardsonLucyDeconvolutionImageFilter
	itk::DampedRichardsonLucyDeconvolutionImageFilter
	itk::ConchelloIntensityPenalizationImageFilter
	itk::TikhonovMillerRichardsonLucyDeconvolutionImageFilter
	itk::PoissonMaximumAPosterioriDeconvolutionImageFilter

	Development version
	Conclusion

