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Abstract. The development of segmentation algorithms for liver tumors
in CT scans has found growing attention in recent years. The validation
of these methods, however, is often treated as a subordinate task. In this
article, we review existing approaches and present first steps towards
a new methodology that evaluates the quality of an algorithm in rela-
tion to the variability of manual delineations. We obtained three manual
segmentations for 50 liver lesions and computed the results of a segmen-
tation algorithm. We compared all four masks with each other and with
different ground truth estimates and calculated scores according to the
validation framework from the MICCALI challenge 2008. Our results show
some cases where this more elaborate evaluation reflects the segmenta-
tion quality in a more adequate way than traditional approaches. The
concepts can also be extended to other similar segmentation problems.

1 Introduction

In oncological therapy monitoring, the estimation of tumor growth from consec-
utive CT scans is an important aspect in deciding whether the given treatment
is adequate for the patient. Traditionally, this is done by measuring and com-
paring the largest axial diameters of each lesion manually, but recent advances
in image processing also allow a semi-automatic volumetry, which has the po-
tential to enhance the accuracy and reproducibility of growth estimation. Lesion
segmentation is an essential prerequisite for volumetry and efficient algorithms
are needed for different kinds of tumors.

This article focuses on the segmentation of liver metastases in CT scans. They
are among the clinically most important entities in this context, but also pose
a particular challenge for segmentation algorithms due to the great diversity in
their appearance. In recent years, a considerable amount of effort has been spent
on the development of semi-automatic and fully automatic algorithms for liver
tumor segmentation, especially triggered by a competition at MICCAIT 2008 [1].
The validation of these methods, however, seems to play a subordinate role in
most publications. Although it is well known that manual segmentations even
by experts will always show some degree of variability (Fig. 1), algorithms are
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Fig.1: Three manual and an algorithmic segmentation of the same liver tumor.
The volumes differ almost by a factor of 2 but all masks are visually plausible.

often evaluated by comparing their results to a single reference segmentation
which is considered to be the “ground truth”. Various similarity measures can
be computed from these two masks, but it is not clear how the results reflect the
actual accuracy of an algorithm, especially from a clinical user’s point of view.

From our experience, a fair and objective validation of a segmentation algo-
rithm should take the uncertainty in manual segmentations into account. This
means that more than one reference mask should be obtained and that a vali-
dation metric should relate the performance of the algorithm to the variability
between these reference masks. If we find, for example, that the volume of a
lesion computed by an algorithm is within the range of variation of several man-
ually determined volumes, this may give a more conclusive statement about the
quality of the method than just giving a difference to one of these reference
volumes.

In this article, we take a closer look at evaluation concepts in the recent liter-
ature on liver tumor segmentation and show first steps towards a new validation
methodology that follows the ideas mentioned above. They will be exemplified
by a study on our own algorithm using 50 liver lesions and three reference seg-
mentations for each of them.

2 Validation with Multiple Reference Segmentations: A
Critical Review

We reviewed publications from the last ten years that focus partially or com-
pletely on liver tumor segmentation in CT with regard to the validation tech-



niques that were applied to assess the quality of the algorithms. In this section,
we show different strategies that have been used to deal with multiple reference
segmentations.

Yim and Foran [8] compared the reproducibility of manual and semi-automatic
area measurements from repeated reading.

Popa et al. [4] obtained four reference segmentations by different readers
and estimated a ground truth using the STAPLE algorithm [7]. Comparison
metrics were computed for one of the reference masks and the algorithmic result
versus the estimated ground truth. Unfortunately, the results are biased since
the algorithmic segmentation was not used for STAPLE while the reference mask
was.

Zhao et al. [9] computed concordance correlation coefficients (CCC) for vol-
ume measurements of three readers and their algorithm as well as an overall
CCC to assess the accuracy of their results.

Ray et al. [5] used reference masks of four readers from three reading sessions
each. They analyzed the development of the volume measurements between the
sessions and compared the measured volumes with those from the algorithm.

A methodology that can be considered the current state of the art was used
at several MICCAT segmentation challenges and first introduced by Heimann et
al. [2]. Deng and Du [1] adapted it for the liver tumor segmentation challenge
in 2008. A scoring system was developed that evaluates segmentation results
in consideration of the variability in manual delineations. For this purpose, two
reference masks were acquired, one of which is used as the “ground truth” to com-
pare the algorithmic segmentations with. This reference mask was confirmed by
both readers as correct. The other reference mask is used to estimate the typical
deviation of an independent observer. Five comparison metrics are transformed
into a score between 0 and 100 such that 100 corresponds to complete agreement
with the “ground truth” and 90 to the average deviation of the second reference
mask. The total score is the mean of the five scores obtained from the metrics.

This is an interesting concept that tries to increase the objectivity of seg-
mentation validation. It does, however, not capture the uncertainty of human
measurements completely. First, it can only be used for lesions where the readers
are able to agree on a “perfect” segmentation. The other cases were discarded
for the MICCALI challenge, so the problem of validating segmentations where
manual segmentations differ and no actual ground truth is available was left
aside. In practice, however, such cases are not rare, so the validation result may
sometimes depend strongly on which reference mask is chosen.

Figure 2 shows a graphical example where one reference mask is just a dilation
of the other, i. e., one reader produced a mask that is systematically larger.
Although this scenario is simplified for illustration, results like this can easily
occur when the two readers use different window settings or when the contrast
between the lesion and the parenchyma is low. The areas with high scores are
significantly different depending on the choice of the “ground truth” as is shown
in Fig. 2a and 2b. Given the information from both reference masks, a symmetric
distribution as in Fig. 2c would be more desirable.
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Fig. 2: Graphical illustration of some problems with the MICCALI scoring system.
Solid lines denote manual segmentations, red ones are the “ground truth”, dotted
lines are algorithmic segmentations. The gray area covers the segmentations that
would get a score above 90. (a) Mo is used as the ground truth. (b) M is used
as the ground truth. (c) M; and My are treated equally. (d) My is used as the
ground truth. A; and A would get the same score although A; is obviously
better if both reference masks are taken into account.

But even if the readers are able to agree on a “ground truth”, there is still
a degree of uncertainty about the true segmentation which is reflected in the
independent segmentations of the other readers. This information, however, is
effectively discarded by the MICCALI scoring system since the direction or “sign”
of the deviation is not taken into account. This effect is illustrated in Fig. 2d. If
we choose the red segmentation as the ground truth, A; and As, which are just
an erosion and a dilation of the ground truth, would get the same score. But
from the other reference mask we know that A; is probably better than As.

In order to see the impact on real data, we get back to Fig. 1 where the manual
segmentations are very different. Depending on the choice of the “ground truth”,
the scores for the relative volume difference are 71.9 (My), 35.3 (Mz) and 96.9
(Ms3), respectively, which covers the range from an excellent to a rather poor
agreement. This example shows that using three reference masks instead of one
or two allows us to get a better idea of the most probable ground truth and of
the inherent uncertainty in a particular segmentation problem. A reliable score
should therefore incorporate all available information, for example by averaging
the individual scores for all reference masks or by estimating an aggregate ground
truth with an algorithm such as STAPLE.

3 Data and Validation Methodology of our Study

In order to exemplify the ideas pointed out above and to examine our concepts
more closely, we initiated a validation study for our own liver tumor segmentation
algorithm [3]. This algorithm combines adaptive thresholding with model-based
morphological postprocessing and adds special treatment for peripheral and rim-
enhancing lesions. The input to the method is a stroke across the tumor that
should roughly indicate its largest diameter.

The data set that was used for our study consists of 38 CT scans from several
hospitals and CT scanners that were acquired for liver surgery planning. For



a total number of 50 lesions, manual segmentations were obtained from three
experienced radiology technicians. These lesions were selected randomly from
a larger amount of data and can be considered as a representative collection
of segmentable liver tumors. Very small, very inhomogeneous, and not clearly
delimitable lesions had been excluded initially. We applied our algorithm to the
lesions, using the largest axial diameters of the union of all manual segmentations
as strokes.

We call the three manual segmentations M7, My and M3 and the automatic
one A. With these four masks, we performed two experiments. First, we com-
puted the comparison measures and scores as in the MICCALI challenge 2008 for
all six pairs of masks. The results are divided into three pairs which contain A
and three which do not. A comparison of the values among both groups gives us
an idea of how well the algorithm performs in consideration of the uncertainty
of the human observers.

In the second experiment, we estimated a ground truth from the four masks
using four different techniques — voxelwise voting (2-out-of-4 and 3-out-of-4),
STAPLE [7], and shape-based averaging (SBA) [6] — and compared each of the
four masks with the result. We also included A into the computation because
comparing the scores would not be fair if some of the masks had influenced the
ground truth estimate and some had not. Since the three reference masks still
dominate the result, incorporating A does not cause a significant bias.

4 Results

Table 1a shows the medians of the comparison measures for all pairs of masks.
It can be seen that the agreement among the reference masks is better for all
metrics but the difference is not very large. The average score is 83.5 for manual
pairs and 78.0 for manual-algorithmic pairs.

In Table 1b we report the median MICCALI scores for all masks compared
with the ground truth estimates. The results are consistent among the different
ground truth estimation methods as well as with the results of the pairwise
comparison.

In addition to the overall results, we give a closer look at some cases where
our validation strategy provides more information or is more consistent with the
visual impression than the MICCALI scores for the individual reference masks.

The first example, shown in Fig. 3, is a case where the average of the pairwise
scores as well as the score against the STAPLE ground truth is higher for A than
for any of the reference masks. This means that A is a good compromise between
the divergent reference masks which is confirmed by visual inspection and by the
high similarity to the STAPLE ground truth. This effect could not have been
identified with the MICCAI score which would suggest slightly below average
segmentation quality. Interestingly, the results for the SBA ground truth are
completely different and yield the best agreement with M;. This suggests that
the behavior of the ground truth estimators can show subtle discrepancies in
individual cases that should be examined in more detail.



M1 Mo | My Ms| Mo Ms||AM:|AMs|AMs
Volume overlap 68.9| 66.5] 72.5|| 60.0| 64.8| 66.5
Relative volume difference|| 19.2| 25.3| 13.7|| 28.0| 25.1| 13.6
Avg. surface distance 0.67| 0.69| 0.53|| 0.97| 0.89| 0.87
RMS surface distance 0.88] 0.93| 0.77|| 1.25| 1.20| 1.20
Max. surface distance 3.08] 3.58| 2.66]|| 4.04| 4.01| 4.01
MICCAT score 83.2| 81.0] 86.2|| 76.9| 77.4| 79.8
(a)
[ M| M| Ms|| A
2-out-of-4 voting 88.2(90.2|88.2|(83.8
3-out-of-4 voting 84.0/91.591.2(|79.8
STAPLE 87.9190.4|88.2(|83.6
Shape-based averaging||87.1/90.2]90.7/84.1
(b)

Table 1: (a) Results of the pairwise comparison between manual and algorithmic
segmentations (medians over all lesions). (b) Results of the comparison of indi-
vidual segmentations with the estimated ground truth according to the different
methods (medians of MICCALI score over all lesions).

| | My| M| M| A
METT}M%ﬁ}M?))%Hé%hf;hﬁ STAPLE|74.383.3[47.0([88.3
. . . . : : SBA 87.1/64.5|69.7||69.5

(e) Pairwise scores (f) Ground truth scores

Fig. 3: Example from our study where the algorithmic segmentation has better
scores than the reference masks and provides a visually satisfying compromise.
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Fig.4: Example from our study where the reference masks have a very good
agreement and the algorithmic segmentation shows a deviation in spite of the
good scores.

The second example in Fig. 4 shows the opposite effect. From the pairwise
scores, the accuracy of A seems to be above average, but the scores between
the reference masks and especially the scores of the reference masks against the
ground truth estimates are even higher. In this case, the reference masks show a
very good agreement and the validation should be less tolerant to the inaccuracy
that can be seen in Fig. 4d.

5 Discussion

In our preliminary study, we examined how the results of a segmentation algo-
rithm can be evaluated by relating them to the performance of manual segmen-
tations. At a first glance, it seems that pairwise comparison of all available masks
leads to similar conclusions as comparison with an estimated ground truth in
most cases, but this should be investigated further. In particular, cases such as
the one shown in Fig. 3 where different methods yield different results should be
analyzed in more detail in future studies.

So far, we have presented the general ideas behind our validation methodol-
ogy and shown the possible benefit by some examples. The goal of our ongoing



work is to derive new quantitative metrics that allow an objective accuracy as-
sessment of a segmentation algorithm and a fair comparison between different
algorithms on different data. These metrics should adapt their tolerance de-
pending on the uncertainty of the experts which is reflected in the variability of
the reference segmentations. This could be done by merging a set of individual
comparison measures into a new score or by estimating a fuzzy ground truth.
Figures 3 and 4 show examples where this could give a more adequate validation
than the MICCALI score.

This concept raises another important question: How many reference segmen-
tations are needed for this kind of validation? Even though we want to establish a
fuzzy ground truth, we still require a statistical stability to achieve reproducible
results. This will also be a subject of further research.

We would like to point out that our concept is not restricted to liver tumor
segmentation. It can be used for other tumor entities and potentially be extended
to general segmentation problems where no ground truth is available.
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